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Summary

The aim of this talk is to present a pointwise inversion formula
for the Fourier Transform of Tempered Distributions.
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Summary

The aim of this talk is to present a pointwise inversion formula
for the Fourier Transform of Tempered Distributions.
We make sense out of the Formula

f (x0) =
1

2π

∫ ∞

−∞

f̂(t)e−itx0dt
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∫ ∞
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Summary

The aim of this talk is to present a pointwise inversion formula
for the Fourier Transform of Tempered Distributions.
We make sense out of the Formula

f (x0) =
1

2π

∫ ∞

−∞

f̂(t)e−itx0dt

• What does f at x0 mean?
It means the value of a distribution at a point in the
Lojasiewicz sense.
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Summary

The aim of this talk is to present a pointwise inversion formula
for the Fourier Transform of Tempered Distributions.
We make sense out of the Formula

f (x0) =
1

2π

∫ ∞

−∞

f̂(t)e−itx0dt

• What does f at x0 mean?
It means the value of a distribution at a point in the
Lojasiewicz sense.

• What is the meaning of
∫ ∞

−∞
f̂(t)e−itx0dt?

Later...
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Notation

• D and S denote the space of smooth compactly supported
functions and the space of smooth rapidly decreasing
functions.
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Notation

• D and S denote the space of smooth compactly supported
functions and the space of smooth rapidly decreasing
functions.

• D′ and S ′ the space of distribution and the space of
tempered distributions.

• All of our functions and distributions are over the real line.
• The Fourier transform in S is defined as

F(φ)(x) =

∫ ∞

−∞

φ(t)eixtdt.
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Notation

• D and S denote the space of smooth compactly supported
functions and the space of smooth rapidly decreasing
functions.

• D′ and S ′ the space of distribution and the space of
tempered distributions.

• All of our functions and distributions are over the real line.
• The Fourier transform in S is defined as

F(φ)(x) =

∫ ∞

−∞

φ(t)eixtdt.

• We use the notations f̂ , F {f} and F−1 {f}
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Notation

• D and S denote the space of smooth compactly supported
functions and the space of smooth rapidly decreasing
functions.

• D′ and S ′ the space of distribution and the space of
tempered distributions.

• All of our functions and distributions are over the real line.
• The Fourier transform in S is defined as

F(φ)(x) =

∫ ∞

−∞

φ(t)eixtdt.

• We use the notations f̂ , F {f} and F−1 {f}

• The evaluation of f at a test function φ is denoted by

〈f(x), φ(x)〉
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Distributional Point Values

Lojasiewicz defined the value of a distribution f ∈ D′ at the point
x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in the weak topology of D′(R).
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Distributional Point Values

Lojasiewicz defined the value of a distribution f ∈ D′ at the point
x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in the weak topology of D′(R).
In terms of test functions, it means that for all φ ∈ D

lim
ε→0

1

ǫ

〈

f(x), φ

(

x − x0

ǫ

)〉

= f(x0)

∫ ∞

−∞

φ(x)dx.

Pointwise Fourier Inversion Formula for Tempered Distributions – p. 14/51



Distributional Point Values

Lojasiewicz defined the value of a distribution f ∈ D′ at the point
x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in the weak topology of D′(R).
In terms of test functions, it means that for all φ ∈ D

lim
ε→0

1

ǫ

〈

f(x), φ

(

x − x0

ǫ

)〉

= f(x0)

∫ ∞

−∞

φ(x)dx.

• Notation: If f ∈ D′ has a value γ at x0, we say that
f(x0) = γ in D′. The meaning of f(x0) = γ in S ′, ..., must be
clear.
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Distributional Point Values

Lojasiewicz defined the value of a distribution f ∈ D′ at the point
x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in the weak topology of D′(R).
In terms of test functions, it means that for all φ ∈ D

lim
ε→0

1

ǫ

〈

f(x), φ

(

x − x0

ǫ

)〉

= f(x0)

∫ ∞

−∞

φ(x)dx.

• Notation: If f ∈ D′ has a value γ at x0, we say that
f(x0) = γ in D′. The meaning of f(x0) = γ in S ′, ..., must be
clear.

• Remark: R.Estrada has shown that if f ∈ S ′, then
f(x0) = γ in D′ implies f(x0) = γ in S ′.
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Characterization of Distributional Point Values

Lojasiewicz showed that f(x0) = γ is equivalent to the existence
of n ∈ N, and a primitive of order n of f which is continuous in a
neighborhood of x0 and satisfies

lim
x→x0

n!F (x)

(x − x0)
n = γ.
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Characterization of Distributional Point Values

Lojasiewicz showed that f(x0) = γ is equivalent to the existence
of n ∈ N, and a primitive of order n of f which is continuous in a
neighborhood of x0 and satisfies

lim
x→x0

n!F (x)

(x − x0)
n = γ.

Remark: If µ is a measure the above formula reads as

lim
x→x0

n

(x − x0)n

∫ x

x0

(x − t)n−1dµ(t) = γ.
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Characterization of Distributional Point Values

Lojasiewicz showed that f(x0) = γ is equivalent to the existence
of n ∈ N, and a primitive of order n of f which is continuous in a
neighborhood of x0 and satisfies

lim
x→x0

n!F (x)

(x − x0)
n = γ.

Remark: If µ is a measure the above formula reads as

lim
x→x0

n

(x − x0)n

∫ x

x0

(x − t)n−1dµ(t) = γ.

In particular if f is locally integrable and x0 is a Lebesgue point
of f , then f has a distributional point value at x0
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Abel Summability

We say that
∑

an is Abel summable to γ, and write

∞
∑

n=0

an = γ (A)

if

lim
r→1−

∞
∑

n=0

anrn = γ

Remark: We can also define Abel summability with respect to a
positive increasing sequence {λn} by replacing the term rn by
rλn in such case we write

∑

an = γ (A,λn)
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Cesaro limits and Cesaro summability

We say that

lim
n→∞

an = γ (C, 1)

if

lim
n→∞

a0 + a1 + ... + an

n + 1
= γ.
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Cesaro limits and Cesaro summability

We say that

lim
n→∞

an = γ (C, 1)

if

lim
n→∞

a0 + a1 + ... + an

n + 1
= γ.

Remark:
∑

an = γ (C, 1) means that the limit of the partial
sums is equal to γ in the (C, 1) sense.
Remark: We can continue taking average and we end up with
the (C, k) sense
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A very basic result in summability of Fourier Series

Suppose that f ∈ L1 [0, 2π] and let {cn}n∈Z
be its Fourier

coefficients. Then if f is continuous at x0 ∈ (0, 2π), then

lim
N→∞

N
∑

−N

cneix0n = f(x0) (C, 1).
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Summability of Fourier Series

G.Walter proved the following:
Theorem 1 Let f be a periodic distribution (and hence
tempered) with Fourier Series

∞
∑

n=0

cneinx.

Then, f(x0) = γ in S ′ iff

∞
∑

n=0

cneinx0 = γ (C, k),

for some k ∈ N.
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Summability of Fourier Series

Moreover, he also showed
Theorem 2 Let f be a periodic distribution (and hence
tempered) with Fourier Series

∞
∑

−∞

cneinx.

If f(x0) = γ in S ′, then for some k ∈ N

lim
N→∞

N
∑

−N

cneinx0 = γ (C, k).
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Summability of Fourier Series

Some remarks
• Under certain assumptions on the conjugated series,

G.Walter gave a sort of converse of this result.
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Summability of Fourier Series

Some remarks
• Under certain assumptions on the conjugated series,

G.Walter gave a sort of converse of this result.
• If we only assume the (C, k)-summability of the symmetric

partial sums, the converse is far from being true as shown
by

2
∞

∑

n=1

sin(nx)

n
= −i

∑

n 6=0

einx

n
.

at x = 0
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Characterization of Point Values

R.Estrada has characterized the distributional point values of a
periodic distribution in terms of the summability of its Fourier
Series.
Theorem 3 Let f ∈ S ′ be a periodic distribution of period 2π

and let
∑∞

n=−∞ aneinx be its Fourier series. Let x0 ∈ R. Then

f(x0) = γ in D′

if and only if there exists k such that

lim
x→∞

∑

−x≤n≤ax

aneinx0 = γ (C, k)

for each a > 0.
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Needed for a generalization

The last Theorem admits a generalization to tempered
distribution which "looks" like

f(x0) = lim
x→∞

∫ ax

−x

f̂(t)e−itx0dt (C).
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Cesaro behavior of Distributions

Let f ∈ D′ and and α ∈ R − {−1,−2,−3, ...}, then we say that

f(x) = O (xα) (C,N) as x → ∞,

if every primitive F of order N is an ordinary function(locally
integrable) for large arguments and satisfies the ordinary order
relation,

F (x) = p(x) + O
(

xα+N
)

as x → ∞

for a suitable polynomial p of degree at most N − 1
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Cesaro behavior of Distributions

Let f ∈ D′ and and α ∈ R − {−1,−2,−3, ...}, then we say that

f(x) = O (xα) (C,N) as x → ∞,

if there exists N ∈ N such that every primitive F of order N , is
an ordinary function(locally integrable) for large arguments and
satisfies the ordinary order relation,

F (x) = p(x) + O
(

xα+N
)

as x → ∞

for a suitable polynomial p of degree at most N − 1.
Note that if α > −1, then the polynomial p is irrelevant.
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Remarks to the Definition

• A similar definition applies to the little o symbol.
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Remarks to the Definition

• A similar definition applies to the little o symbol.
• The definitions when x → −∞ are clear.
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Remarks to the Definition

• A similar definition applies to the little o symbol.
• The definitions when x → −∞ are clear.
• One can define the limit at ∞ in the Cesàro sense for

distribution. We say that f ∈ D′ has a limit L at infinity in the
Cesàro sense and write

lim
x→∞

f(x) = L (C) ,

if f(x) = L + o(1) (C), as x → ∞.
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Parametric Behavior

The Cesàro behavior of a distribution f at infinity is related to the
parametric behavior of f(λx) as λ → ∞(To be interpreted in the
weak sense, i.e evaluating at test functions)

Pointwise Fourier Inversion Formula for Tempered Distributions – p. 35/51



Parametric Behavior

The Cesaro behavior of a distribution f at infinity is related to the
parametric behavior of f(λx) as λ → ∞ (To be interpreted in the
weak sense, i.e evaluating at test functions)
In fact, one can show that if α > −1, then f(x) = O (xα) (C) as
x → ∞ and f(x) = O (|x|α) (C) as x → −∞ if and only if

f(λx) = O (λα) as λ → ∞ ,
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Special values of distributional evaluations

Definition 1 Let g ∈ D′, and k ∈ N. We say that the evaluation
〈g (x) , φ (x)〉 exists in the e.v. Cesàro sense, and write

e.v. 〈g (x) , φ (x)〉 = γ (C, k) ,(1)

if for some primitive G of gφ and ∀a > 0 we have

lim
x→∞

(G(ax) − G(−x)) = γ (C, k) .

If g is locally integrable then we write (1) as

e.v.

∫ ∞

−∞

g (x) φ (x) dx = γ (C, k) .

Remark:In this definition the evaluation of g at φ does not have
to be defined, we only require that gφ is well defined.
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Example

Suppose that {λn} is positive increasing sequence. If g ∈ S ′ is
given by g(x) =

∑∞
n=0 anδ(x − λn), then

e.v

〈

∞
∑

n=0

anδ(x − λn), 1

〉

= γ (C, k)
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Example

Suppose that {λn} is positive increasing sequence. If g ∈ S ′ is
given by g(x) =

∑∞
n=0 anδ(x − λn), then

e.v

〈

∞
∑

n=0

anδ(x − λn), 1

〉

= γ (C, k)

if and only if

lim
x→∞

∑

λn≤x

an

(

1 −
λn

x

)k

= γ.
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Example

Suppose that {λn} is positive increasing sequence. If g ∈ S ′ is
given by g(x) =

∑∞
n=0 anδ(x − λn), then

e.v

〈

∞
∑

n=0

anδ(x − λn), 1

〉

= γ (C, k)

if and only if

lim
x→∞

∑

λn≤x

an

(

1 −
λn

x

)k

= γ.

if and only if
∑

an = γ (R,λn, k)
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Pointwise Inversion Formula

Now, we characterize the point values of a distribution in S ′ by
using Fourier transforms.

Theorem 4 Let f ∈ S ′. We have f(x0) = γ in S ′ if and only if
there exists a k ∈ N such that

1

2π
e.v.

〈

f̂ (t) , e−ix0t
〉

= γ (C, k) ,

which in case f̂ is locally integrable means that

1

2π
e.v.

∫ ∞

−∞

f̂(t)e−ix0tdt = γ (C, k) .

Pointwise Fourier Inversion Formula for Tempered Distributions – p. 41/51



Consequences

Estrada Theorem on Fourier Series follows at one by looking at
the form of the Fourier transforms of periodic distributions.
Moreover,
Theorem 5 Let {λn}

∞
n=0 be an increasing sequence of positive

real numbers. Let

f(x) =

∞
∑

n=−∞

aneisgn(n)λnx in S ′.(2)

Then, f(x0) = γ in D′,

if and only if there exists k ∈ N such that

lim
x→∞

∑

−x≤n≤ax

aneisgn(n)λnx0 = γ (R, λn, k) ,

for each a > 0.
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Consequences

The inversion formula can be specialized as follows.

Theorem 6 Let f ∈ S ′. Suppose that supp f̂ ⊆ [0,∞) . We have
f(x0) = γ in S ′ if and only if there exists a k ∈ N such that every
k-primitive of e−ixx0 f̂ is locally integrable and

(e−ixx0 f̂) ∗ xk
+ = γxk + o(xk) as x −→ ∞.
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Example

Suppose that

f(x) =

∞
∑

n=0

∞
∑

m=0

an,me−ig(n,m)x,

then, f(x0) = γ in S ′ iff there is a k such that

lim
x→∞

∑

g(n,m)≤x

an,m

(

1 −
g(n,m)

x

)k

= γ.
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Order of Point Values

Definition 2 We say that f(x0) = γ in D′ has order k, if k is the
minimum integer such that there exists a primitive of order k of
f , F , such that F is locally integrable in a neighborhood of x0

and F satisfies

lim
x→x0

n!F (x)

(x − x0)
n = γ.

Remark: Lojasiewicz had defined the order of the point value in
a different way, but I propose this new definition to be consistent
with the following Theorems.

Pointwise Fourier Inversion Formula for Tempered Distributions – p. 45/51



Order of inversion Formula

Theorem 7 Let f ∈ S ′. Suppose that there exists a m ∈ N, such
that every m-primitive h of f , i.e., h(m) = f , is locally integrable

and h(x) = O
(

|x|m−1
)

. Let m0 be the smallest natural number

with this property. If f has a distributional point value γ at x0,
whose order is n, then

1

2π
e.v.

〈

f̂(x), e−ix0x
〉

= γ (C, k + 1),

where k = max {m0, n} .
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Two Remarkable Cases

Define

φβ
a(t) = (1 + t)βχ[−1,0](t) +

(

1 −
t

a

)β

χ[0,a](t).
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Two Remarkable Cases

Theorem 8 Let f be a distribution with compact support and
order n. Suppose that f(x0) = γ in D′ with order k. Let
β > max {k, n + 1}. Then for each a > 0

lim
x→∞

1

2π

∫ ax

−x

f̂(t)e−ix0tdt = γ (C, β)

or which is the same

lim
x→∞

1

2π

∫ ∞

−∞

φβ
a

(

t

x

)

f̂(t)e−ix0tdt = γ,

Moreover, these relations hold uniformly for a in compact
subsets of (0,∞).
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Two Remarkable Cases

Theorem 9 Let f be a 2π-periodic distribution of order n, with
Fourier series

∑∞
−∞ cneixn. If f(x0) = γ in D′ with order k. Let

β > max {k, n + 1}. Then for each a > 0,

lim
x→∞

∑

−x≤n≤ax

cneix0n = γ (C, β),

or equivalently

lim
x→∞

∑

−x≤n≤ax

φβ
a

(n

x

)

cneix0n = γ.

Moreover, these relations hold uniformly for a in compact
subsets of (0,∞).
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A special case of interest

Theorem 10 Suppose that f ∈ S ′ is such that suppf̂ is bounded
at the left. If f(x0) = γ in D′ with order k, and f is the derivative
of order k of a locally integrable function which is O

(

xk−1
)

, then

(

tk+ ∗
(

f̂(t)e−ix0t
))

is locally integrable and for every β > k,

(

t
β
+ ∗

(

f̂(t)e−ix0t
))

(x) = 2πγxβ + o
(

xβ
)

as x → ∞.

Pointwise Fourier Inversion Formula for Tempered Distributions – p. 50/51



Order of Point Value

Theorem 11 Let f ∈ S ′. Suppose that

1

2π
e.v.

〈

f̂(x), e−ixx0

〉

= γ (C, k);

then, f(x0) = γ in S ′ f is the derivative of order k + 1 of a locally
integrable function and the order of f(x0) is less or equal to
k + 2.
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