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Preface

These are lecture notes of a series of lectures I gave at the Institute of Mathematics of Aalto
University and at the School of Mathematics of the University of Costa Rica, in the summer of
2011. The main aim of the lectures was to provide a modern introduction to Tauberian theory via
distributional methods and some of its applications.

The central topic is Tauberian theorems for the Laplace transform of Schwartz distributions
with applications to prime number theory and PDE with constant coefficients. It is also shown
how to recover the classical Tauberian theorems from their distributional versions.

These notes consist of four chapters:
Chapter 1 is of introductory character. We state there a number of classical examples of

Tauberian theorems. Their generalizations to the setting of generalization functions is the core
of this text. We then explain a general scheme to attack problems in Tauberian theory from a
distributional perspective. Basics from distribution theory are also recalled in this chapter.

In Chapter 2, we study one-dimensional Hardy-Littlewood type Tauberian theorems. We begin
our incursion into Tauberian theorems for Laplace transforms by giving a simple proof of the
celebrated Littlewood’s Tauberian theorem for the converse of Abel’s theorem on power series
[29, 18, 27, 43]. We then proceed to show a general version of the Hardy-Littlewood Tauberian
theorem for the distributional Laplace transform, such a version is due to Drozhzhinov and Zavialov
[11]. We use the distributional version to easily recover several classical Tauberians of Hardy and
Littlewood for power series and Stieltjes integrals.

Tauberian theorems in which complex-analytic or boundary properties of the transform play an
important role are usually referred as complex Tauberians. Many of these complex Tauberians have
been inspired by number theoretic questions; for example, the classical Ikehara [26] theorem was
motivated by the search for a simple proof of the prime number theory. They have also important
implications in PDE theory [2, 37]. We will study in Chapter 3 a generalization of the Wiener-
Ikehara theorem, due to Korevaar [27], which relax the boundary requirements on the Laplace
transform to a minimum [27, 36]. We shall also discuss applications to the theory of (Beurling)
generalized primes [3, 36, 44].

Chapter 4 is devoted to multidimensional theory. We essential discuss generalizations of the
Hardy-Littlewood theorem [48] for the multidimensional Laplace transform of distributions and
measures supported by cones. As an illustration, we apply the results to obtain asymptotic proper-
ties of fundamental solutions to convolution equations, in particular, to hyperbolic operators with
constant coefficients. This last chapter is based on results of Vladimirov, Drozhzhinov and Zavialov;
we point out that they are explained in more detail in the beautiful monograph [48].
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Chapter 1

Introduction

Tauberian theory deals with the problem of obtaining asymptotic information about a function,
classical or generalized one, from a priori knowledge of the asymptotic behavior of certain “averages”
of the function. Such averages are usually given by an integral transform.

Tauberian theory provides striking methods to attack hard problems in analysis. The study of
Tauberian type theorems has been historically stimulated by their potential applications in diverse
fields of mathematics such as number theory, combinatorics, complex analysis, probability theory,
and the analysis of differential operators [2, 5, 18, 26, 48, 51]. Even mathematical physics has
pushed forward developments of the subject. Indeed, many of the theorems that we will discuss in
future chapters had their origins in theoretical questions from quantum field theory [48]. Therefore,
we may say that mathematical physics motivated the incorporation of generalized functions into
the scope of Tauberian theory.

The nature of Tauberian theory is better self-explained through explicit examples. We state
in this chapter a number of classical Tauberians. The core of the next chapters will be their gen-
eralizations to the context of Schwartz distributions. This chapter contains also some background
material on distribution theory and Laplace transform (Section 1.5).

1.1 Littlewood’s Theorem

Let us start by recalling Abel’s theorem on power series (1826, [1]). It states that if the series∑∞
n=0 cn is convergent to the number β then

lim
r→1−

∞∑
n=0

cnr
n = β. (1.1)

The proof of this well known theorem is very easy (cf. Subsection 1.2 below).
The theorem of Abel may be restated in terms of Abel summability, defined as follows. A

(possible divergent) series
∑∞

n=0 cn is said to be Abel summable to β if the power series
∑∞

n=0 cnr
n

has radius of convergence at least 1 and (1.1) is satisfied. In such a case one writes

∞∑
n=0

cn = β (A),

the Abel sum of the series. Thus, Abel’s theorem tells us that ordinary convergence implies Abel
summability. Naturally, the converse is not true, in general, as shown by the divergent series∑∞

n=0(−1)n, which is Abel summable to 1/2.
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The genesis of Tauberian theory goes back to Tauber [39]. He showed in 1897 the following
theorem that gives a sufficient condition for the converse of Abel’s theorem.

Theorem 1.1 (Tauber’s theorem, 1897). If
∑∞

n=0 cn = β (A) and

cn = o

(
1
n

)
, n→∞, (1.2)

then
∑∞

n=0 cn converges to β.

Tauber’s theorem is elementary and very simple to show. In 1910, Littlewood [29] gave his
celebrated extension of Tauber’s theorem, where he substituted the Tauberian condition (1.2) by
the weaker one cn = O (1/n) and obtained the same conclusion of convergence as in Theorem 1.1.

Theorem 1.2 (Littlewood’s theorem, 1910). If
∑∞

n=0 cn = β (A) and

cn = O

(
1
n

)
, n→∞, (1.3)

then
∑∞

n=0 cn converges to β.

Despite the simplicity of its statement, it turns out that Littlewood’s theorem is much deeper
and difficult to prove than Theorem 1.1. Two years later [19], Hardy and Littlewood conjectured
that the condition ncn > −K would be enough to ensure convergence; indeed, they provided a
proof later in [20]. We will obtain proofs of these Hardy-Littlewood theorems in Section 2.2 as part
of a more general Tauberian program for Laplace transforms of distributions.

Exercise 1.3. Show Tauber’s theorem.

1.2 Other Summability Methods

We can define other summability methods in the same spirit as that of Abel summability. Let ϕ be
a function such that ϕ(0) = 1, limx→∞ ϕ(x) = 0, and its derivative ϕ′ is integrable on the interval
[0,∞). We say that the series

∑∞
n=0 cn is (ϕ) summable to β if there is λ0 > 0 such that

∞∑
n=0

cnϕ
(n
λ

)
converges for all λ > λ0, (1.4)

and

lim
λ→∞

∞∑
n=0

cnϕ
(n
λ

)
= β. (1.5)

Let us verify that this summability method is regular [18], in the sense that it sums convergent
series to their actual values of convergence. We employ Stieltjes integrals for the proof of this fact.
Write s(x) =

∑
n<x cn so that limx→∞ s(x) = β. Integration by parts then shows that

lim
λ→∞

∞∑
n=0

cnϕ
(n
λ

)
= lim

λ→∞

∫ ∞
0

ϕ
(u
λ

)
ds(u) = − lim

λ→∞

∫ ∞
0

s (λu)ϕ′ (u) du = βϕ(0) = β.

Different choices of the kernel ϕ lead to many familiar methods of summability. If ϕ(u) = e−u

for u > 0, one then recovers the Abel method just discussed in Subsection 1.1. The choice ϕ(u) =
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(1 − u)κ, where κ > 0, gives the kernel of Cesàro-Riesz summability of order κ; one writes in this
case

∞∑
n=0

cn = β (C, κ). (1.6)

Cesàro summability is often introduced in a different but equivalent way. A non-trivial theorem of
M. Riesz [34] (cf. [22]) shows that (1.6) holds if and only if

lim
n→∞

Γ(κ+ 1)
nκ

n∑
j=0

(
j + κ

j

)
cn−j = β, (1.7)

where Γ is the Euler gamma function. See [18] for the approach using the Cesàro means (1.7).
However, the Riesz summability means given by ϕ(u) = (1 − u)κ are more convenient from the
distributional point of view [14]. An detailed study of Riesz means can be found in [8].

Another instance is provided by ϕ(u) = u/(eu − 1), u > 0, the kernel of Lambert summability
which is so important in number theory [26, 51]. Remarkably, in 1928 Wiener used a Tauberian
theorem for Lambert summability to deduce the prime number theorem [50].

It can be shown that Littlewood’s Tauberian condition (1.3) is also a Tauberian condition for
Cesàro and Lambert summability, namely, the conditions (1.4) and (1.5) along with (1.3) imply
the convergence of the series. A deep analysis of Tauberian theorems for quite general kernels ϕ
is given in the outstanding work of Wiener [26, 51] (see also [30, 32]). We will not pursue such
a general study in these notes, we will rather focus in generalizations of Abel summability in the
context of Schwartz distributions.

1.3 The Ikehara Theorem

In 1931 Ikehara showed the following Tauberian theorem for Dirichlet series [21]. His aim was to
find a proof of the prime number theorem (PNT) in the form

π(x) =
∑
p<x

p prime

1 ∼ x

log x
as x→∞.

He succeeded in giving a proof of the PNT based solely on the non-vanishing of the Riemann
zeta function on the line <e s = 1.

Theorem 1.4 (Ikehara, 1931). Let F be given by the Dirichlet series

F (s) =
∞∑
n=1

cn
ns
, convergent for <e s > 1,

where the coefficients satisfy the Tauberian condition cn ≥ 0. If there exists a constant β such that

F (z)− β

z − 1

admits a continuous extension to the line <e z = 1, then

N∑
n=1

cn ∼ βN as N →∞.
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Theorem 1.4 extends an early result of Landau [28]. Landau had also used his Tauberian theorem
to deduce the prime number theorem, however, in his proof he needed additional information on
the growth of the Riemann zeta function on <es = 1. Such growth properties are avoided when one
derives the prime number theorem from Ikehara’s theorem. The derivation of the prime number
theorem will be done in Section 3.4, where actually a more general result due to Beurling [3, 4] is
shown.

Ikehara’s theorem has also shown to be very valuable in the study of (pseudo)differential op-
erators. See [2] for its use in semigroup theory and [37] for its applications to spectral theory of
pseudodifferential operators.

We will consider a more general version of Theorem 1.4 in Chapter 3 and its applications to
prime number theory in the context of Beurling’s generalized numbers.

1.4 A Functional Analysis Scheme for Tauberian Problems

We describe in this subsection our general philosophy to attack Tauberian problems.
Let us start with some comments about the relationship between Littlewood’s Tauberian con-

dition (1.3) and convergence of series. We shall consider the Dirac delta measure δa, concentrated
at a ∈ R. It is the linear functional defined on continuous functions ϕ as

〈δa, ϕ〉 = ϕ(a). (1.8)

To a numerical series
∑∞

n=0 cn, we associate the formal delta series

fλ =
∞∑
n=0

cnδn
λ
, λ ∈ [1,∞),

acting on a suitable vector space of continuous functions E as

〈fλ, ϕ〉 =
∞∑
n=0

cnϕ
(n
λ

)
. (1.9)

If (1.9) converges for all ϕ ∈ E, then, clearly, fλ automatically becomes a linear functional on E.
The connection between (1.3) and the convergence of

∑∞
n=0 cn is given by the following lemma,

essentially contained in [42]. We use the notation D[0,∞) for the space of C∞-functions on [0,∞)
which vanish off compact sets. Furthermore, C[0,∞) denotes the space of continuous functions on
[0,∞).

Lemma 1.5. Let E be a vector space such that D[0,∞) ⊆ E ⊂ C[0,∞) and (1.9) converges for
each ϕ and λ ∈ [1,∞). Assume that limλ→∞ fλ = βδ0 pointwise on E, i.e.,

lim
λ→∞

〈fλ, ϕ〉 = βϕ(0), for each ϕ ∈ E, (1.10)

Then, the Tauberian condition cn = O(1/n) implies
∑∞

n=0 cn = β.

Proof. Let M > 0 be such that n |cn| ≤ M . Given σ > 1 arbitrary, find ϕσ ∈ D[0,∞) such that
0 ≤ ϕσ ≤ 1, ϕσ(x) = 1 for x ∈ [0, 1], and suppϕσ ⊂ [0, σ), then, (1.10) with ϕ = ϕσ gives

lim sup
λ→∞

∣∣∣∣∣∣
∑

0≤n≤λ
cn − β

∣∣∣∣∣∣ ≤ lim sup
λ→∞

∣∣∣∣∣∣
∑

1<n
λ
<σ

M

n
ϕσ

(n
λ

)∣∣∣∣∣∣ = M

∫ σ

1

ϕσ(u)
u

du < M(σ − 1),

and so, taking σ → 1+, we conclude
∑∞

n=0 cn = β.
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Therefore, Lemma 1.5 tells that if
∑∞

n=0 cn is (ϕ) summable to β for every kernel ϕ ∈ E,
then the Tauberian condition (1.3) is sufficient to obtain convergence. Now, the typical Tauberian
problem may be rephrased as follows: to pass from (ϕ) summability for one specific kernel ϕ to (ϕ)
summability for all kernels in a function space E satisfying D[0,∞) ⊆ E ⊂ C[0,∞).

So far, we have not spoken about any topological structure on E. However, as any student
in a very first course of functional analysis learns, the main tool to deduce (1.10) is the Banach-
Steinhaus theorem together with weak convergence over a dense subset. The following theorem will
be therefore very important in the sequel, it is nothing but a consequence of the Banach-Steinhaus
theorem.

Given a topological vector space E, the set E′ is as usual the space of continuous linear functional
over E. We assume that the reader is familiar with the notion of Fréchet spaces [35, 40]. In our
context E will be a Schwartz space of test functions and E′ a distribution space (cf. Sections 1.5
and 4.1).

Theorem 1.6. Let E be a Fréchet space (or more generally a barreled space [40]). Denote by E′

its dual space. Let {fλ}λ∈[1,∞) be a net in E′. Necessary and sufficient conditions for the existence
of the limits

lim
λ→∞

〈fλ, ϕ〉 , (1.11)

for each ϕ ∈ E, are:

(i) The existence of a dense subset B ⊂ E such that the limit (1.11) exists for all ϕ ∈ B.

(ii) {fλ}λ∈[1,∞) is weakly bounded in E′: For each ϕ ∈ E, 〈fλ, ϕ〉 = O(1), namely, there is Mϕ

such that 〈fλ, ϕ〉 ≤Mϕ for λ ∈ [1,∞).

In such a case, there is a g ∈ E′ such that limλ→∞ fλ = g weakly, i.e.,

lim
λ→∞

〈fλ, ϕ〉 = 〈g, ϕ〉 for each ϕ ∈ E.

Proof. That the conditions are necessary is obvious. Let us show the sufficiency. Condition (ii)
is equivalent, by the Banach-Steinhaus theorem, to the equicontinuity of {fλ}λ∈[1,∞). Thus, there
exists a open neighborhood of the origin V ⊂ E and a constant M (independent on ψ below) such
that

|〈fλ, ψ〉| ≤M for all ψ ∈ V. (1.12)

Fix an arbitrary ϕ0 ∈ E. We show that 〈fλ, ϕ0〉 is a Cauchy sequence. Let ε > 0 be arbitrary. Then,
by the density of B, we can find ϕ ∈ B such that ϕ0−ϕ ∈ εV . Moreover, (i) ensures the existence
of λ0 > 0 such that |〈fλ1 − fλ2 , ϕ〉| < ε for all λ1, λ2 ∈ (λ0,∞). Hence, since ψ = ε−1(ϕ0 − ϕ) ∈ V ,
it follows from (1.12) that

|〈fλ1 , ϕ0〉 − 〈fλ2 , ϕ0〉| ≤ |〈fλ1 , ϕ0 − ϕ〉|+ |〈fλ2 , ϕ0 − ϕ〉|+ |〈fλ1 − fλ2 , ϕ〉| ≤ 2εM + ε,

this shows the existence of 〈g, ϕ0〉 := limλ→∞ 〈fλ, ϕ0〉 for each ϕ0 ∈ E. It is clear that g is a linear
functional; however, we still need to show that it is continuous. For it, it is enough to take limit in
(1.12) for fixed ψ ∈ V , so that we conclude

|〈g, ψ〉| ≤M for all ψ ∈ V.

This yields g ∈ E′.
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Let us say some further words about our strategy to show Tauberian theorems. We exemplify it
with the case of Littlewood’s theorem. Let D be the linear span of functions of the form e−σu, σ > 0.
Consider the linear functionals {fλ}λ∈[1,∞) given by (1.9). What Abel summability of

∑∞
n=0 cn tells

is that (1.10) holds precisely for all ϕ ∈ D. Thus, by Lemma 1.5 and Theorem 1.6, Littlewood’s
theorem would follow at once if we are able to find a suitable Fréchet space E such that {fλ}λ∈[1,∞)

is weakly bounded in E′ and D is dense in E. We could go on and prove Littlewood’s theorem
right now; however, we choose to postpone the details until Section 2.2 after recalling some basics
from distribution theory.

Finally, it should be mentioned that the functional analysis scheme just described above is also
present in the methods developed by Karamata [24, 25] and Wiener [51] (cf. [26]).

1.5 Preliminaries on Distribution Theory

We briefly introduce in this section some concepts from distribution theory. We refer to [38, 47] for
the theory of distributions.

The test function space S(R) is the Schwartz space of rapidly decreasing smooth test functions,
that is, those C∞-functions over the real such that for each m, k ∈ N

sup
x∈R

∣∣∣xmϕ(k)(x)
∣∣∣ <∞.

It is a Fréchet space, topologized by means of the countable family of norms

‖ϕ‖m = sup
0≤j≤m, x∈R

(1 + |x|)m
∣∣∣ϕ(j)(x)

∣∣∣ , m ∈ N. (1.13)

We shall use the following Fourier transform

ϕ̂(t) = F {ϕ(u); t} =
∫ ∞
−∞

ϕ(u)e−itudu, ϕ ∈ S(R).

The Fourier inverse transform is given by

F−1 {ϕ(t);u} =
1

2π

∫ ∞
−∞

ϕ(t)eiutdt, ϕ ∈ S(R).

The Fourier transform is one to one and onto. It is also continuous in the topology of S(R), as may
be easily deduced from the formulas

(̂ϕ(k))(t) = (it)kϕ̂(t) and (̂ukϕ)(t) = ikϕ̂(k)(t).

Its dual, the space of tempered distributions, is denoted by S ′(R). The evaluation of f ∈ S ′(R)
at ϕ ∈ S(R) is denoted by 〈f, ϕ〉. Thus, f ∈ S ′(R) if:

• 〈f, aϕ+ ψ〉 = a 〈f, ϕ〉+ 〈f, ψ〉, for all a ∈ C and ϕ,ψ ∈ S(R).

• limn→∞ 〈f, ϕn〉 = 〈f, limn→∞ ϕn〉 whenever {ϕ}∞n=0 is convergent in S(R).

It is sometimes convenient to write a “dummy variable” in the evaluation and think of 〈f(u), ϕ(u)〉
as some kind of integral so that we view f as a generalized function. Indeed, any locally integrable
function f of at most polynomial growth can be regarded as tempered distribution f ∈ S ′(R) via
the identification

〈f(u), ϕ(u)〉 =
∫ ∞
−∞

f(u)ϕ(u)du.
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Distributions determined in these manner are called regular distributions.
We can define many useful operations on S ′(R) by duality, as long as they are continuous

operations on the test function space S(R). Given a generic f ∈ S ′(R), we define

• Its derivative f (k) ∈ S ′(R) as〈
f (k)(u), ϕ(u)

〉
= (−1)k

〈
f(u), ϕ(k)(u)

〉
.

• Its Fourier transform f̂ ∈ S ′(R) as〈
f̂(u), ϕ(u)

〉
= 〈f(t), ϕ̂(t)〉 .

• For numbers a, b ∈ R, the linear change of variables f(au+ b) ∈ S ′(R) as

〈f(au+ b), ϕ(u)〉 =
1
|a|

〈
f(t), ϕ

(
t− b
a

)〉
.

• If ψ ∈ S(R), the distribution ψf ∈ S ′(R) is defined as

〈ψ(u)f(u), ϕ(u)〉 = 〈f(u), ψ(u)ϕ(u)〉

These four operations on distributions are in accordance with those for ordinary functions. For
instance, the definition of the distributional derivative is nothing but integration by parts, while
that of Fourier transform coincides with Parseval’s identity when f ∈ L2(R).

Convergence of nets fλ → f in S ′(R) is interpreted in the weak sense, namely,

fλ → f in S ′(R) if and only if 〈fλ, ϕ〉 → 〈f, ϕ〉 for each ϕ ∈ S(R).

The operations defined above become automatically continuous on S ′(R), thus if fλ → f in S ′(R)
then f̂λ → f̂ and f

(k)
λ → f (k) in S ′(R).

We denote by D(R) ⊂ S(R) the subspace of compactly supported test functions.
A distribution f ∈ S ′(R) is said to vanish on the interval (a, b) if 〈f, ϕ〉 = 0 for all ϕ ∈ D(R)

supported in (a, b). One can then defined supp f as the complement of the biggest open set where
f vanishes.

Let us discuss some examples of particular distributions. These examples will be used in the
future.

Example 1.7. Dirac delta. We defined the Dirac deltas in Section 1.4 through (1.8). From now
on, we shall use the notation δ = δ0, so that δa is simply given by translation of δ, that is,
δa(u) = δ(u − a). Observe also that δ transforms under linear change of variables as δ(au − b) =
|a|−1 δ(u− a−1b).

Example 1.8. Heaviside function. The Heaviside function H is the characteristic function of the
interval [0,∞). Its evaluation at test functions is then given by 〈H(u), ϕ(u)〉 =

∫∞
0 ϕ(u)du, and

since −
∫∞

0 ϕ′(u)du = ϕ(0), we obtain H ′ = δ.
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Example 1.9. The distributions uα+. If <e α > −1, the distribution uα+ is a regular distribution
given by uα+ = uαH(u). Its action on test functions is simply given by the integral

〈
uα+, ϕ(u)

〉
=
∫ ∞

0
uαϕ(u)du ; (1.14)

when <e α < −1, α /∈ Z−, then uα+ is defined as

uα+
Γ(α+ 1)

=

(
uα+n

+

)(n)

Γ(α+ n+ 1)
, (1.15)

where n = [−α]. Therefore, uα+ is well defined for α ∈ C \ Z−. The expression (1.15) is meaningful
for α = −k ∈ Z−; indeed, since u0

+ = H,

uα+
Γ(α+ 1)

∣∣∣∣
α=−k

= δ(k−1)(u). (1.16)

Example 1.10. Functions of local bounded variation. Assume that S is a function of local bounded
variation (i.e., of bounded variation on each compact interval) which has at most polynomial growth.
Then integration by parts yields S′ = dS, in the sense

〈
S′(u), ϕ(u)

〉
=
∫ ∞
−∞

ϕ(u)dS(u). (1.17)

The Stieltjes integral (1.17) may not be absolutely convergent, it is rather an improper integral
(e.g., consider S(x) = eie

x
). The case S(x) :=

∑
0≤λn<x cn is of particular interest for us; in this

case we obtain

S′(u) =
∞∑
n=0

cnδ(u− λn).

Exercise 1.11. A distribution f ∈ S ′(R) is said to be homogeneous of degree α ∈ R if f(au) =
aαf(u) for all a > 0, namely, for each test function

〈f(au), ϕ(u)〉 =
1
a

〈
f(u), ϕ

(u
a

)〉
= aα 〈f(u), ϕ(u)〉 , for all a > 0. (1.18)

Show that if α /∈ Z−, then uα+ homogeneous of degree α, while δ(k−1)(u) is homogeneous of degree
−k ∈ Z−, that is,

(au)α+ = aαuα+ and δ(k−1)(au) =
δ(k−1)(u)

ak
, a > 0. (1.19)

Exercise 1.12. Show that if g ∈ S(R) is homogeneous of degree α, then it satisfies the differential
equation

ug′(u) = αg(u) (1.20)

(Hint: Differentiate (1.18) with respect to a and then set a = 1).

Exercise 1.13. Show that D(R) is dense in S(R).
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1.5.1 Laplace Transforms

We follow [47] and define the Laplace transform for tempered distributions with supports in [0,∞).
The spaces D[0,∞) and S[0,∞) consist of restrictions of elements of D(R) and S(R) to [0,∞),

respectively. The space S[0,∞) has a canonical topology, given by the norms (1.13) where only
x ≥ 0 is taken into account.

Analogously, S ′[0,∞) ⊂ S ′(R) denotes the subspace of distributions supported in [0,∞). It
is canonically isomorphic to the dual of S[0,∞). The identification is as follows. Let f ∈ S ′(R)
be such that supp f ⊆ [0,∞) and ϕ ∈ S[0,∞), find any ψ ∈ S(R) so that ψ(x) = ϕ(x) for all
x ∈ [0,∞); one then defines 〈f, ϕ〉 := 〈f, ψ〉 , such a definition does not depend on the extension ψ.

The definition of the Laplace transform on S ′[0,∞) is now easy. Observe that if <e s > 0, then
the function e−su ∈ S[0,∞). Given f ∈ S ′[0,∞), its Laplace transform is defined as

L{f ; s} =
〈
f(u), e−su

〉
, <e s > 0. (1.21)

It is analytic in s on the half-plane <e s > 0. We write s = σ + it for complex variables.
The relation between the Laplace and Fourier transforms [47, 7] is given by the following two

propositions.

Proposition 1.14. Let f ∈ S ′[0,∞). Then,

L{f ;σ + it} = F
{
f(u)e−σu; t

}
, for σ > 0. (1.22)

Moreover,
f̂(t) = lim

σ→0+
L{f ;σ + it} in S ′(R). (1.23)

In particular, the Laplace transform is injective.

Proof. The equality (1.22) means that if ϕ ∈ S(R)∫ ∞
−∞

〈
f(u), ϕ(t)e−σue−itu

〉
dt =

〈
f(u), e−σu

∫ ∞
−∞

ϕ(t)e−itudt
〉
. (1.24)

The fact that one can interchange the integral and the dual paring is left as an exercise for the
reader (cf. Exercise 1.21).

Next, we clearly have limσ→0+ e−σuf(u) = f(u) in S ′[0,∞); therefore, 1.23 follows by taking
limit in (1.22) and using that the Fourier transform is continuous on S ′(R).

That the Laplace transform is injective follows now from (1.23) and the fact that the Fourier
transform is one to one.

Thus, f̂ is the distributional boundary value, in the sense of (1.23), of L{f ; s} on the line
<e s = 0. This fact yields the following corollary (a consequence of the Hanh-Banach theorem
[35, 40]).

Corollary 1.15. Let D be the linear span of the set {e−su : s > 0}. Then, D is dense in S[0,∞).

Proof. By the Hahn-Banach theorem, the assertion is equivalent to show that if f ∈ S ′[0,∞) and
〈f, ϕ〉 = 0 for all ϕ ∈ D, then f must necessarily be the zero functional. Thus assume that the
functional f vanishes identically on D. This gives in particular that L{f ; s} = 0 for all (0,∞),
but since it is analytic, it must identically vanish on <e s > 0. Proposition 1.14 now implies that
f = 0.

Observe that (1.22) yields an inversion formula for the Laplace transform.
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Corollary 1.16. Let f ∈ S ′[0,∞). Then, for any fix σ > 0,

f(u) = eσuF−1
t {L {f ;σ + it} ;u} , (1.25)

where the inverse Fourier transform is taken with respect to the variable t.

We end this subsection by estimating the growth properties of the Laplace transform.

Proposition 1.17. Given f ∈ S ′[0,∞), there exist m, l ∈ N and C > 0 such that

|L {f ; s}| ≤ C (1 + |s|)l

σm
, for σ > 0 (<e s = σ). (1.26)

Proof. Since f is a continuous linear functional on S[0,∞), there exists m ∈ N and M > 0 such
that

|〈f(u), ϕ(u)〉| ≤M sup
0≤j≤m, u∈[0,∞)

(1 + u)m
∣∣∣ϕ(j)(u)

∣∣∣ , for all ϕ ∈ S[0,∞).

Setting ϕ(u) = e−su in the above inequality, we obtain

|L {f ; s}| ≤M sup
0≤j≤m, u∈[0,∞)

(1 + u)m
∣∣sje−su∣∣ ≤M(1 + |s|)m sup

u∈[0,∞)
(1 + u)me−σu

= M
(1 + |s|)m

σm
sup

u∈[0,∞)
(σ + u)me−u ≤ C (1 + |s|)k

σm
,

where k = 2m and C = M supu∈[0,∞)(1 + u)me−u.

Remark 1.18. The converse of Proposition 1.17 also holds [47]: If a function F (s), analytic on
<e s > 0, satisfies a estimate (1.26), then there corresponds a unique f ∈ S ′[0,∞) such that
F (s) = L{f ; s}.

Exercise 1.19. Show the formulas

L
{
uα+; s

}
=

Γ(α+ 1)
sα+1

and L
{
δ(k)(u); s

}
= sk.

Exercise 1.20. (Homogeneous distributions) Let g ∈ S ′[0,∞) be homogeneous of degree α. Show
that g must be of the form

g(u) =

{
Cuα+, if α /∈∈ Z−,
Cδ(k−1)(u), if α = −k ∈ Z−,

(1.27)

for some constant C (Hint: Apply Laplace transform to (1.20) in Exercise 1.12, solve the differential
equation, and then use Exercise 1.19 and the injectivity of the Laplace transform).

Exercise 1.21. Show (1.24) (Hint: Define the sequence ψN ∈ S[0,∞) by

ψN (u) = e−σu
N∑

n=−N

1
N
ϕ

(
k

N

)
e−iu

k
N

and show that limN→∞ ψN (u) = e−σu
∫∞
−∞ ϕ(t)e−itudt in the topology of S[0,∞)).
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Exercise 1.22. Show that if ϕ ∈ D(R), then

F (s) = L{ϕ; s} =
∫ ∞
−∞

ϕ(u)e−sudu

is an entire function in s ∈ C. In addition, show that if suppϕ ⊆ [−a, a], then for all m, k ∈ N,
there are constants Mm,k > 0 such that∣∣∣F (m)(s)

∣∣∣ < Mm,k
ea|<e s|

(1 + |s|)k
.
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Chapter 2

Hardy-Littlewood Type Theorems

Hardy and Littlewood provided in [20] an extension of Theorem 1.2 to asymptotic behavior. We
see that the one-sided version of Theorem 1.2 is the case α = 0 of the following theorem. A more
general version of Theorem 2.1 for Stieltjes integrals holds (cf. Subsections 2.3.2).

Theorem 2.1 (Hardy and Littlewood). Let
∑∞

n=0 cnr
n be convergent for |r| < 1. Suppose that for

some number α ≥ 0

F (r) =
∞∑
n=0

cnr
n ∼ C

(1− r)α
as r → 1− (2.1)

(i.e., limr→1−(1− r)αF (r) = C). If

ncn ≥ −Mnα, for all n ≥ 1, (2.2)

then,

Sn =
n∑
k=0

ck ∼ C ′nα as n→∞, where C ′ =
C

Γ(α+ 1)
. (2.3)

The corresponding Abelian counterpart to Theorem 2.1 is not difficult to show:

Proposition 2.2. Suppose Sn =
∑n

k=0 ck ∼ C ′nα. Then (2.1) holds with C = C ′Γ(α+ 1).

Proof. Write S(x) =
∑

n<x cn so that S(x) ∼ C ′ as x→∞. Set r = e−y, then y → 0+ as r → 1−.
By applying first integration by parts and then the dominated convergence theorem, we have

∞∑
n=0

cne
−yn =

∫ ∞
0

e−yudS(u) =
∫ ∞

0
S

(
u

y

)
e−udu

∼ 1
yα

∫ ∞
0

uαe−udu =
C ′Γ(α+ 1)
(− log r)α

∼ C ′Γ(α+ 1)
(1− r)α

as r → 1−.

The aim of this chapter is to study analogs to Theorem 2.1 that are applicable to tempered
distributions. Such distributional versions are originally due to Drozhzhinov and Zavialov [11]. We
shall show that they include Theorem 2.1 as a particular instance. Multidimensional version will
be considered in Chapter 4. Let us mention that all the results of this chapter can be extended to
include comparison with Karamata regularly varying functions (cf. see [5, 26] for Stieltjes integrals
and [48] for generalized functions). We also refer to [15, 16, 43] for distributional methods in
Tauberian theorems for Abel summability.

12



2.1 Distributional Asymptotics

Let f ∈ L1
loc[0,∞) (a locally integrable function). Assume that f(x) ∼ Cxα as x → ∞, where

α > −1. Then, for each ϕ ∈ S(R)∫ ∞
0

f(λu)ϕ(u)du ∼ Cλα
∫ ∞

0
uαϕ(u)du = Cλα

〈
uα+, ϕ(u)

〉
as λ→∞. (2.4)

The idea of the distributional asymptotics is simple and natural. We use an analog to (2.4) as the
definition for the asymptotic behavior of a distribution.

Definition 2.3. Let f ∈ S ′[0,∞). We say that f has (distributional) asymptotic behavior with
respect to λα if there exists g ∈ S ′[0,∞) such that

〈f(λu), ϕ(u)〉 ∼ λα 〈g(u), ϕ(u)〉 as λ→∞, for each ϕ ∈ S(R). (2.5)

In such a case, we write
f(λu) ∼ λαg(u) as λ→∞. (2.6)

The distribution g in (2.6) is forced to be homogeneous, as stated in the following proposition.

Proposition 2.4. If (2.6) is satisfied and g 6= 0, then g has the form (1.27).

Proof. Take ϕ ∈ S(R), then, by (2.5), for each a > 0,

〈g(au), ϕ (u)〉 =
〈
g(u),

1
a
ϕ
(u
a

)〉
= lim

λ→∞

〈
f(λu), 1

aϕ(ua )
〉

λα
= aα lim

λ→∞

〈f(aλu), ϕ(u)〉
(aλ)α

= aα 〈g(u), ϕ (u)〉 .

We have seen that the ordinary asymptotic behavior of functions implies the distributional one.
The converse is not true in general.

Example 2.5. The function f(u) = (1 + sinu)H(u) has the following distributional limit

lim
λ→∞

f(λu) = H(u).

However, it is clear that limx→∞(1+sinx) does not exist. Let us verify that f has the distributional
limit; indeed, if ϕ ∈ S(R),∫ ∞

0
(1 + sinλu)ϕ(u)du =

∫ ∞
0

ϕ(u)du+
ϕ(0)
λ

+
1
λ

∫ ∞
0

cos(λu)ϕ′(u)du =
∫ ∞

0
ϕ(u)du+O

(
1
λ

)
.

It is therefore of vital importance to find conditions that allow us to come back from distribu-
tional asymptotics to classical ones. The following proposition goes in that direction. It can be
interpreted as a Tauberian theorem, where the Tauberian hypothesis is given by monotonicity.

Proposition 2.6. Let S be a non-decreasing function that vanishes for x ≤ 0 and has distributional
asymptotic behavior

S(λu) ∼ Cλαuα+ as λ→∞, (2.7)

for some α ≥ 0. Then, it has the ordinary asymptotic behavior

S(x) ∼ Cxα as x→∞. (2.8)

13



Proof. We only give the proof when α > 0, the case α = 0 is easy and it is left to the reader (cf.
Exercise 2.9). Differentiating (2.7), cf. Exercise 2.8, we have

S′(λu) ∼ Cαλα−1xα−1
+ as λ→∞;

the above asymptotic relation means that〈
S′(λu), ϕ(u)

〉
=

1
λ

∫ ∞
0

ϕ
(u
λ

)
dS(u) ∼ Cαλα−1

∫ ∞
0

ϕ(u)uα−1du as λ→∞,

for each test function. We now select suitable test functions. Let 0 < σ < 1 be arbitrary. Pick
ϕ = ϕ1 ∈ D[0,∞) with the properties 0 ≤ ϕ1 ≤ 1, suppϕ1 ⊆ [0, 1 + σ] and ϕ1(x) = 1 on [0, 1].
Then,

lim sup
λ→∞

S(λ)
λα
− C = lim sup

λ→∞

1
λα

∫ λ

0
dS(u)− C

≤ lim
λ→∞

1
λα

∫ ∞
0

ϕ1

(u
λ

)
dS(u)− C

= lim
λ→∞

1
λα−1

〈
S′(λu), ϕ1(u)

〉
− C

= Cα

∫ 1+σ

0
uα−1ϕ1(u)du− C ≤ Cα

∫ 1+σ

1
uα−1du.

Similarly, choosing the test function ϕ = ϕ2 with the properties 0 ≤ ϕ2 ≤ 1, suppϕ2 ⊆ [0, 1] and
ϕ2(x) = 1 on [0, 1− σ], we come to the conclusion

lim inf
λ→∞

S(λ)
λα
− C ≥ −C

∫ 1

1−σ
uα−1du.

Since σ is arbitrary, we obtain (2.8).

The asymptotic behavior f(λu) ∼ βλ−1δ(u) is related to problems involving numerical series.
Actually, Lemma 1.5 can be extended to the following one-sided proposition.

Proposition 2.7. Let f(u) =
∑∞

n=0 cnδ(u− n) ∈ S ′[0,∞) have the asymptotic behavior

f(λu) =
∞∑
n=0

cnδ(λu− n) ∼ β δ(u)
λ

as λ→∞. (2.9)

If ncn ≥ −M for some M , then
∑∞

n=0 cn = β.

Proof. We can assume that c0 = 0. Set S(x) =
∑

n<x cn. Choose as before ϕ = ϕ1 ∈ D[0,∞) with
the properties 0 ≤ ϕ1 ≤ 1, suppϕ1 ⊆ [0, 1 + σ] and ϕ1(x) = 1 on [0, 1]. Then,

lim sup
λ→∞

S(λ)− β = lim sup
λ→∞

∑
0<n<λ

(
cn +

M

n

)
− β −M

∑
n<λ

1
n

≤ lim
λ→∞

∞∑
n=1

cnϕ1

(n
λ

)
− β +M

∞∑
n=1

1
n
ϕ1

(n
λ

)
−M

∑
n<λ

1
n

= M lim
λ→∞

∑
1≤n

λ
≤σ

1
n
ϕ1

(n
λ

)
= M

∫ σ+1

1

ϕ1(u)
u

du

≤Mσ.
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Similarly, choosing the test function ϕ = ϕ2 with properties 0 ≤ ϕ2 ≤ 1, suppϕ2 ⊆ [0, 1] and
ϕ2(x) = 1 on [0, 1− σ], we obtain

lim inf
λ→∞

S(λ)− β ≥ −M
∫ 1

1−σ

du
u
.

Since σ is arbitrary, we obtain
∑∞

n=1 cn = β .

In the future, we shall also make use of the big O landau symbol in the distributional sense, so
we write

f(λu) = O(λα) as λ→∞,

if it holds after evaluation at each test function, i.e., for each test function ϕ ∈ S(R)

〈f(λu), ϕ(u)〉 = O(λα) as λ→∞.

We refer to [14, 32, 41, 48] for a more complete account about properties of the distributional
asymptotics.

Exercise 2.8. Use the definition of distributional derivative to show that (2.6) can be differentiated
with respect to u, namely, if (2.6) holds and k ∈ N, then,

f (k)(λu) ∼ λα−kg(k)(u) as λ→∞. (2.10)

Observe that this property does not hold in general for asymptotics in the ordinary sense (e.g.,
f(x) = x2 +eix

3 ∼ x2, but f ′(x) is not asymptotic to 2x in the classical sense). Show that the same
differentiation property holds for the O landau symbol.

Exercise 2.9. Show Proposition 2.6 for α = 0 (Hint: Select a positive and non-increasing ϕ ∈
S[0,∞) such that ϕ(0) = 1, then apply the monotone convergence theorem to exchange limit and
integral in limλ→∞

∫∞
0 ϕ(u/λ)dS(u)).

Exercise 2.10. Show if S ∈ L1
loc[0,∞) is so that S(x) = O(xα) as x→∞ for some α > −1, then

S(λu) = O(λα) as λ→∞ in the distributional sense.

2.2 A First Example: Littlewood’s Theorem

In this section we complete the argument that was started in Section 1.4 and prove Littlewood’s
theorem, Theorem 1.2. We need the following lemma, whose proof can be tracked down to that of
Tauber’s original theorem [18, p. 149], [39].

Lemma 2.11. Let {cn}∞n=0 be a sequence of complex numbers. If cn = O (1/n), then,

∞∑
n=0

cne
−ny −

∑
n≤ 1

y

cn = O(1) , y > 0. (2.11)
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Proof. Choose M such that n |cn| ≤M, for every n. Then,∣∣∣∣∣∣∣
∞∑
n=0

cne
−ny −

∑
n≤ 1

y

cn

∣∣∣∣∣∣∣ ≤
∑
n≤ 1

y

|cn|
(
1− e−ny

)
+
∑
1
y
<n

|cn| e−ny ≤My
∑
n≤ 1

y

1 +My
∑
1
y
<n

e−ny

≤M +My

∫ ∞
1
y

e−yudu = 2M.

Lemma 2.11 is the last ingredient we need for the proof of Littlewood’s theorem. So, assume
that cn = O(1/n) and

lim
y→0+

∞∑
n=0

cne
−ny = β. (2.12)

Define f(u) :=
∑∞

n=0 cnδ(u− n). Then, as we already observed in Section 1.4,

lim
λ→∞

〈λf(λu), ϕ(u)〉 = β 〈δ(u), ϕ(u)〉 for each ϕ ∈ D,

where ϕ ∈ D is the linear span of functions of the form e−su ∈ S[0,∞), s > 0. Such a set is
dense in S[0,∞) (cf. Corollary 1.15). We want to apply Theorem 1.6 to fλ(u) = λf(λu) in order
to conclude (2.9), the rest would follow at once from Proposition 2.7. So, all we have to verify
that λfλ(u) = O(1) in S ′[0,∞). Define S(x) =

∑
n<x cn, by Lemma 2.11, we have S(x) = O(1),

but this ordinary order relation implies the distributional one S(λu) = O(1) (cf. Exercise 2.10).
Differentiating (cf. Exercise 2.8), we get λS′(λu) = λf(λu) = O(1), and Littlewood’s theorem has
been fully established.

2.3 Tauberian Theorems for Laplace Transforms

2.3.1 Distributional Tauberian Theorem. First version

We now give a Tauberian theorem for Laplace transforms of distributions. The proof goes in the
same lines as that given in Section 2.2 for Littlewood’s theorem.

Theorem 2.12. Let f ∈ S ′[0,∞). Suppose that

L{f ;σ} ∼ C

σα+1
as σ → 0+. (2.13)

Then, the Tauberian condition

f(λu) = O(λα) as λ→∞, (2.14)

implies that

f(λu) ∼ Cλα
uα+

Γ(α+ 1)
as λ→∞. (2.15)

Recall that when α = −k is a negative integer then the distribution in the right hand side of
(2.15) is interpreted as Cλ−kδ(k−1)(u) (cf. (1.16) in Example 1.9). Observe that the converse of
Theorem 2.12 is trivial: (2.15) always implies (2.13) and (2.14).
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Proof. Consider the net fλ(u) = λ−αf(λu). It is enough to verify that conditions (i) and (ii) of
Theorem 1.6 are satisfied for this net (here E = S[0,∞)). In this case, condition (ii) is actually the
same as (2.14). Condition (i) is satisfied with the dense set (cf. Corollary) D given by the linear
span of functions of the form e−τu, τ > 0; indeed, because of (2.13),

lim
λ→∞

1
λα
〈
f(λu), e−τu

〉
= lim

λ→∞

1
λα+1

〈
f(u), e−

τ
λ
u
〉

= τ−α−1 lim
λ→∞

(τ
λ

)α+1 〈
f(u), e−

τ
λ
u
〉

=
C

τα+1
=
〈

Cuα+
Γ(α+ 1)

, e−τu
〉
.

2.3.2 Hardy-Littlewood Theorems for Stieltjes Integrals

Theorem 2.12 easy yields the following generalization of Theorem 2.1 to Stieltjes integrals.

Theorem 2.13. Let S be a non-decreasing function such that S(x) = 0 for all x ≤ 0. Assume that
α ≥ 0. Then,

L{dS;σ} =
∫ ∞

0
e−σudS(u) ∼ C

σα
as σ → 0+ (2.16)

if and only if

S(x) ∼ C ′xα as x→∞, where C ′ =
C

Γ(α+ 1)
. (2.17)

Proof. We only need to show that (2.16) implies (2.17). Notice first that integration by parts in
(2.16) yields

L{S;σ} =
1
σ

∫ ∞
0

e−σudS(u) ∼ C

σα+1
as σ → 0+

Next, we show that S(x) = O(xα),

S(x) =
∫ x

0
dS(u) ≤ e

∫ x

0
e−

u
xdS(u) ≤ e

∫ ∞
0

e−
u
xdS(u) = O(xα).

It follows then that S(λu) = O(λα) (cf. Exercise 2.10). Thus, the hypotheses of Theorem 2.12 are
satisfied and we conclude S(λu) = C ′λαuα+. Since for decreasing functions distributional asymp-
totics are equivalent to ordinary ones (cf. Proposition 2.6), we obtain (2.17) at once.

Let us now deduce Theorem 2.1 from Theorem 2.13. The case α > 0 is very easy. Indeed, write
S(x) =

∑
n<x(cn + Mnα−1), the Tauberian condition (2.2) ensures that S is non-decreasing. On

the other hand, (2.1) gives∫ ∞
0

e−σudS(u) =
∞∑
n=0

cne
−σu +M

∞∑
n=0

nα−1e−σu ∼ C +MΓ(α)
σα

as σ → 0+.

Theorem 2.13 now yields S(x) ∼ (C ′ +M/α)xα, but since
∑

n<x n
α−1 ∼ xα/α, we obtain∑

n<x

cn ∼ C ′xα,

as required. Observe that the remaining case corresponds to the one-sided version of Theorem 1.2.
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The proof of the case α = 0 may be obtained by reducing it to the case α = 2 and using
Proposition 2.7. Let us give a proof. We may assume that c0 = 0. Write S(x) =

∑
n<x cn,

our assumptions are
∫∞

0 e−σudS(u) → β as σ → 0+ and that ncn ≥ −M . Furthermore, we set
S(−1)(x) =

∫ x
0 S(u)du =

∑∞
n=0 cn(x− n) and S(−2)(x) =

∫ x
0 S

(−1)(u)du = 2−1
∑∞

n=0 cn(x− n)2, so
that (S(−2)(x))′′ = S(x). Since 1− t ≤ e−t, we have that

lim sup
x→∞

S(−1)(x)
x

= lim sup
x→∞

∑
n<x

(
1− n

x

)(
cn +

M

n

)
−M

∑
n<x

(
1− n

x

) 1
n

≤ lim
x→∞

∞∑
n=0

e−
n
x

(
cn +

M

n

)
−M

∑
n<x

(
1− n

x

) 1
n

= β +M lim
x→∞

1
x

∑
n
x
<1

(
e−

n
x − 1 +

n

x

) x
n

+
1
x

∑
1≤n

x

e−
n
x
x

n

= β +M

∫ 1

0

e−u − 1 + u

u
du+M

∫ ∞
1

e−u

u
du.

So for some K > 0, T (x) := Kx2 − S(−2)(x) has positive derivative T ′(x) = 2Kx − S(−1)(x). It
follows that T is increasing, and we also have

L
{
T ′(u);σ

}
= 2KL{u+;σ} − L

{
S(−1)(u);σ

}
=

2K
σ2
− 1
σ2
L{dS;σ} ∼ (2K − β)

σ2
.

Hence, by applying Theorem 2.13 to T , we conclude T (x) ∼ (K − β/2)x2, or which is the same,
S(−2)(x) ∼ (β/2)x2. In particular, S(−2)(λu) ∼ (β/2)λ2u2

+, differentiating three times, we obtain

S′(λu) =
∞∑
n=0

cnδ(λu− n) ∼ β δ(u)
λ

as λ→∞.

Finally, the convergence
∑∞

n=0 cn = β follows from Proposition 2.7.

2.4 Second Version of the Distributional Tauberian Theorem

In 1977 [11], Drozhzhinov and Zavialov showed the following Tauberian theorem for the Laplace
transform of distributions. It is essentially equivalent to Theorem 2.12. Interestingly, it describes
the distributional asymptotics by pure Laplace transform information. While Theorem 2.12 makes
only use of real values of the Laplace transform, in Drozhzhinov-Zavialov theorem the Taube-
rian hypothesis (2.14) is replaced by a condition on the complex angular behavior of the Laplace
transform. A multidimensional version will be discussed in Section 4.2.

Theorem 2.14 (Drozhzhinov and Zavialov, 1977). Necessary and sufficient conditions for f ∈
S ′[0,∞) to have the distributional asymptotic behavior

f(λu) ∼ Cλα
uα+

Γ(α+ 1)
as λ→∞ (2.18)

are:
L{f ;σ} ∼ C

σα+1
as σ → 0+, (2.19)

and the existence of constants k ∈ N and M, r0 > 0 such that

rα+1
∣∣∣L{f ; reiϑ

}∣∣∣ ≤ M

(cosϑ)k
for r < r0 and ϑ ∈ (−π/2, π/2) . (2.20)
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The condition (2.20) tells that |s|α+1 L{f ; s} remains bounded as s→ 0+ over cones in <es > 0.
As the angle of the cone becomes wider |s|α+1 L{f ; s} may be rather large, but we keep control of
it through a bound which is proportional to a negative power of the angle between the cone and
the imaginary axis, i.e., π/2− |ϑ| ∼ cosϑ (as ϑ→ ±π/2).

Theorem 2.14 follows at once on combining Theorem 2.14 with the ensuing proposition.

Proposition 2.15. Let f ∈ S ′[0,∞), then the following properties are equivalent:

(i) f satisfies (2.14), namely, the net {λ−αf(λu)}λ∈[1,∞) is weakly bounded in S ′[0,∞).

(ii) There exist constants d, ν ∈ N and K > 0 such that

rα+1 |L {f ; rs}| ≤ K (1 + |s|)d

σν
for r, σ ∈ (0, 1] (<e s = σ). (2.21)

(iii) For each ϕ ∈ D(R), 〈f(λu), ϕ(u)〉 = O(λα) as λ→∞.

(iv) The estimate (2.20) holds for some M, r0 > 0 and k ∈ N.

Proof. Clearly, (ii) ⇒ (iv); it is then enough to show (i) ⇒ (ii) ⇒ (iii) ⇒ (i) and (iv) ⇒ (ii).
(i) ⇒ (ii). By the Banach-Steinhaus theorem, there is ν ∈ N and M > 0 such that

1
λα+1

∣∣∣〈f(u), ϕ
(u
λ

)〉∣∣∣ ≤M sup
0≤j≤ν, u∈[0,∞)

(1 + u)ν
∣∣∣ϕ(j)(u)

∣∣∣ , for all ϕ ∈ S[0,∞) and λ ∈ [1,∞).

Setting λ = 1/r and ϕ(u) = e−su in the above inequality, we obtain (2.21) with d = 2ν and
K = M supu∈[0,∞)(1 + u)νe−u (see the estimates in the proof of Proposition 1.17).

(ii) ⇒ (iii). Let ϕ ∈ D(R). Set F (s) = L{f ; s} and G(s) = L{ϕ; s}. By Exercise 1.22, G(s)
is an entire function and G(σ + it) belongs to S(R) for each fixed σ ∈ R. We use Proposition 1.14
and the formula 〈h(u), ψ(u)〉 = (2π)−1

〈
ĥ(t), ψ̂(−t)

〉
in the following calculation,

〈f(λu), ϕ(u)〉 =
〈
e−uf(λu), euϕ(u)

〉
=

1
2π
〈
F
{
e−uf(λu); t

}
,F {euϕ(u);−t}

〉
=

1
2πλ

〈
F
{
e−u/λf(u); t/λ

}
, G(−1− it)

〉
=

1
2πλ

∫ ∞
−∞
L
{
f ;

1 + ti

λ

}
G(−1− it)dt.

Thus, (2.21) implies, for λ ∈ [0,∞),

|〈f(λu), ϕ(u)〉| ≤ λαK
2π

∫ ∞
−∞

(2 + |t|)d |G(−1− it)| dt.

(iv) ⇒ (ii). Assume (2.20). By Proposition 1.17, there exist l,m, and C > 0 such that (1.26)
holds. We may assume that k ≥ α + 1 and m ≥ α + 1. We keep always r, σ ∈ (0, 1]. Write
s = |s| eiϑ, if |s| r < r0, we obtain from (2.20)

rα+1 |L {f ; rs}| = |s|−α−1 (|s| r)α+1
∣∣∣L{f ; r |s| eiϑ

}∣∣∣ ≤ |s|k−α−1 M

(|s| cosϑ)k
≤M (1 + |s|)k−α−1

σk
.

Suppose now that |s| r ≥ r0. Then, by (1.26),

rα+1 |L {f ; rs}| = rα+1−mC(1 + |s|)l

σm
≤ C(1 + |s|)l+m−α−1

rm−α−1
0 σm

.
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Therefore, (2.21) is satisfied with K = max
{
M, rα+1−m

0 C
}

and the exponents ν = max {k,m} and
d = max {k − α− 1, l +m− α− 1}.

(iii)⇒ (i). Let D[−1, 1] ⊂ S(R) be the closed subspace consisting of test functions which vanish
off [−1, 1]. Then, {λ−αf(λu)}λ∈[1,∞) can be seen as a net of functional in D′[−1, 1] which is weakly
bounded. By the Banach Steinhaus theorem, there exists m such that

|〈f(λu), ϕ(u)〉| ≤Mλα ‖ϕ‖m , ∀ϕ ∈ D[−1, 1], (2.22)

where the norm is given by (1.13). We assume that m+ α+ 1 > 0. Let

Dm[−1, 1] = {ϕ ∈ Cm(R) : suppϕ ⊆ [−1, 1]} ,

then Dm[−1, 1] is a Banach space with norm ‖ ‖m and D[−1, 1] ⊂ Dm[−1, 1] is a dense subspace.
Thus, (2.22) remains valid for all ϕ ∈ Dm[−1, 1]. If we now take ϕ(u) = η(u)(1−u)m+1

+ ∈ Dm[−1, 1],
where η ∈ C∞(R) such that η(u) = 0 for u ≤ −1 and η(u) = 1 for u ≥ 0, then

f (−m−2)(x) :=
1

(m+ 1)!
〈
f(u), η(u)(x− u)m+1

+

〉
=

xm+1

(m+ 1)!

〈
f(u), ϕ

(u
x

)〉
=

xm+2

(m+ 1)!
〈f(xu), ϕ (u)〉 = O(xα+2+m) as x→∞,

and f (−m−2) is a continuous function on [0,∞) which is defined as 0 on (−∞, 0]. Thus, f (−m−2)(λu) =
O(λα+2+m) in S ′(R). We now verify that f = (f (−m−2))(m+2), it would then follow that f(λu) =
O(λα) in S ′(R). Indeed, if ψ ∈ S(R), then

ψ(u) =
(−1)m

(m+ 1)!

∫ ∞
u

ψ(m+2)(t)(t− u)m+1dt.

Hence,

〈f(u), η(u)ψ(u)〉 =
(−1)m

(m+ 1)!

〈
f(u), η(u)

∫ ∞
u

ψ(m+2)(t)(t− u)m+1dt
〉

=
(−1)m

(m+ 1)!

〈
f(u), η(u)

∫ ∞
0

ψ(m+2)(t)(t− u)m+1
+ dt

〉
=

(−1)m

(m+ 1)!

∫ ∞
0

〈
f(u), η(u)ψ(m+2)(t)(t− u)m+1

+

〉
dt

= (−1)m+2
〈
f (−m−2)(t), ψ(m+2)(t)

〉
.

20



Chapter 3

Distributional Wiener-Ikehara
Tauberian Theorem

Theorem 1.4 may be formulated in terms of the Laplace transform. The following theorem will be
referred in the sequel as the Wiener-Ikehara theorem.

Theorem 3.1. Let S be a non-decreasing function supported in [0,∞). Suppose

L{dS; s} =
∫ ∞

0
e−sudS(u) is convergent for <e s > 1. (3.1)

If there exists a constant β such that the function

G(s) = L{dS; s} − β

s− 1
(3.2)

has a continuous extension to <e s = 1, then

S(x) ∼ βex, x→∞. (3.3)

In particular, if G(s) admits an analytic continuation beyond the line <e s = 1, the hypothesis
of Theorem 3.1 is satisfied.

Ikehara’s theorem follows directly from Theorem 3.1 by considering S(x) =
∑

n<ex cn.
The boundary requirements for the function G may be relaxed. Wiener’s original proof of

Theorem 3.1 also applies to show that if G has locally L1 boundary values, then (3.3) remains
true. Such a version seems to be first stated in [3], where that form of the Wiener-Ikehara theorem
was needed in order to deduce Beurling’s prime number theorem (cf. Section 3.4) by Tauberian
arguments. Locally L1 boundary values means that there exists g ∈ L1

loc(R) such that for each
a > 0

lim
σ→1+

∫ a

−a
|g(t)−G(σ + it)|dt = 0.

A version of Theorem 3.3 with reminder can be found in [17].
Korevaar has recently taken the boundary requirements in the Wiener-Ikehara theorem to a

minimum [27]. His theorem is in terms of local pseudo-function boundary behavior (cf. Section
3.1), which includes the local L1 and continuous boundary behaviors. The purpose of this chapter
is to present a proof of Korevaar’s theorem and discuss its applications in the theory of Beurling’s
generalized primes. We present here a new approach to the proof, it is based essentially in the
distributional methods developed in [41, 36, 44].
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3.1 Pseudo-functions

We now proceed to define local pseudofunction boundary behavior, which is the key concept in
Korevaar extension of the Wiener-Ikehara theorem.

A tempered distribution g ∈ S ′(R) is called a pseudo-function if ĝ ∈ C0(R), that is, ĝ is a
continuous function such that limx→±∞ ĝ(x) = 0.

The distribution g ∈ D′(R) is said to be locally a pseudo-function if it coincides with a pseudo-
function on each finite open interval.

The property of being locally a pseudo-function admits a characterization [27] in terms of a
generalized “Riemann-Lebesgue lemma”; indeed, we have,

Lemma 3.2 (Riemann-Lebesgue lemma for local pseudo-functions). A tempered distribution g ∈
S(R) is locally a pseudo-function if and only if for each φ ∈ D(R)

lim
|h|→∞

〈
g(t), eihtφ(t)

〉
= 0. (3.4)

Proof. Assume that g is locally a pseudo-function. It explicitly means that for any (a, b) there
exists a pseudo-function f such that 〈g, φ〉 = 〈f, φ〉 for all φ ∈ D(R) with support in (a, b). Then,
for any such a φ, we have〈

g(t), eihtφ(t)
〉

=
〈
f(t), eihtφ(t)

〉
=
〈
f̂(u),F−1

{
eihtφ(t);u

}〉
=

1
2π

〈
f̂(u), φ̂(−u− h)

〉
.

Since, by definition, f̂ is a continuous function that vanishes at ±∞, we have that

lim
|h|→∞

〈
g(t), eihtφ(t)

〉
=

1
2π

lim
|h|→∞

∫ ∞
−∞

f̂(u− h)φ̂(−u) = 0.

Since the interval was arbitrary, we conclude that (3.4) holds for all ϕ ∈ D(R).
Conversely, let (−b, b) be an arbitrary interval. Choose φ ∈ D(R) such that suppφ ⊆ (−2b, 2b)

and φ(t) = 1 for all t ∈ [−b, b]. Set f = φg. Then, clearly, g = f on the interval (−b, b). We
show that f is a pseudo-function. Since f is compactly supported (it is supported in [−2b, 2b]), its
Fourier transform is given by the following continuous function (cf. [47]),

f̂(u) =
〈
f(t), e−iut

〉
=
〈
g(t), e−iutφ(t)

〉
.

Hence, by (3.4), f̂ ∈ C0(R) and thus f is a pseudo-function.

It is then clear that if g ∈ L1
loc(R), then it is locally a pseudo-function, due to the classical

Riemann-Lebesgue lemma. Thus, any continuous function is also locally a pseudo-function.
Let G(s) be analytic on <e s > 1. We shall say that G has local pseudo-function boundary

behavior on the line <e s = 1 if it has distributional boundary values [7] in such a line, namely,

lim
σ→α+

∫ ∞
−∞

G(σ + it)φ(t)dt = 〈g(t), φ(t)〉 , ∀φ ∈ D(R),

and the boundary distribution g is locally a pseudo-function. Let us emphasize once again that if G
admits an analytic continuation beyond <e s = 1, or just a continuous extension to <e s = 1, then
G has local pseudo-function boundary behavior on <e s = 1. More generally, local pseudo-function
boundary behavior on <e s = 1 is also guaranteed if G has L1

loc boundary values on such a line.

Exercise 3.3. Show that if g is locally a pseudo-function and ψ ∈ C∞(R), then ψg is also a local
pseudo-function.
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3.2 A Tauberian Theorem for S-limits

In Chapter 2, we studied the asymptotic behavior of distributions by looking at the behavior of
their dilates. We now take a different point of view and study their translates.

Let f ∈ S ′(R), a limit of the form

lim
h→∞

f(u+ h) = β in S ′(R), (3.5)

means that for each test function from ϕ ∈ D(R) the following limit holds,

lim
h→∞

〈f(u+ h), ϕ(u)〉 = β

∫ ∞
−∞

ϕ(u)du. (3.6)

Relation (3.5) is an example of the so called S-asymptotics of generalized functions (it stands for
shift-asymptotics). The notion of S-asymptotics is due to Pilipović and Stanković [30, 31, 32]. We
can also study error terms by introducing S−asymptotic boundedness, let ρ be a positive function,
then we write

f(u+ h) = O(ρ(h)) as h→∞ in S ′(R) (3.7)

if for each ϕ ∈ S(R) we have 〈f(u+ h), ϕ(u)〉 = O(ρ(h)), for large values of h. The little o symbol
and S−asymptotics as h → −∞ are defined in a similar way. With this notation we might write
(3.5) as f(u+ h) = β + o(1) as h→∞ in S ′(R).

Example 3.4. Suppose f ∈ L1
loc[0,∞). If limx→∞ f(x) = β, then

lim
h→∞

f(u+ h) = β in S ′(R).

Indeed, for each test function,

lim
h→∞

〈f(u+ h), ϕ(u)〉 = lim
h→∞

∫ ∞
0

f(u)ϕ(u− h)du = lim
h→∞

∫ ∞
−h

f(u+ h)ϕ(u)du = β

∫ ∞
−∞

ϕ(u)du.

Recall the Heaviside function H is given by the characteristic function of [0,∞), i.e., 〈H(u), ϕ(u)〉 =∫∞
0 ϕ(u)du. We obtain in particular that it has the S-limit

lim
h→∞

H(u+ h) = 1 in S ′(R).

We now provide a simple but useful Tauberian theorem for the S-limit (3.5). It is in terms of
the Fourier transform and local pseudo-functions.

Theorem 3.5. Let f ∈ S ′(R). Assume that

g = f̂ − βĤ is locally a pseudo-function. (3.8)

If
f(u+ h) = O(1) as h→∞ in S ′(R), (3.9)

then f has the S-limit (3.5).
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Proof. Because of Example 3.3, we may assume that β = 0, so that g = f̂ in (3.8). Let φ ∈ D(R).
Then, by the Riemann-Lebesgue lemma (Lemma 3.2),

lim
h→∞

〈
f(t+ h), φ̂(t)

〉
= lim

h→∞

〈
eihuf̂(u), φ(u)

〉
= 0.

So, (3.6) holds with β = 0 for each ϕ = φ̂ ∈ F(D(R)), the image under Fourier transform of D(R).
But since D(R) is dense in S(R) and the Fourier transform is continuous, we have that F(D(R))
is also dense in S(R). Finally, the Tauberian hypothesis (3.9) allows us to use Theorem 1.6 and
conclude limh→∞ f(u+ h) = 0 in S ′(R).

If f is a function and it has the S-limit (3.8), it does not follow in general that f has a limit at
infinity in the ordinary sense.

Example 3.6. The function f(x) = eix
2

does not have a limit at infinity, however,

lim
h→∞

f(u+ h) = 0 in S ′(R).

Indeed, if ϕ ∈ S(R), observe that Φ(x) = ϕ(x)eix
2

belongs to L1(R), then, by the classical Riemann-
Lebesgue lemma, as h→∞

〈f(u+ h), ϕ(u)〉 =
∫ ∞
−∞

eih
2
ei2hueiu

2
ϕ(u)du = eih

2

∫ ∞
−∞

ei2huΦ(u)du = eih
2
o(1) = o(1).

The next theorem gives a sufficient condition that allows us to come back from S-limits to
ordinary ones.

Proposition 3.7. Let T be a function such that T (x) = 0 for x ∈ (−∞, 0) and

lim
h→∞

T (u+ h) = β in S ′(R). (3.10)

Suppose that there is α ≥ 0 such that eαxT (x) is non-decreasing. Then,

lim
x→∞

T (x) = β, (3.11)

in the ordinary sense.

Proof. Let S(x) = eαxT (x). Since ϕ ∈ D(R) implies that eαxϕ ∈ D(R), the S-limit (3.10) yields∫ ∞
−h

S(u+ h)ϕ(u)du = eαh
∫ ∞
−h

T (u+ h)eαuϕ(u)du ∼ βeαh
∫ ∞
−∞

eαuϕ(u)du, ∀ϕ ∈ D(R). (3.12)

Let ε > 0 be arbitrary. Choose in (3.12) a non-negative test function ϕ such that suppϕ ⊆ [0, ε]
and

∫ ε
0 ϕ(u)du = 1. Using the fact that S is non-decreasing and (3.12), we obtain

lim sup
h→∞

T (h) = lim sup
h→∞

e−αhS(h)
∫ ε

0
ϕ(u)du ≤ lim

h→∞
e−αh

∫ ε

0
S(u+ h)ϕ(u)du = β

∫ ε

0
eαuϕ(u)du

≤ βeαε,

taking ε→ 0+, we have shown lim suph→∞ T (h) ≤ β. Similarly, choosing in (3.12) a non-negative
ϕ such that suppϕ ⊆ [−ε, 0] and

∫ 0
−ε ϕ(u)du = 1, one obtains lim infh→∞ T (h) ≥ β. This shows

that (3.11) is satisfied.
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3.3 Distributional Wiener-Ikehara Tauberian Theorem

We are ready to state and prove Korevaar’s extension of the Wiener-Ikehara Tauberian theorem.

Theorem 3.8. Let S be a non-decreasing function supported in [0,∞). Suppose

L{dS; s} =
∫ ∞

0
e−sudS(u) is convergent for <e s > 1. (3.13)

If there exists a constant β such that the function

G(s) = L{dS; s} − β

s− 1
(3.14)

has local pseudo-function boundary behavior on the line <e s = 1, then

S(x) ∼ βex as x→∞. (3.15)

We first transform the assumptions (3.13) and (3.14). Set T (x) = e−xS(x). We may assume
that S(0) = 0. Then

L{T ; s} =
∫ ∞

0
e(−s−1)uS(u)du =

1
1 + s

∫ ∞
0

e(−s−1)udS(u)

=
1

1 + s
L{dS; s+ 1} =

1
1 + s

(
G(s+) +

β

s

)
=
β

s
+

1
1 + s

(
G(s+ 1) +

β

s
− β(s+ 1)

s

)
=
β

s
+
G(s+ 1)

1 + s
+

β

s+ 1
, <e s > 0.

Observe that L{H; s} =
∫∞

0 e−sudu = 1/s, here, as usual, H is the Heaviside function. Since
(it+ 1)−1 is smooth, we immediately see (cf. Exercise 3.4) that

L{T ; s} − β

s
= L{T − βH; s} (3.16)

has local pseudo-function boundary behavior on the line <e s = 0.

Proof. Suppose momentaneously that we were able to show that

T (x) = e−xS(x) = O(1) as x→∞. (3.17)

Then, T ∈ S ′(R) and by taking boundary values on <e s = 0 in (3.16), cf. Proposition 1.14, we
would obtain that T̂ − Ĥ is locally a pseudo-function. Thus, Theorem 3.5 and (3.17) would yield
that limh→∞ T (u+ h) = β in S ′(R), and hence, by Proposition 3.7, we would obtain (3.11) which
is exactly the same as (3.15). Therefore, the proof will be complete after establishing (3.17). Let
then g be the boundary local pseudo-function of (3.16). Recall that means that

lim
σ→0+

∫ ∞
−∞
L{T − βH;σ + it}φ(t)dt = 〈g(t), φ(t)〉 , ∀φ ∈ D(R).

Since L{T − βH;σ + it} = F {T (u)− βH(u))e−σu; t}, we obtain that for each φ ∈ D(R)

lim
σ→0+

∫ ∞
0

T (u)e−σuφ̂(u)du = β

∫ ∞
0

φ̂(u)du+ lim
σ→0+

∫ ∞
0

(T (u)− βH(u))e−σuφ̂(u)du

= β

∫ ∞
0

φ̂(u)du+ lim
σ→0+

∫ ∞
−∞
L{T − βH;σ + it}φ(t)dt

= β

∫ ∞
0

φ̂(u)du+ 〈g(t), φ(t)〉 .
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By the monotone convergence theorem, we obtain that, for every φ ∈ D(R) with φ̂ ≥ 0,∫ ∞
0

T (u)φ̂(u)du = β

∫ ∞
0

φ̂(u)du+ 〈g(t), φ(t)〉 .

Now, choose one of such a φ with φ̂(0) > 0 and observe that eihtφ(t) is also compactly supported
and has Fourier transform φ̂(u− h), a non-negative function. Replacing φ by eihtφ(t) in the above
equation, we obtain,∫ ∞

0
T (u)φ̂(u−h)du =

∫ ∞
−h

T (u+h)φ̂(u)du = β

∫ ∞
−h

φ̂(u)du+
〈
g(t), eihtφ(t)

〉
= O(1)+o(1) = O(1).

Using the fact that S is non-decreasing, we have that for u and h positive e−uT (h) = e−u−hS(h) ≤
e−u−hS(h+ u) = T (u+ h). Finally, setting C =

∫∞
0 e−uφ̂(u)du > 0,

T (h) = C−1

∫ ∞
0

e−uT (h)φ̂(u)du ≤ C−1

∫ ∞
0

T (u+ h)φ̂(u)du = O(1).

We state a version of Theorem 3.8 for Dirichlet series, it is suitable for several applications.

Corollary 3.9. Let {nk}∞k=1 be a non-decreasing sequence of positive real numbers tending to
infinity. Assume that the Dirichlet series

F (s) :=
∞∑
k=1

ck
nsk

is convergent for <e s > 1,

where the coefficients satisfy the Tauberian condition cn ≥ 0. If there exists a constant β such that

F (z)− β

z − 1

has local pseudo-function boundary behavior on the line <e z = 1, then∑
nk<x

cn ∼ βx as x→∞.

Proof. Set
S(x) =

∑
nk<ex

ck =
∑

lognk<x

ck,

then S′(u) =
∑∞

k=0 ckδ(u− log nk), and hence

L{dS; s} =

〈 ∞∑
k=0

ckδ(u− log nk), e−su
〉

=
∞∑
k=1

cke
−s lognk =

∞∑
k=1

ck
nsk
.

Thus, we can apply Theorem 3.8 and conclude that S(x) ∼ βex, i.e.,
∑

nk<x
ck ∼ βx.

Remark 3.10. The converse of Theorem 3.8 is true, that is, if (3.15) is satisfied, then (3.13) holds
and the analytic function G given by (3.14) has local pseudo-function boundary behavior on the
line <e s = 1. Therefore, Theorem 3.8 is optimal in the sense that the boundary requirements in
the Wiener-Ikehara theorem cannot be weaker than local pseudo-function behavior.
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In order to show the converse of Theorem 3.8, set again T (x) = e−xS(x) and assume that
T (x) → β as x → ∞. Thus, lim|x|→∞(T (x) − βH(x)) = 0. The convergence of (3.13) follows at
once. The same calculation performed in the proof of Theorem 3.8 shows that G given by (3.14)
has local pseudo-function boundary behavior on <e s = 1 if and only if (3.16) has such a boundary
behavior on <e s = 0. But the boundary value of (3.16) is precisely T̂ − βĤ, hence, we must show
that the later distribution is locally a pseudofunction. Let φ ∈ D(R). Then, as |h| → ∞,〈
T̂ (t)− βĤ(t), eihtφ(t)

〉
=
〈
T (u)− βH(u), φ̂(u− h)

〉
=
∫ ∞
−h

(T (u+ h)− βH(u+ h))φ̂(u)du→ 0.

3.4 Applications to Prime Number Theory

In this section we discuss applications to prime number theory in the context of generalized number
systems. The main idea is to replace the set of ordinary prime numbers by an arbitrary sequence
of positive real numbers, called below generalized prime numbers. In the same way that the
natural numbers are constructed out of multiplications of ordinary prime numbers, a generalized
number system has the generalized primes as multiplicative building blocks. One then asks up to
which extend some properties of the natural numbers remain true for generalized number systems.
Observe that if one of such properties remains valid in this context, it would then be independent
from the additive structure of the natural numbers. For instance, the prime number theorem is
independent of the additive structure of the natural numbers, as seen below.

Let 1 < p1 ≤ p2, . . . be a non-decreasing sequence of real numbers tending to infinity. Following
Beurling [4], we shall call such a sequence P = {pk}∞k=1 a set of generalized prime numbers. We
arrange the set of all possible products of generalized primes in a non-decreasing sequence 1 < n1 ≤
n2, . . . , where every nk is repeated as many times as it can be represented by pα1

ν1
pα2
ν2
. . . pαmνm with

νj < νj+1. The sequence {nk}∞k=1 is called the set of generalized integers.
The function π denotes the counting function of the generalized prime numbers,

π(x) = πP (x) =
∑
pk≤x

1, (3.18)

while the function N denotes the counting function of the generalized integers,

N(x) = NP (x) =
∑
nk≤x

1. (3.19)

Beurling’s problem is then to find conditions over the function N which ensure the validity of the
prime number theorem (in short: PNT), i.e.,

π(x) ∼ x

log x
as x→∞. (3.20)

In his seminal work [4], Beurling proved that the condition of following theorem suffices for the
PNT to hold.

Theorem 3.11 (Beurling’s PNT, 1937). Suppose there exist constants a > 0 and γ > 3/2 such
that

N(x) = ax+O

(
x

logγ x

)
as x→∞, (3.21)

Then the prime number theorem (3.20) holds.
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Observe that Beurling’s prime number theorem naturally includes the classical prime number
theorem, because the counting function of the natural numbers is actually N(x) = [x] = x+O(1)
and thus fulfills Beurling’s condition (3.21) with a = 1 for any γ > 0, and in particular for any
γ > 3/2.

If γ = 3/2, then the PNT need not to hold, as showed by Diamond who exhibited an explicit
example of generalized primes not satisfying the PNT. The interested reader can find Diamond’s
example in [9].

We shall use Corollary 3.9 to give a proof of Beurling’s prime number theorem (cf. Section
3.4.3), we follow closely the exposition from [3]. In fact, the PNT holds under milder conditions
than (3.21), we discuss those more general prime number theorems in Section 3.4.4 (without proofs).

Throughout this section, the sequence P = {pk}∞k=1 stands for a fixed set of generalized prime
numbers with generalized integers {nk}∞k=1. The functions N and π are given by (3.19) and (3.18),
respectively. The letter s stands for complex numbers s = σ + it.

3.4.1 Functions Related to Generalized Primes

We denote by Λ = ΛP the von Mangoldt function of P , defined on the set of generalized integers
as

Λ(nk) =

{
log pj , if nk = pmj ,

0, otherwise.
(3.22)

The Chebyshev function of P is defined by

ψ(x) = ψP (x) =
∑
pmk ≤x

log pk =
∑
nk≤x

Λ(nk). (3.23)

It is very well known since the time of Chebyshev that the PNT is equivalent to the statement

ψ(x) ∼ x. (3.24)

Indeed, this is a consequence of the following lemma. Notice that we do not need to impose any
condition on the growth of N .

Lemma 3.12. There exists a number M > 0, which depends only on p1, such that

ψ(x)
x
≤ π(x) log x

x
≤ ψ(x)

x
+
(

max
1≤u≤x

ψ(u)
u

)
M

log x
. (3.25)

Proof. We establish first the lower inequality in (3.25). Observe that for given pk there are precisely
[log x/ log pk] integers m which satisfy pmk ≤ x. Thus, the very first expression in (3.23) reads as
ψ(x) =

∑
pk≤x[log x/ log pk] log pk, and so

ψ(x) =
∑
pk≤x

[
log x
log pk

]
log pk ≤

∑
pk≤x

log x
log pk

log pk = log x
∑
pk≤x

1 = π(x) log x.

For the upper estimate,

π(x) =
∑
pk≤x

1 ≤
∑
pk≤x

1 +
∑
pmk ≤x
1≤m

log pk
log pmk

=
∑
pmk ≤x

log pk
log pmk

=
∫ x

1

dψ(u)
log u

=
ψ(x)
log x

+
∫ x

p1

ψ(u)
u log2 u

du;
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now, ∫ x

p1

ψ(u)
u log2 u

du ≤
(

max
1≤u≤x

ψ(u)
u

)∫ x

p1

du
log2 u

=
(

max
1≤u≤x

ψ(u)
u

)∫ x

p1

du
log2 u

,

and ∫ x

p1

du
log2 u

=

(∫ √p1x

p1

+
∫ x

√
p1x

)
du

log2 u
≤
√
p1x

log2 p1

+
4x

log2 x
≤M x

log2 x
, for x ≥ p1,

for some constant depending only on p1.

Corollary 3.13. The PNT (3.20) is equivalent to (3.24).

Proof. Indeed, if either asymptotic relation holds, Lemma 3.12 implies that both x−1ψ(x) and
x−1π(x) log x are bounded. Moreover, (3.25) yields, with K = max1≤u u

−1ψ(u),

0 ≤ π(x) log x
x

− ψ(x)
x
≤ KM

log x
, for x ≥ 1,

namely,
π(x) log x

x
=
ψ(x)
x

+O

(
1

log x

)
,

which proves the equivalence.

Our approach to the PNT will be to show (3.24). For it, we shall make use the zeta function of
P , defined as the analytic function

ζ(s) = ζP (s) =
∞∑
k=1

1
nsk
, <e s > 1. (3.26)

The convergence of (3.26) on <e s > 1 is easily ensured for example if N(x) = O(x); in such a case

∞∑
k=1

1
nσk

=
∫ ∞

1
u−σdN(u) = σ

∫ ∞
1

N(u)
u

u−σdu = O(1)
∫ ∞

1
u−σdu, converges for σ > 1.

The condition N(x) = O(x) is ensured if for instance (3.21) holds for some γ > 0.
Many properties of the zeta function can be derived by its Euler product representation.

Proposition 3.14. Assume that N(x) = O(x). Then

ζ(s) =
∞∏
k=1

(
1− 1

psk

)−1

, <e s > 1.

In particular ζ(s) does not vanish on <e s > 1.

Proof. Formally,

∞∏
k=1

(
1− 1

psk

)−1

=
∞∏
k=1

(
1 +

1
psk

+
1
p2s
k

+
1
p3s
k

+ . . .

)
=
∞∑
k=1

1
nsk
.
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Recall that if
∑∞

k=1 |ak| < ∞, then the product
∏∞
k=1(1 + ak) converges. Hence, the convergence

of the Euler product for σ > 1 (s = σ + it)
∞∏
k=1

(
1− 1

psk

)−1

=
∞∏
k=1

(
psk

psk − 1

)
=
∞∏
k=1

(
1 +

p−sk
1− p−sk

)
follows from that of
∞∑
k=0

∣∣∣∣ p−sk
1− p−sk

∣∣∣∣ =
∞∑
k=0

∣∣∣∣ 1
1− p−sk

∣∣∣∣ 1
pσk
≤
∞∑
k=0

1
1− p−σk

1
pσk
≤ 1

1− p−σ1

∞∑
k=0

1
pσk
≤ 1

1− p−σ1

∞∑
k=0

1
nσk

<∞.

The connection between the Chebyshev function and the zeta function is given by the next
proposition.

Proposition 3.15. Suppose that N(x) = O(x), then
∞∑
k=1

Λ(nk)
nsk

= −ζ
′(s)
ζ(s)

, <e s > 1. (3.27)

Proof. The Dirichlet series converges because ψ(x) =
∑

nk≤x Λ(nk) ≤ log x
∑

nk≤x 1 = O(x log x).
First notice that

∞∑
k=1

Λ(nk)
nsk

=
∑
pmk

log pk
pmsk

=
∞∑
k=1

log pk
∞∑
m=1

1
pmsk

=
∞∑
k=1

log pk
p−sk

1− p−sk
.

The equality (3.27) follows now by logarithmic differentiation of the Euler product,

−ζ
′(s)
ζ(s)

= − (log ζ(s))′ =

(
log

∞∏
k=1

(
1− 1

psk

))′
=
∞∑
k=1

(
log
(

1− 1
psk

))′
=
∞∑
k=1

log pk
p−sk

1− p−sk
.

In view of Corollary 3.9, Corollary 3.13, and the formula (3.27), we have that PNT would follow
at once if we are able to show that the analytic function

−ζ
′(s)
ζ(s)

− 1
s− 1

(3.28)

has local pseudo-function boundary behavior on the line <es = 1. We will follow such a strategy to
show Theorem 3.11 in Section 3.4.3, after studying more properties of the zeta function in Section
3.4.2. The key ingredient to show the local pseudo-function boundary behavior of (3.28) is the
non-vanishing property of ζ(s) on <e s = 1.

Exercise 3.16. Show that if N(x) = O(x), then the following representation for the zeta function
holds:

ζ(s) = exp

 ∞∑
k=1

∞∑
j=1

1
j
p−jsk


(Hint: Use the Euler product and the Taylor series for log(1− z)).
Exercise 3.17. Show that

ζ(s) = s

∫ ∞
1

N(x)
xs+1

dx

(Hint: Integrate by parts ζ(s) =
∫∞

1 x−sdN(x)).
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3.4.2 Properties of the Zeta Function

We shall now study properties of ζ(s) on <e s = 1. We begin by assuming that the counting
function of the generalized integers satisfies

N(x) = ax+O

(
x

logγ x

)
as x→∞, (3.29)

for some a > 0 and γ > 1.

Proposition 3.18. Let N satisfy (3.29) for some a > 0 and γ > 1. Then ζ(s)− a/(s− 1) extends
to a continuous function on <e s ≥ 1. Consequently, tζ(1 + it) is continuous over the whole real
line and so ζ(1 + it) is continuous in R \ {0}.

Proof. Let

T (u) =
N(eu)
eu

− aH(u) = O(u−γ).

where H is the Heaviside function. Then T ∈ L1(R). Recall that the Fourier transforms of L1

functions are always continuous functions. We then have

ζ(s)− a

s− 1
=
∫ ∞

1
x−sdN(x)− a

s− 1
= s

∫ ∞
1

N(x)
xs

dx
x
− a

s− 1

= s

∫ ∞
0

e−suN(eu)du− a

s− 1

= s

∫ ∞
0

e−(s−1)ue−uN(eu)du− a

s− 1

= sL{T (u) + aH(u); s− 1} − a

s− 1

= sL{T ; s− 1}+
as

s− 1
− a

s− 1
= sL{T ; s− 1}+ a

Writing s = σ + it and taking σ → 1+, we convince ourselves that ζ(s) − a/(s − 1) has boundary
distribution itT̂ (t) + a, a continuous function.

The ensuing lemma is the first step toward the non-vanishing property of ζ on <e s = 1, in the
case γ > 3/2.

Lemma 3.19. Let N satisfy (3.29) with a > 0 and 1 < γ < 2. For each t0 6= 0 there exists
C = Ct0 > 0 such that for 1 < σ < 2

|ζ(σ + it0)− ζ(1 + it0)| < C(σ − 1)γ−1. (3.30)

Proof. We work with Z(s) = ζ(s)/s. It is easy to see that (3.30) holds if

|Z(σ + it0)− Z(1 + it0)| < D(σ − 1)γ−1. (3.31)

The claim is a simple consequence of

|ζ(s1)− ζ(s2)| = |s1Z(s1)− s2Z(s2)| ≤ |s1(Z(s1)− Z(s2))|+ |(s1 − s2)Z(s2)| .

By Exercise 3.17,

ζ(s1)
s1
− ζ(s2)

s2
=
∫ ∞

1
(x−s1 − x−s2)

N(x)
x

dx =
∫ ∞

1
(x−s1 − x−s2)

N(x)− ax
x

dx+
a

s1 − 1
− a

s2 − 1

=
∫ ∞

1
(x−s1 − x−s2)

N(x)− ax
x

dx+
a(s2 − s1)

(s1 − 1)(s2 − 1)
.
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Now, set s2 = σ + it0 and s1 = 1 + it0. We clearly have that∣∣∣∣ a(s1 − s2)
(s1 − 1)(s2 − 1)

∣∣∣∣ ≤ a(σ − 1)
|t0| |=m (s2 − 1)|

=
a(σ − 1)

t20
:= D1(σ − 1).

On the other hand, by (3.29), for some constant K,∣∣∣∣∫ ∞
1

(x−s1 − x−s2)
N(x)− ax

x
dx
∣∣∣∣ =

∣∣∣∣∫ ∞
1

x−it0(x−σ − x−1)
N(x)− ax

x
dx
∣∣∣∣

≤
∫ ∞

1
(x−σ − x−1)

∣∣∣∣N(x)− ax
x

∣∣∣∣ dx
≤ K

∫ ∞
1

(x−1 − x−σ) log−γ x dx

= K

∫ ∞
0

1− e−(σ−1)u

uγ
du

= K(σ − 1)1−γ
∫ ∞

0

1− e−u

uγ
du := D2(σ − 1)1−γ .

Thus, (3.31) holds with D = max {D1, D2}.

We are now in the position to show the non-vanishing of ζ(s) on <e s = 1, s 6= 1, for the case
γ > 3/2. The proof is in essence the classical argument of Hadamard [27, p. 63].

Theorem 3.20. Let N satisfy (3.29) with a > 0 and γ > 3/2. Then, tζ(1 + it) 6= 0, for all
t ∈ R. Consequently, 1/((s − 1)ζ(s)) converges locally and uniformly to a continuous function as
<e s→ 1+.

Proof. Without lost of generality we assume that 3/2 < γ < 2. We shall use that for any m ∈ N
and θ ∈ R,

m+ 1 +
m−1∑
j=0

2(m− j) cos((j + 1)θ) ≥ 0. (3.32)

The proof of (3.32) is left to the reader (cf. Exercise 3.21). By Exercise 3.16,

|ζ(σ + it0)| =

∣∣∣∣∣exp

( ∞∑
k=1

∞∑
ν=1

1
ν
p−νσ−iνt0k

)∣∣∣∣∣
=

∣∣∣∣∣exp

( ∞∑
k=1

∞∑
ν=1

1
ν
p−νσk (cos(νt0 log pk)− i sin(νt0 log pk))

)∣∣∣∣∣
= exp

( ∞∑
k=1

∞∑
ν=1

1
ν
p−νσk cos(νt0 log pk)

)
,

Thus, for any m ∈ N and t0 ∈ R

|ζ(σ)|m+1 |ζ(σ + it0)|2m
m∏
j=1

|ζ(σ + i(j + 1)t0)|2m−2j

= exp

 ∞∑
k=1

∞∑
ν=1

1
ν
p−νσk

m+ 1 +
m∑
j=0

2(m− j) cos(ν(j + 1)t0 log pk)

 ≥ e0 = 1.
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If we now fix t0 6= 0 and m, Proposition 3.18 and the above inequality imply the existence of
A = Am,t0 > 0 such that for 1 < σ < 2

1 ≤ A |ζ(σ + it0)|2m

(σ − 1)m+1
,

or which is the same
D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| ,

with D = A1/2m.
Suppose we had ζ(1 + it0) = 0. Choose m such that 1/2 + 1/(2m) < γ − 1. By the inequality

(3.30) in Lemma 3.19, we would have

D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| < C(σ − 1)γ−1 ,

which is certainly absurd. Therefore, we must necessarily have ζ(1 + it) 6= 0, for all t ∈ R\{0}.

Exercise 3.21. Show (3.32) (Hint: The left hand side is equal to
∣∣∣∑m+1

ν=1 e
iνθ
∣∣∣2 ).

3.4.3 Proof of Beurling’s Prime Number Theorem

We can now show Theorem 3.11. Assume (3.21) with a > 0 and γ > 3/2. Because of Corollary 3.9
and the formula (3.27), it is enough to show that

−ζ
′(s)
ζ(s)

− 1
s− 1

has local pseudo-function boundary behavior on the line <e s = 1. Now,

−ζ
′(s)
ζ(s)

− 1
s− 1

=
−ζ ′(s)(s− 1)− ζ(s)

(s− 1)ζ(s)

= − 1
ζ(s)

(
ζ ′(s) +

a

(s− 1)2

)
− 1

(s− 1)ζ(s)

(
ζ(s)− a

s− 1

)
= − 1

ζ(s)
d

ds

(
ζ(s)− a

s− 1

)
− 1

(s− 1)ζ(s)

(
ζ(s)− a

s− 1

)
:= − 1

ζ(s)
G′1(s)−G2(s).

Because of Proposition 3.18 and Theorem 3.20, G2(s) has a continuous extension to <e s = 1;
in particular, G2(s) has local pseudo-function boundary behavior on such a line. On the other
hand, Theorem 3.20 implies that 1/(ζ(s)) has continuous extension to <e s = 1. Thus, if we show
that G′1(s) has local L1 boundary values, we would have that G′1(s)/ζ(s) has local pseudo-function
boundary behavior. Let us show the latter. First notice that

G′1(s) =
d

ds

(
ζ(s)− a

s− 1

)
=

d

ds

(
s

∫ ∞
1

x−s
N(x)− ax

x
dx+

as

s− 1
− a

s− 1

)
=

d

ds

(
s

∫ ∞
1

x−s
N(x)− ax

x
dx
)

=
∫ ∞

1
x−s

N(x)− ax
x

dx− s
∫ ∞

1
x−s log x

N(x)− ax
x

dx

=
∫ ∞

0
e−(s−1)u(e−uN(u)− a)du− s

∫ ∞
0

e−(s−1)u(e−uN(u)− a)udu
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Set T1(u) = e−uN(u) − aH(u) = O(u−γ) and T2(u) = (e−uN(u) − a)u = O(u1−γ). Because of
γ > 3/2, T1, T2 ∈ L2(R). Thus G′1 has boundary values G′1(1 + it) = T̂1(t) − (1 + it)T̂2(t) ∈
L2

loc(R) ⊂ L1
loc(R), in particular it has local pseudo-function boundary behavior.

3.4.4 Newest Extensions of the Prime Number Theorem

The PNT holds under weaker assumptions than that of Theorem 3.11. We state two general
theorems without proof, they include Beurling’s theorem as a very particular case. The interested
reader can consult the corresponding references.

The following theorem relax the hypothesis (3.21) to an L2 condition. It is due to Kahane [23],
who gave a positive answer to a conjecture of Bateman and Diamond [3].

Theorem 3.22 (Kahane, 1997). Suppose there is a positive constant a such that∫ ∞
1

∣∣∣∣ log x(N(x)− ax)
x

∣∣∣∣2 dx
x
<∞,

Then the prime number theorem (3.20) holds.

The next PNT is a recent one and it is due to the author and Schlage-Puchta [36]. It replaces
(3.21) by an average Cesàro estimate. The value of m below is allowed to be arbitrarily large.

Theorem 3.23 (Schlage-Puchta and Vindas, 2010). Suppose there exist constants a > 0, γ > 3/2,
and m such that ∫ x

1

N(t)− at
t

(
1− t

x

)m
dt = O

(
x

logγ x

)
as x→∞.

Then the prime number theorem (3.20) holds.
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Chapter 4

Multidimensional Theory for the
Laplace Transform

In this chapter we sketch how to extend the one-dimensional theory from Chapter 2 to the multi-
dimensional Laplace transform. We also discuss applications to the study of asymptotic properties
of fundamental solutions to convolution equations, in particular, causal solutions to hyperbolic op-
erators with constant coefficients. The Schwartz space of test functions S(Rn) is readily defined,
its topology is provided by the countable family of norms

‖ϕ‖k = sup
0≤|m|≤k, x∈R

(1 + |x|)k |∂mϕ(x)| , k ∈ N.

Its dual is the space of tempered distributions S ′(Rn). All the distributional operations introduced
in Section 1.5 can be obviously carried out in the multidimensional case. For instance, the partial
derivative ∂mf is defined as 〈∂mf, ϕ〉 = (−1)|m| 〈f, ∂mϕ〉, and so on.

The Fourier transform is given on test functions by

ϕ̂(x) = F {ϕ(u);x} =
∫

Rn
eix·uϕ(u)du,

with inverse
F−1 {ϕ(x);u} =

1
(2π)n

∫
Rn
e−iu·xϕ(x)dx,

and it is defined, as usual, by duality on S ′(Rn). Observe that this definition differs from that used
in the previous chapters by a negative sign in the exponential, we have conveniently switched the
definition for the sake of simplicity through the present chapter.

The reader can consult the monograph [48] for a complete exposition on Tauberian theorems
for the multidimensional Laplace transform (all the material from this chapter has been taken from
there). See also [13, 33] for recent advances in multidimensional Tauberian theory for distributions.

4.1 Multidimensional Laplace Transform

4.1.1 Cones in Rn

A set Γ ⊂ Rn is called a cone (with vertex at the origin) if u ∈ Γ implies λu ∈ Γ for all λ > 0. We
set pr Γ = {u ∈ Γ : |u| = 1}. We shall always assume that Γ is a closed convex cone.

The cone Γ is said to be acute if it has a supporting hyperplane Ξ ⊂ Rn passing through the
origin such that Ξ∩Γ = {0}. The hyperplane Ξ divides into Rn \Ξ two connected components, the
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property of being a supporting hyperplane means Γ \ {0} is contained in one of such components.
Equivalently, since hyperplanes can be described by equations ω · u = 0, where ω is some fixed
vector |ω| = 1, the cone Γ is acute if there exists such an ω such that

ω · u > 0, ∀u ∈ Γ \ {0} . (4.1)

Its conjugate cone is denoted by Γ∗. It is defined as

Γ∗ = {y ∈ Rn : y · u ≥ 0, ∀u ∈ Γ} .

It is easy to show that Γ∗ is itself a closed convex cone. The property of being acute cone can be
characterized in terms of the conjugate cone.

Lemma 4.1. A closed convex cone Γ is acute if and only if Γ∗ has non-empty interior.

Proof. If Γ is acute, then there exists ω with norm 1 such that (4.1) holds. In particular, ω ∈ Γ∗ and
(4.1) holds for all u ∈ pr Γ, a compact subset of the unit sphere, then there exists an open subset
of the unit sphere ω ∈ V such that e ·u > 0 for all e ∈ V and u ∈ pr Γ, by homogeneity of the cones
we conclude that ξ ·u > 0 for all u ∈ Γ and ξ in the open subset {ξ = λe : e ∈ V and λ > 0} ⊂ Γ∗.
Thus, ω ∈ int Γ∗. Conversely, if ω ∈ int Γ∗, then (4.1) holds.

From now on, we shall always assume that Γ is a closed convex acute cone. We define the open
convex acute cone

C := CΓ = int Γ∗,

and the tube domain
TC := Rn + iC ⊂ Cn.

Example 4.2. The following are examples of closed convex acute cones and their conjugate cones.

• In dimension n = 1, we have only two possibilities:

Γ = [0,∞) and C = (0,∞) or Γ = (−∞, 0] and C = (−∞, 0).

• Let Rn
+ = {u ∈ Rn : u1 > 0, . . . , un > 0}, then (Rn

+)∗ = Rn
+.

• The future light cone in Rn+1 is defined as V n
+ = {(u0, u) ∈ R+ × Rn : u0 > |u|}. Then(

V n
+

)∗ = V n
+ .

4.1.2 Laplace Transform

We denote by S ′Γ ⊂ S(Rn) the subspace consisting of distributions supported by Γ. Given f ∈ S ′Γ,
its Laplace transform is defined as follows.

Observe first that if z = x+ iy belongs to the tube domain TC , then eiz·u = eix·ue−y·u is not a
test function from S(Rn); however, when u is restricted to the cone Γ is indeed a rapidly decreasing
function since y · u > 0 in this case. We multiply eiz·u by a suitable factor in order to obtain a test
function. Let Γε := Γ +B(0, ε), where B(0, ε) is the ball with radius ε and center at the origin; Γε

is then an ε-neighborhood of Γ. Let η ∈ C∞(Rn) be a functions such that

η(u) = 1 ∀u ∈ Γε, η(u) = 0 ∀u /∈ Γ2ε, and |∂mη(u)| ≤ Kα ∀u ∈ Rn and m ∈ Nn. (4.2)
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Such an η always exists (cf. Exercise 4.4). If z ∈ TC , then one can show that η(u)eiz·u ∈ S(Rn)
(cf. [47, p. 101]). So, we define the Laplace transform as

L{f ; z} =
〈
f(u), η(u)eiz·u

〉
, z = x+ iy ∈ TCΓ ;

it is a holomorphic function in the tube domain TC . Clearly, the definition of the Laplace transform
does not depend on the choice of η. Similar properties to those shown in Subsection 1.5.1 hold for
the multidimensional Laplace transform, we refer to [47] for further details.

It should be pointed out that when n = 1 the Laplace transform that we just defined in this
subsection differs from the one that we have been using in the previous chapters; nevertheless, they
are related to each other through the change of variables s = −iz.

The Laplace transform is also given by

L{f ;x+ iy} = Fu
{
f(u)η(u)e−y·u;x

}
so we have the inversion formula

f(u) = ey·uF−1
x {L {x+ iy} ;u} ,

where y is any fixed point in C. In particular, because of this inversion formula, the Laplace
transform is one-to-one.

Exercise 4.3. Show that L{∂mδ; z} = (−iz)m, m ∈ Nn. More generally, let P be a polynomial of
degree k and consider the partial differential operator with constant coefficients

P (∂) =
∑
|m|≤k

am∂
m.

Show that L{P (∂)δ; z} = P (−iz).

Exercise 4.4. Show the existence of η satisfying (4.2) (Hint: Consider ϕ ∈ D(Rn) a non-negative
function such that suppϕ ⊆ B(0, 1/2) and

∫
Rn ϕ(u)du = 1. Let ϕε(u) = ε−nϕ(u/ε). Show that

η(u) :=
∫

Γ
3ε
2

ϕε(u− ξ)dξ

has the desired properties).

4.1.3 The Convolution Algebra S ′Γ
The space S ′Γ is an algebra when provided with the convolution operation [47], which we now define.
Let f, h ∈ S ′Γ. Find η ∈ C∞ satisfying (4.2), one can show that η(u)η(ξ)ϕ(u + ξ) ∈ S(Rn × Rn)
whenever ϕ ∈ S(Rn) [47, p. 83]. The convolution f ∗ h is defined as

〈f ∗ h, ϕ〉 = 〈f(u)h(ξ), η(u)η(ξ)ϕ(u+ ξ)〉 .

It can also be shown [47, p. 83] that f ∗ h ∈ S ′Γ. Clearly, this operation is commutative and
associative; furthermore, the definition does not depend on the choice of η.

Exercise 4.5. (Laplace transform of a convolution). Let f, h ∈ S ′Γ. Show that

L{f ∗ h; z} = L{f ; z}L {h; z} .

Exercise 4.6. Show that ∂m(f ∗ h) = (∂mf) ∗ h = f ∗ (∂mh) and in particular ∂mδ ∗ f = ∂mf .
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4.2 Multidimensional Tauberian Theorems

We now state two Tauberian theorems for the multidimensional Laplace transform. Their proofs
will be omitted, and we rather refer below to the corresponding literature where the proofs may be
found.

We shall consider the distributional asymptotic behavior

f(λu) ∼ λαg(u) as λ→∞, (4.3)

which should be interpreted in the sense of Section 2.1, i.e., as in (2.5). As in Proposition 2.4, one
shows if g 6= 0, then it must be homogeneous of degree α.

We begin with a theorem of Drozhzhinov and Zavialov [12]. It is literally the multidimensional
extension of Theorem 2.14.

Theorem 4.7 (Drozhzhinov and Zavialov, 1979). Let Γ be a closed convex acute cone and let
f ∈ S ′Γ. Necessary and sufficient conditions for f to have the asymptotic behavior (4.3) are the
existence of a solid cone C ′ ⊂ C (i.e., intC ′ 6= ∅) such that

lim
r→0+

rα+nL{f ; iry} = G(iy), for each y ∈ C ′, (4.4)

and the existence of k ∈ N, M > 0 and a vector ω ∈ C such that

rn+α |L {f ; r (x+ iσω)}| < M

σk
, for all r ∈ (0, 1) and |x|2 + σ2 = 1. (4.5)

In such a case, G(z) = L{g; z}, z ∈ TC , (4.4) holds for each y ∈ C, and an estimate of type (4.5)
holds for any given ω ∈ C.

The original statement [12] of Drozhzhinov and Zavialov theorem imposed additional assump-
tions over the cone Γ (see also [47, 48]). Those assumptions have been relaxed in Theorem 4.7. A
proof of Theorem 4.7 can be found in [33, Sec. 8.6].

Let us discuss an example involving convolution.

Example 4.8. Suppose that f1 and f2 have the asymptotic behaviors

f1(λu) ∼ λα1g1(u) and f2(λu) ∼ λα2g2(u) as λ→∞,

then,
(f1 ∗ f2)(λu) ∼ λα1+α2+n(g1 ∗ g2)(u) as λ→∞.

Proof. In fact, set Fj(z) = L{fj , z} and Gj(z) = L{gj , z}, j = 1, 2. Observe now that, by Exercise
4.5, L{f1 ∗ f2, z} = F1(z)F2(z) and L{g1 ∗ g2, z} = G1(z)G2(z). Applying Theorem 4.7 to both f1

and f2, we have
lim
r→0+

rαj+nFj(iry) = Gj(iy) for each y ∈ C, j = 1, 2,

and, given any fixed ω ∈ C, the bounds

rn+αj |Fj(r(x+ iω))| < Mj

σkj
for all r ∈ (0, 1), and |x|2 + σ2 = 1, j = 1, 2.

Therefore, the hypotheses (4.4) and (4.5) are satisfied with f = f1 ∗f2, G = G1G2, α = α1 +α2 +n,
M = M1M2 and k = k1 + k2. Consequently, Theorem 4.7 yields the result.
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The condition (4.5) in Theorem 4.7 can be dropped for certain classes of distributions. We shall
discuss two of such important results.

The next Tauberian theorem is due to Drozhzhinov, see [10, 48] for the proof. A function F ,
holomorphic on a domain Ω ⊂ Cn, is said to have bounded argument on Ω if F (z) 6= 0 for all z ∈ Ω
and there is a constant M such that

|argF (z)| ≤M, for all z ∈ Ω.

The function argF (z) is assumed to vary continuously on Ω.

Theorem 4.9 (Drozhzhinov, 1982). Let f ∈ S ′Γ be such that its Laplace transform L{f ; z} has
bounded argument on TC . Then, f has the asymptotic behavior (4.3) if and only if (4.4) is satisfied.
In such a case G(z) = L{g; z}.

The following theorem is a multidimensional generalization of the Hardy-Littlewood theorem
in the form of Theorem 2.13. It is due to Vladimirov [45, 47, 48]. A distribution is given by a
nonnegative measure f = µ concentrated on the cone Γ, if its action on test functions is given by
〈f, ϕ〉 =

∫
Γ ϕ(u)dµ(u).

Theorem 4.10 (Vladimirov, 1976). Let f = µ ∈ S ′Γ be a nonnegative measure. Then, f has the
asymptotic behavior (4.3) if and only if (4.4) is satisfied.

Proof. In view of Theorem 4.7, we only need to show that (4.4) implies (4.5). Indeed, if ω ∈ C ′,

rα+n |L {f ; r(x+ iσω)}| = rα+n

∣∣∣∣∫
Γ
eirx·ue−σrω·udµ(u)

∣∣∣∣
≤ rα+n

∫
Γ
e−σrω·udµ(u)

= σ−α−n
(
(σr)α+nL{f ; iσrω)}

)
≤ M

σα+n
, for all σ, r ∈ (0, 1),

for some constant M > 0, as follows from (4.4). Theorem 4.10 has been established.

Remark 4.11. Under the assumptions of Theorem 4.10, it follows from (4.3) that g = ν is also a
nonnegative measure. For each x ∈ Γ, set

f (−1)(x) =
∫

Γ∩(x−Γ)
dµ(u) and g(−1)(x) =

∫
Γ∩(x−Γ)

dν(u),

their primitives with respect to the cone. It can be shown that both are continuous functions on
int Γ, and g(−1) is homogeneous of degree α+ n. Furthermore,

f (−1)(x) ∼ |x|α+n g(−1)

(
x

|x|

)
as |x| , uniformly for x in compacts of Γ.

The proof of this assertion is similar to that of Proposition 2.6. See [48, p. 60] for details. This
supplementary information justifies our claim that Theorem 4.10 really generalizes the Hardy-
littlewood Tauberian theorem (Theorem 2.13).
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4.3 Convolution Equations

In this subsection, given f ∈ S ′Γ, we denote its Laplace transform simply by f̃(z) = L{f ; z}.
We are interested in convolution equations in the algebra S ′Γ, namely, equations

K ∗ h = f, (4.6)

where K and f are given generalized functions from S ′Γ and h ∈ S ′Γ is the sought unknown solution.
Observe that (4.6) includes partial differential equations in S ′Γ; indeed, if P is a polynomial,

then P (∂)h = f is equivalent to (4.6) with K = P (∂)δ (cf. Exercise 4.6).
We may derive a simple procedure to solve (4.6) if we take Laplace transform. By Exercise 4.5,

(4.6) implies K̃h̃ = f̃ , thus h̃ = f̃/K̃. Suppose further that we know that there exists E ∈ S ′Γ such
that Ẽ = 1/K̃. Then, we would have h̃ = Ẽf̃ and the solution would be

h = E ∗ f. (4.7)

Observe also that, since K̃Ẽ = 1 = δ̃, E is itself a solution of the convolution equation

K ∗ E = δ. (4.8)

A distribution satisfying (4.8), if it exists, is called the fundamental solution of the convolution
operator K∗. When the fundamental solution exists, it is automatically unique, as follows from the
injectivity of the Laplace transform and the fact that we must have Ẽ = 1/K̃, and furthermore,
(4.7) admits a unique solution given by (4.7). For a partial differential equation, when it exists,
E ∈ S ′Γ is called the tempered causal fundamental solution with respect to the cone Γ.

There are several criteria in terms of K̃ for existence of the fundamental solution of (4.8).
Observe that a necessary condition is that K̃(z) 6= 0 for all z ∈ TC , but the latter is not sufficient.
The following theorem is due to Vladimirov, see [47, p. 174] for the proof.

Theorem 4.12. Let K ∈ S ′Γ. If K̃(z) = L{K; z} has bounded argument on TC , then the funda-
mental solution E of (4.8) exists.

Observe that if the hypotheses of Theorem 4.12 are satisfied, then Ẽ = 1/K̃ has also bounded
argument on TC . From Theorems 4.9 and 4.12, we obtain the following two corollaries on asymp-
totics of solutions to convolution equations.

Corollary 4.13. Let K ∈ S ′Γ be such that K̃ has bounded argument on TC and it has the asymptotic
behavior

K(λu) ∼ λαK0(u) as λ→∞.
Then, E, the fundamental solution of (4.8) has asymptotics

E(λu) ∼ λ−α−2nE0(u) as λ→∞,

where E0 is also of bounded argument and it is the fundamental solution of K0 ∗ E0 = δ.

Proof. We have that for z in compacts of TC , limr→0+ rα+nK̃(rz) = K̃0(z). Since the locally
uniform limit of non-vanishing holomorphic functions is a non-vanishing holomorphic function, we
obtain that K0(z) 6= 0, ∀z ∈ TC . By the same reason, the argument of K0 remains bounded. Thus,
E0 exists by Theorem 4.12. Next, we already saw that E is of bounded argument, and actually for
y ∈ C

lim
r→0+

r−α−2n+nẼ(iry) = lim
r→0+

1
rα+nK̃(iry)

=
1

K̃0(iry)
= Ẽ0(iy).

It remains just to apply Theorem 4.9.
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Corollary 4.14. Let the hypotheses of Corollary 4.13 hold. Assume further that f ∈ S ′Γ has the
asymptotic behavior

f(λu) ∼ λβf0(u) as λ→∞.

If h is the solution of the convolution equation (4.6), then, it has asymptotics

h(λu) ∼ λβ−α−nh0(u) as λ→∞,

where h0 is the solution of K0 ∗ h0 = f0.

Proof. h is given by (4.8). Corollary 4.7 and Example 4.8 yield h(λu) ∼ λβ−α−n(f0 ∗ E0)(u), and
actually h0 = f0 ∗ E0 is the solution to K0 ∗ h0 = f0.

4.4 Applications to Hyperbolic Equations with Constant Coeffi-
cients

We now consider a differential operator of order k with constant coefficients

P (∂) =
∑
|m|≤k

am∂
m,

that is hyperbolic with respect to the cone C, in the sense that

P (−iz) 6= 0, ∀z ∈ C. (4.9)

It turns out that under this circumstances P (δ) has always a tempered fundamental solution
P (δ)E = δ that is causal with respect to the cone Γ, namely, E ∈ S ′Γ. This result was first
proved by Bogolyubov and Vladimirov [6] and resembles the celebrated Hörmander theorem on
the division of tempered distributions by polynomials. It may also be deduced from the following
lemma in combination with Theorem 4.12 (see [48, p. 192] for the proof of the lemma).

Lemma 4.15. If P satisfies (4.9), then it has bounded argument on TC .

We now obtain the asymptotic behavior of the fundamental solution of P (∂). We write

P (−iz) =
k∑
j=l

Pj(−iz),

where each Pj is a homogeneous polynomial and Pl 6= 0.

Theorem 4.16. Let P satisfy (4.9). If E ∈ S ′Γ is the solution of P (∂), then it has asymptotics

E(λu) ∼ λl−nEl(u) as λ→∞, (4.10)

where El is the fundamental solution of the operator Pl(∂), i.e., it satisfies Pl(∂)El = δ.

Proof. We have that, for y ∈ C

r−l−n+nP (ry) = r−l
k∑
j=l

Pj (ry) =
k∑
j=l

rj−lPj(y)→ Pl(y) as r → 0+.

The rest follows from Corollary 4.13.
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It follows from Theorem 4.16 that Pl(∂) is hyperbolic (Pl(−iz) 6= 0, ∀z ∈ TC).
In Theorem 4.16 we have exhibited only the first order term of the asymptotics of the fundamen-

tal solution, Wagner has found in [49] a complete asymptotic series for the fundamental solution.
We have the following corollary of Theorem 4.16.

Corollary 4.17. Let the hypotheses of Theorem 4.16 hold. Assume that f ∈ S ′Γ has the asymptotic
behavior

f(λu) ∼ λβf0(u) as λ→∞.

If h is the solution to P (∂)h = f in S ′Γ, then, it has asymptotics

h(λu) ∼ λβ+lh0(u) as λ→∞,

where h0 ∈ S ′Γ is the solution of Pl(∂)h0 = f0.

We end this chapter with some examples. As an illustration, we consider the future light cone
in R2

Γ = V 1
+ =

{
(u0, u1) ∈ R2 : u0 ≥ |u1|

}
and C = V 1

+ =
{

(u0, u1) ∈ R2 : u0 ≥ |u1|
}
,

and the hyperbolic operator

P (∂) = ∂2
0 − ∂2

1 + c2, P ((iz0, iz1)) = z2
1 − z2

0 + c2, (c ≥ 0).

Example 4.18. (The wave equation). When c = 0, we obtain the wave operator ∂2
0 − ∂2

1 . If
we apply Theorem 4.16 (l = n = 2), we simply obtain that E = E2, a homogeneous distribution
of order zero. We calculate the causal fundamental solution of the wave equation via Laplace
transform,

(∂2
0 − ∂2

1)E = δ.

The equation can be rewritten asK∗E = δ, whereK = P (∂)δ with P (u0, u1) = u2
0−u2

1. By Exercise
4.3, K̃(z0) = P ((−iz0,−iz1)) = z2

1−z2
0 , then E must have Laplace transform Ẽ(z0, z1) = (z2

1−z2
0)−1.

Since the Fourier transform is the boundary value of the Laplace transform, we have that for a
fixed (y0, y1) ∈ V 1

+,

Ê(x0, x1) = lim
ε→0+

Ẽ(x0 + iεy0, x1 + εy1) = lim
ε→0+

1
(x1 + x0 + iε(y1 + y0))(x1 − x0 + iε(y1 − y0))

,

in S ′(R2). We now choose (y0, y1) = (1, 0) ∈ V 1
+, and since the Fourier transform is continuous

E(u0, u1) = lim
ε→0+

1
(2π)2

∫
R2

e−i(u0x0+u1x0)

(x1 + x0 + iε)(x1 − x0 − iε)
dx0dx1 in S ′(R2).

Observe that “the integral” in the last formula even makes sense as the Fourier transform of an L2

function. Changing variables by t1 = x1 + x0 and t0 = x0 − x1, we see that

E(u0, u1) =
1
2

lim
ε→0+

−F−1
t0

{
(t0 + iε)−1;u0 + u1

}
F−1
t1

{
(t1 + iε)−1;u0 − u1

}
,

where each of the inverse Fourier transforms are one-dimensional. Let H the one-dimensional
Heaviside function, notice that

F
{
e−εuH(u); t

}
=
∫ ∞

0
e−εueitudu =

1
i(t+ iε)
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and hence
lim
ε→0+

F−1
{

(t+ iε)−1;u
}

= i lim
ε→0+

e−εH(u) = iH(u).

Therefore, E(u0, u1) = −i2H(u0 + u1)H(u0 − u1)/2 = H(u0 + u1)H(u0 − u1)/2. Finally, observe
that H(u0 + u1)H(u0 − u1) = H(u0 − |u1|) and hence,

E(u0, u1) =
1
2
H(u0 − |u1|),

the characteristic function of the future light cone V 1
+.

Example 4.19. (The Klein-Gordon equation). If c > 0, we have the Klein-Gordon operator,

P (∂) = ∂2
0 − ∂2

1 + c2 = P2(∂) + P0(∂).

The fundamental solution of P0(∂) is simply E0 = c−2δ. So if we apply Theorem 4.16 (here
l = 0, n = 2), we conclude that the fundamental solution E of the Klein-Gordon operator has
asymptotics

E(λu) ∼ δ(u)
c2λ2

as λ→∞.

E can be explicitly calculated (cf. [46]), and actually

E(u) =
1
2
H(u0 − |u1|)J0

(
c
√
u2

0 − u2
1

)
,

where J0 is the Bessel function and H is again the Heaviside function.
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