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Introduction

‘Generalized asymptotics’ refers to asymptotic analysis on
spaces of generalized functions
I will focus on spaces of Schwartz distributions (in one
dimension)
Asymptotic notions lead to pointwise regularity for
distributions
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Notation
from distribution theory

D(R) and S(R) denote the spaces of smooth compactly
supported functions and smooth rapidly decreasing
functions
D′(R) and S ′(R) the spaces of distributions and tempered
distributions
The Fourier transform in S(R) is defined as

φ̂(x) =

∫ ∞

−∞
φ(t)eixtdt

The evaluation of f at a test function φ is denoted by

〈f (x), φ(x)〉
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Quasiasymptotics
The S−asymptotic behavior

Quasiasymptotics

The idea is to study the weak asymptotic behavior of the dilates
of f . So we look for asymptotic representations

f (λx) ∼ ρ(λ)g(x) .

Definition
We say that f ∈ D′(R) has quasiasymptotic behavior in D′(R)
with respect to ρ if for some g ∈ D′(R) and every φ ∈ D(R),

lim
〈

f (λx)

ρ(λ)
, φ(x)

〉
= 〈g(x), φ(x)〉 .

In such a case one writes f (λx) = ρ(λ)g(x) + o(ρ(λ)) in D′(R).
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Quasiasymptotics
The S−asymptotic behavior

Łojasiewicz (1957) defined the value of a distribution f ∈ D′(R)
at the point x0 as the limit

γ = lim
ε→0

f (x0 + εx) ,

if the limit exists in D′(R). We use the notation f (x0) = γ,
distributionally.
It is an average notion:

Theorem
(Łojasiewicz structural theorem, 1957) f (x0) = γ,
distributionally, if and only if there exist k ∈ N a continuous
k − primitive F of f (i.e. f = F (k)) such that F is continuous near
x0 and

lim
x→∞

k !F (x)

(x − x0)k = γ.
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The S−asymptotic behavior

S−asymptotics

For the S−asymptotic, we look at the translates of the
distribution.

Definition
We say that f ∈ D′(R) has S−asymptotic with respect to a
function ρ if there exists g ∈ D′(R) such that

f (x + h) ∼ ρ(h)g(x) as h →∞ in D′(R) .
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The structure of quasiasymptotics of degree -1
Pointwise inversion formula

Pointwise Fourier inversion formula

The relaship between the value of a function at a point and the
convergence or summability of its Fourier transform (or series)
is an old problem. The question even makes sense for
tempered distributions.
Questions:

If a tempered distribution has a value at a point, can it be
recovered by its Fourier transform?
Specifically, is it possible to give pointwise sense to

f (x0) =
1

2π

∫ ∞

−∞
f̂ (t)e−itx0dt , for f ∈ S ′(R)?

Is it possible to characterize the existence of point values
by certain type of summability of the Fourier transform?
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Point values and the Fourier transform
(quasi)asymptotic behavior of the Fourier transform

Suppose that f (x0) = γ in S ′(R). Then,

f (x0 + εx) = γ + o(1) ⇔ 1
2π

e−iλx0x f̂ (λx) =
γδ(x)

λ
+ o

(
1
λ

)
Thus, one is led to study the quasiasymptotic behavior

g(λx) =
γδ(x)

λ
+ o

(
1
λ

)
, λ→∞

in the space S ′(R).
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The structure of quasiasymptotics of degree -1
Pointwise inversion formula

Structure of g(λx) = λ−1γδ(x) + o
(
λ−1)

Definition
Let h ∈ D′(R), we say that limx→∞ h(x) = γ (C, k), if ∃F ,

continuous, such that h = F (k) and F (x) ∼ λxk

k !
.

Theorem
Let g ∈ S ′(R). It has the behavior

g(λx) =
γδ(x)

λ
+ o

(
1
λ

)
as λ→∞ in S ′(R) ,

if and only if ∃k such that for a primitive G of g (G′ = g),

lim
x→∞

(G(ax)−G(−x)) = γ (C, k) , for each a > 0 .
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Consequences

Corollary

Let f ∈ S ′(R), suppose that f̂ ∈ L1
loc(R). Then, f (x0) = γ,

distributionally, if and only if ∃k ∈ N such that

lim
x→∞

1
2π

∫ ax

−x
f̂ (x)e−ix0x dx = γ (C, k) , for each a > 0 .

Corollary

Let f (x) =
∑∞

n=−∞ cneinx be a 2π−periodic distribution. Then,
f (x0) = γ, distributionally, if and only if ∃k ∈ N such that

lim
x→∞

∑
−x<n≤ax

cneinx0 = γ (C, k) , for each a > 0 .
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Pointwise Fourier inversion for tempered distributions

Definition
Let g ∈ D′(R), φ ∈ C∞(R), and k ∈ N. We say that
e.v 〈f (x), φ(x)〉 = γ (C, k) if for a primitive Gφ of φg,

lim
x→∞

(Gφ(ax)−Gφ(−x)) = γ (C, k) .

Theorem
Let f ∈ S ′(R). Then f (x0) = γ, distributionally, if and only if
there exists k ∈ N such that

1
2π

e.v.
〈

f̂ (x) ,e−ix0x
〉

= γ (C, k) .
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Proof

The prime number theorem

I will present a distributional proof of the Prime Number
Theorem

π(x) ∼ x
log x

, x →∞ ,

where
π(x) =

∑
p prime, p<x

1 .

The proof is based on:
Chebyshev’s elementary estimate
The non-vanishing of the Riemann zeta function on
<e z = 1
Arguments from generalized asymptotics
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Preliminaries
Some well known facts

ζ(z) denotes the Riemann zeta function
ζ(z)− (1/(z − 1)) continues beyond <e z = 1
ζ(1 + ix), x 6= 0, is free of zeros

von Mangoldt function: Λ(n) =


0 , if n = 1
log p , if n = pm

0 , otherwise

Chebyshev function: ψ(x) =
∑
n<x

Λ(n)

The PNT is equivalent to ψ(x) ∼ x
Chebyshev’s elementary estimate: ∃M > 0 such that
ψ(x) < Mx
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Proof

The distribution v(x)

We shall study the (S-)asymptotic properties of the distribution

v(x) =
∞∑

n=1

Λ(n)

n
δ(x − log n) .

clearly v ∈ S ′(R). Let us take the Fourier-Laplace transform of
v , that is, for =m z > 0〈

v(t),eizt
〉

=
∞∑

n=1

Λ(n)

n1−iz = −ζ
′(1− iz)

ζ(1− iz)
,

a formula that Riemann obtained by logarithmic differentiation
of the Euler product for the zeta function. Then,

v̂(x) = −ζ
′(1− ix)

ζ(1− ix)
.
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Proof

Properties of v(x) to be used

It follows from the properties of ζ that the distributional

boundary value of v̂(z)− i
z

is a function, i.e.,

v̂(x)− i
(x + i0)

∈ L1
loc(R)

In addition, we will make use of Chebyshev’s estimate:
ψ(x) < Mx
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Preliminaries
A special distribution
Proof

The plan
Steps

1 To show that

lim
h→∞

v(x + h) = 1 , in S ′(R)

2 To show that

lim
λ→∞

ψ′(λx) = lim
λ→∞

∞∑
n=1

Λ(n)δ(λx −n) = H(x) , in D′(0,∞)

3 Final step, Step 2 is used to conclude

ψ(x) ∼ x
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Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limh→∞ v(x + h) = 1 in S ′(R)
Step 1 (continuation)

Proof.

Let φ = φ̂1 with suppφ1 compact.

〈v(x + h), φ(x)〉 =

∫ ∞

−h
φ(x)dx +

〈
v(x + h)− H(x + h) , φ̂1(x)

〉
=

∫ ∞

−h
φ(x)dx +

〈
v̂(x)− i

(x + i0)
,e−ihxφ1(x)

〉
=

∫ ∞

−∞
φ(x)dx + o(1), h →∞

Banach-Steinhaus theorem immediately gives the result
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Proof

limλ→∞ ψ
′(λx) = H(x) , in D′(0,∞)

Step 2

Proof.

Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (1)

where φ1(x) = φ(log x). Thus, (1) holds ∀φ1 ∈ D(0,∞).

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limλ→∞ ψ
′(λx) = H(x) , in D′(0,∞)

Step 2

Proof.

Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (1)

where φ1(x) = φ(log x). Thus, (1) holds ∀φ1 ∈ D(0,∞).

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limλ→∞ ψ
′(λx) = H(x) , in D′(0,∞)

Step 2

Proof.

Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (1)

where φ1(x) = φ(log x). Thus, (1) holds ∀φ1 ∈ D(0,∞).

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

limλ→∞ ψ
′(λx) = H(x) , in D′(0,∞)

Step 2

Proof.

Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (1)

where φ1(x) = φ(log x). Thus, (1) holds ∀φ1 ∈ D(0,∞).

J.Vindas Generalized Asymptotics and Applications



Introduction
Two asymptotic notions for distributions

Pointwise Fourier Inversion Formula
A distributional proof of the Prime Number Theorem

Preliminaries
A special distribution
Proof

Final Step: ψ(x) ∼ x
Proof

Formally,
1
λ

∑
n≤λ

Λ(n) =
〈
ψ′(λx), χ[0,1](x)

〉
.

We approximate χ[0,1] by elements of D(0,∞).

Let ε be an arbitrary small positive number
Choose φ1 and φ2 with the properties:

0 ≤ φ1, φ2 ≤ 1
suppφ1 ⊆ (0,1], φ1(x) = 1 on [ε,1− ε]
suppφ2 ⊆ (0,1 + ε], and φ2(x) = 1 on [ε,1]
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Proof

Final Step: ψ(x) ∼ x
Proof (continuation)

Evaluating at φ2 and using Chebyshev’s estimate:

lim sup
λ→∞

1
λ

∑
x<λ

Λ(n) ≤ lim sup
λ→∞

(
1
λ

∑
x<ελ

Λ(n) +
1
λ

∞∑
n=1

Λ(n)φ2

(n
λ

))
≤ Mε+ lim

λ→∞

〈
ψ′(λx), φ2(x)

〉
= Mε+

∫ 1+ε

0
φ2(x)dx ≤ 1 + ε(M + 1)

Likewise, 1− 2ε ≤ lim inf
λ→∞

1
λ

∑
n<λ

Λ(n)

Therefore, ψ(λ) =
∑

n<λ Λ(n) ∼ λ
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