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The problem of moments, as its generalizations, is an important

mathematical problem which has attracted much attention for
more than a century.

It was first raised and solved by Stieltjes for positive measures.
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The problem of moments, as its generalizations, is an important
mathematical problem which has attracted much attention for
more than a century.

It was first raised and solved by Stieltjes for positive measures.

Problem (Stieltjes, 1894)

Find conditions over {an}° , which ensure the existence of
solutions y to the infinity system of equations

an:/ x"du(x), n=0,1,2,...,
0

where 1 is a positive measure.

We will discuss several generalizations of this problem.
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The classical Stieltjies moment problem

Stieltjes found a necessary and sufficient condition for the
existence of solutions.
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The classical Stieltjies moment problem

Stieltjes found a necessary and sufficient condition for the
existence of solutions. Define the sequence of matrices

ao aq A dan a as . an41

a ao ... ant 1) ao as . an42
Ap=| . . : and Ay’ = . : .

an dan+1 e don ant1 ant2 ... aon1
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The classical Stieltjies moment problem

Stieltjes found a necessary and sufficient condition for the
existence of solutions. Define the sequence of matrices

ao aq A an a as . an41

a ao ... ant 1) ao as . an42
Ap=| . . : and Ay’ = . : .

an dan+1 e don ant1 ant2 ... aon1

Theorem (Stieltjes, 1894-1895)
The Stielties moment problem

an:/ x"du(x), n=0,1,2,...,
0
has solution if and only if

det(An) > 0 and det(Al)) >0, n=0,1,2,....
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ldeas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
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ldeas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
@ The theory of Stieltjes integrals

an:/o x"dF(x), F /.
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ldeas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
@ The theory of Stieltjes integrals

an:/o x"dF(x), F /.

@ The Stieltjes transform, e z ¢ (—o0, 0],

S(z) /000 dF (x)

X+2Zz
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ldeas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
@ The theory of Stieltjes integrals

an:/o x"dF(x), F /.

@ The Stieltjes transform, e z ¢ (—o0, 0],

S(z) = /OOO dF(x) D (=1)"an

X+ 2z Zﬂ+1
n=0
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ldeas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
@ The theory of Stieltjes integrals

an:/o x"dF(x), F /.

@ The Stieltjes transform, e z ¢ (—o0, 0],

S(z) = /OOO dF(x) D (=1)"an

X+ 2z Zﬂ+1
n=0

@ Continued fraction approximations.
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@ Modern approach goes back to Marcel Riesz (1921).
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@ Modern approach goes back to Marcel Riesz (1921).

@ Carleman (1923-1926): connections with the theory of
quasi-analytic functions.
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@ Modern approach goes back to Marcel Riesz (1921).

@ Carleman (1923-1926): connections with the theory of
quasi-analytic functions.

Other moment problems:
@ Hamburger (1920):

an:/ x"dF(x), n=0,1,2,....
@ Hausdorff (1923):
c
an:/ x"dF(x), n=0,1,2,....
b

For results on classical moment problems see the book by
Shohat and Tamarkin (The problem of moments, 1943).
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Moment problems for arbitrary sequences

Theorem (Boas and Pdlya, independently, 1939)

Given an arbitrary sequence {an};° ,, there is always a function
of bounded variation F such that

an:/ x"dF(x), n=0,1,2,....
0
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Moment problems for arbitrary sequences

Theorem (Boas and Pdlya, independently, 1939)

Given an arbitrary sequence {an};° ,, there is always a function
of bounded variation F such that

an:/ x"dF(x), n=0,1,2,....
0

A. Duran achieved a major improvement to this result:
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Moment problems for arbitrary sequences

Theorem (Boas and Pdlya, independently, 1939)

Given an arbitrary sequence {an};° ,, there is always a function
of bounded variation F such that

an:/ x"dF(x), n=0,1,2,....
0

A. Duran achieved a major improvement to this result:

Theorem (A. Duran, 1989)
Every Stielties moment problem

an:/ x"g(x)dx, n=0,1,2,...,
0

admits a solution ¢ € S(0, o), namely, ¢ € S(R) with
supp ¢ < [0, 00).
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Stielties moment problems for arbitrary sequences

@ A. Duran’s proof: Laguerre expansions, Hankel transform.
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Stielties moment problems for arbitrary sequences

@ A. Duran’s proof: Laguerre expansions, Hankel transform.
@ A. L. Durédn and Estrada found a simple proof (1994):

~

an:/ x"p(x)dx, n=0,1,2,..., (1
0

iff (" (0) = (—i)"ap.

J. Vindas On general Stielties moment problems



Stielties moment problems for arbitrary sequences

@ A. Duran’s proof: Laguerre expansions, Hankel transform.
@ A. L. Durédn and Estrada found a simple proof (1994):

~

an:/ x"p(x)dx, n=0,1,2,..., (1
0

iff (" (0) = (—i)"a,. Then, the Borel-Ritt theorem ...
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Stielties moment problems for arbitrary sequences

@ A. Duran’s proof: Laguerre expansions, Hankel transform.
@ A. L. Durédn and Estrada found a simple proof (1994):

~

an:/ x"p(x)dx, n=0,1,2,..., (1
0

iff (" (0) = (—i)"a,. Then, the Borel-Ritt theorem ...

@ Chung-Chung-Kim (2003) exploited the method to show
that (1) has solutions ¢ € S%(0, ), 3 > 1.

@ Lastra and Sanz (2009) have considered ultradifferentiable
classes S{M}(0, c0).
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Abstract moment problem

We want to replace
an:/ x"¢(x)dx, n=0,1,2,...,
0

by the infinite system of linear equations

an:<fn,¢>7 n:O71727"'7 (2)
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Abstract moment problem

We want to replace
an:/ x"¢(x)dx, n=0,1,2,...,
0

by the infinite system of linear equations
an:<fn,¢>7 n:O71727"'7 (2)

where the sought solution ¢ is an element of a (topological!)
vector space E and f, € E’.
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Abstract moment problem

We want to replace
an:/ x"¢(x)dx, n=0,1,2,...,
0
by the infinite system of linear equations

an:<fn,¢>7 n:O71727"'7 (2)

where the sought solution ¢ is an element of a (topological!)
vector space E and f, € E’.

Problem

Conditions over E and {f,}?° , such that every generalized
moment problem (3) has a solution ¢ € E.
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Particular cases

@ The Borel problem:
an=¢"0), n=0,1,2,....
Here E = C®(R) and f, = (—1)"5("), elements of £'(R).
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Particular cases

@ The Borel problem:
an=¢"0), n=0,1,2,....

Here E = C®(R) and f, = (—1)"5("), elements of £'(R).

@ The Borel-Ritt problem. Given a sector S: a < argz < f3,
|z| < r. Find an analytic function ¢ on S such that on any
subsector Sy : ay < argz < 34 one has

¢(2) ~> anz", z—0%.
n=0
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Particular cases

@ The Borel problem:
an=¢"0), n=0,1,2,....

Here E = C®(R) and f, = (—1)"5("), elements of £'(R).

@ The Borel-Ritt problem. Given a sector S: a < argz < f3,
|z| < r. Find an analytic function ¢ on S such that on any
subsector Sy : ay < argz < 34 one has

¢(2) ~> anz", z—0%.
n=0
@ Entire functions with prescribed values. Let {wn}2 , a
sequence of complex numbers. Find ¢ entire such that

¢(Wn) = an.
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Particular case: General Stielties moment problems

for rapidly decreasing smooth functions

Direct generalization of Pélya-Boas-Duran problem,
an:/ x"¢p(x)dx, n=0,1,2,...,
0

where ¢ € §(0, ).
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Particular case: General Stielties moment problems

for rapidly decreasing smooth functions

Direct generalization of Pélya-Boas-Duran problem,
an:/ x"¢p(x)dx, n=0,1,2,...,
0

where ¢ € §(0, ).
Distribution moment problem:

aﬂ:<fﬂ7¢>7 n:o71727"'7 (3)

J. Vindas On general Stielties moment problems



Particular case: General Stielties moment problems

for rapidly decreasing smooth functions

Direct generalization of Pélya-Boas-Duran problem,
an:/ x"¢p(x)dx, n=0,1,2,...,
0

where ¢ € §(0, ).
Distribution moment problem:

aﬂ:<fﬂ7¢>7 n:o71727"'7 (3)

where f, € §'[0,00) (= f, € S'(R) with supp f, C [0, c0)).
Again we seek solutions ¢ € S(0, ).
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Particular cases

@ Continuous generalized moment problem

an:/ fa(xX)o(x)dx, n=0,1,2,....
0
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Particular cases

@ Continuous generalized moment problem

(o)
an :/ fa(xX)o(x)dx, n=0,1,2,....
0
@ Discrete problem: Let (B )k nenz b€ an infinite matrix

an=>» Binp(k), n=0,1,2,. ..,
k=1
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Particular cases

@ Continuous generalized moment problem
(o)
an :/ fn(X)p(x)dx, n=0,1,2,....

0

@ Discrete problem: Let (B )k nenz b€ an infinite matrix
an=>» Binp(k), n=0,1,2,. ..,
k=1
or, more generally, 0 < A\, — oo,

an=Y Brnd(X), n=012 ...
k=1
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Particular cases

@ Continuous generalized moment problem

(o)
an :/ fa(xX)o(x)dx, n=0,1,2,....
0
@ Discrete problem: Let (B )k nenz b€ an infinite matrix

an=>» Binp(k), n=0,1,2,. ..,
k=1
or, more generally, 0 < A\, — oo,
an=Y Brnd(X), n=012 ...
k=1

© Let {Fy}>° , be a sequence of functions of local bounded
variation (having at most polynomial growth)

an:/ooqb(x)an(x), n=0,1,2,....
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Back to the abstract moment problem

We now consider the abstract moment problem, {f,}°°, C E’,
an=(fh,¢), n=0,1,2,.... (4)

where E is B-complete (also called Ptak).
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Back to the abstract moment problem

We now consider the abstract moment problem, {f,}°°, C E’,
an=(fr,¢), n=0,1,2,.... (4)

where E is B-complete (also called Pték). This means that a
linear subspace of E’ is weak* closed iff its intersection with
every equicontinous set is weak* closed.

Theorem

Let E be B-complete. Then every moment problem (4) admits a
solution ¢ € E if and only if
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Back to the abstract moment problem

We now consider the abstract moment problem, {f,}°°, C E’,
an=(fr,¢), n=0,1,2,.... (4)

where E is B-complete (also called Pték). This means that a
linear subspace of E’ is weak* closed iff its intersection with
every equicontinous set is weak* closed.

Theorem

Let E be B-complete. Then every moment problem (4) admits a
solution ¢ € E if and only if

Q n.fi,fh,... . f,... are linear independent.
© For any equicontinuous subset A C E’, the intersection

Anspan{f,: ne N}

is contained in a finite dimensional subspace.
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Abstract moment problem in Fréchet spaces

We rediscovered the following result, originally due to Eidelheit
(1936).

Corollary

Let E = projlim E; be a Frechet space, where each E; is a
Banach space, and Ej 1 — E; is dense. Every arbitrary
abstract moment problem

<fna¢> = ana ne N7

has a solution ¢ € E if and only if
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Abstract moment problem in Fréchet spaces

We rediscovered the following result, originally due to Eidelheit
(1936).

Corollary

Let E = projlim E; be a Frechet space, where each E; is a
Banach space, and Ej 1 — E; is dense. Every arbitrary
abstract moment problem

<fna¢> = ana ne N7

has a solution ¢ € E if and only if
Q f,fi,fb,... 1, ..., are linearly independent.
Q span{f,: ne N} N E/ is finite dimensional, Vj € N.
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Applications

@ For the Borel problem:
an:¢(n)(0): <(_1)n5(n)?¢>’ n:0’17277
one takes E = C(R) = projlim C'[—}, j].
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Applications

@ For the Borel problem:
an = ¢(M(0) = ((—1)"M,¢), n=0,1,2,...,

one takes E = C*(R) = projlim C/[—j, j]. Since all
elements of the dual of C/[—J, j] are derivatives of order
< j+ 1 of measures, the last result implies that every Borel
problem has solution.

@ A similar argument shows that every Borel-Ritt problem
has a solution.
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Applications

@ For the Borel problem:
an = ¢(M(0) = ((—1)"M,¢), n=0,1,2,...,

one takes E = C*(R) = projlim C/[—j, j]. Since all
elements of the dual of C/[—J, j] are derivatives of order
< j+ 1 of measures, the last result implies that every Borel
problem has solution.

@ A similar argument shows that every Borel-Ritt problem
has a solution.

@ Employing the Kéthe-Silva-Grothendieck representation
theorem for analytic functionals and the previous theorem,
one can show: Every sampling problem

¢(wn) = an
has an entire solution ¢ if and only if |w,| — oo.
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Distribution moment problem. Cesaro asymptotics

Let f € §’[0,0) and a > —1. We write

f(x) = O(x®) (C,m), X — oo
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Distribution moment problem. Cesaro asymptotics

Let f € §’[0,0) and a > —1. We write
f(x) = O(x®) (C,m), X — oo

if (=) the primitive of order m of f, is continuous on [0, o0) and
M (x) = O(x*+™), X — oo,

in the ordinary sense.
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Distribution moment problem. Cesaro asymptotics

Let f € §’[0,0) and a > —1. We write
f(x)=0O(x*) (C,m), x—

if (=) the primitive of order m of f, is continuous on [0, o0) and
M (x) = O(x*+™), X — oo,

in the ordinary sense.

Here f is the convolution of f with xjr"*1 /(m—1)!, sothatif fis
locally integrable
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General Stielties moment problem for sequences of

distributions

Let {f,}7° , be a sequence of distributions with supp f, C [0, c0).

Every generalized Stielties moment problem
an:<fn,¢>» n:O71727-~'a

has a solution ¢ € S(0, c0) if:

o
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General Stielties moment problem for sequences of

distributions

Let {f,}7° , be a sequence of distributions with supp f, C [0, c0).

Every generalized Stielties moment problem

an:<fn,¢>» n:o71727-~'a

has a solution ¢ € S(0, c0) if:
Q fi,b,f3.... 1, ..., are linearly independent.
@ span{f,: ne N} nspan{sWiN} = {0} .
© There is an increasing sequence of integers {m;} ~, such
that for every j and o > 0 there exists v; , such thatif N > v

> bafa(x) = O(x*)(C,m;) = b, =b,4q == by =0.
n=0

V.
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The weighted Stielties moment problem

Let0 < F on[0,00) with F(x) = O(x") and let {ap}peny € C
with

lim Re a, = .
n—oo

Theorem
Every weighted Stielties moment problem

a,,—/ Pp(X)x*"dF(x), n=0,1,2...,
0

has a solution ¢ € S(0, c0) if and only if
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The weighted Stielties moment problem

Let0 < F on[0,00) with F(x) = O(x") and let {ap}peny € C
with

lim Re a, = .
n—oo

Theorem
Every weighted Stielties moment problem

a,,—/ Pp(X)x*"dF(x), n=0,1,2...,
0
has a solution ¢ € S(0,c0) if and only if there is N

/Oo xNdF(x) = .

0
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The following generalized moment problem is not always
solvable:

an=>» 2 %k"¢(k), n=0,1,2,....
k=1
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The following generalized moment problem is not always
solvable:

an=>» 2 %k"¢(k), n=0,1,2,....
k=1

Let {an}52, be such that e oy, oo. The following
generalized moment problems always have a solution
¢ € S(0, 0).

an= Y pTé(p), n=0,1,2,....

p prime
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The following generalized moment problem is not always
solvable:

an=>» 2 %k"¢(k), n=0,1,2,....
k=1

Let {an}52, be such that e oy, oo. The following
generalized moment problems always have a solution
¢ € S(0, 0).

an= Y pTé(p), n=0,1,2,....

p prime

> an qi 1 —
a,,:/o X sm<xﬁ)¢(x)dx, n=0,1,2,..., (8>0).
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