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The prime number theorem

The prime number theorem

The prime number theorem (PNT) states that

π(x) ∼ x
log x

, x →∞ ,

where
π(x) =

∑
p prime, p<x

1 .

We will consider in this talk generalizations of the PNT for
Beurling’s generalized numbers
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Landau’s PNT
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Landau’s theorem

In 1903, Landau essentially showed the following theorem.
Let 1 < p1 ≤ p2, . . . be a non-decreasing sequence
tending to infinity.
Arrange all possible products of the pj in a non-decreasing
sequence 1 < n1 ≤ n2, . . . , where every nk is repeated as
many times as represented by pα1

ν1 pα2
ν2 . . . p

αm
νm with νj < νj+1.

Denote N(x) =
∑

nk<x 1 and π(x) =
∑

pk<x 1.

Theorem (Landau, 1903)

If N(x) = ax + O(xθ) , x →∞ , where a > 0 and θ < 1, then

π(x) ∼ x
log x

, x →∞ .
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Landau’s PNT
Beurling’s problem

Landau’s theorem: Examples

Gaussian integers Z[i] := {a + b i ∈ C : a,b ∈ Z}, with
Gaussian norm |a + ib| := a2 + b2. If we define {pk}∞k=1 as
the sequence of norms of Gaussian primes, then the
sequence {nk}∞k=1 corresponds to the sequence of norms
of gaussian numbers such that |a + ib| > 1. One can show
that

N(x) =
∑

a,b∈Z, a2+b2<x

1 = πx + O(
√

x)

Consequently, the PNT holds for Gaussian primes.
Laudau actually showed that if the {pk}∞k=1 corresponds to
the norms of the distinct prime ideals of the ring of integers
in an algebraic number field, then π(x) ∼ x/ log x .
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Landau’s PNT
Beurling’s problem

Beurling’s problem

In 1937, Beurling raised the question: Find conditions over N
which ensure the validity of the PNT, i.e., π(x) ∼ x/ log x .

Theorem (Beurling, 1937)

if
N(x) = ax + O

(
x

logγ x

)
,

where a > 0 and γ > 3/2, then the PNT holds.

Theorem (Diamond, 1970)
Beurling’s condition is sharp, namely, the PNT does not
necessarily hold if γ = 3/2.
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Main theorem

Extension of Beurling theorem

We were able to relax the hypothesis of Beurling’s theorem.

Theorem (2010, exdending Beurling, 1937)

Suppose there exist constants a > 0 and γ > 3/2 such that

N(x) = ax + O
(

x
logγ x

)
(C) , x →∞ ,

Then the prime number theorem still holds.

The hypothesis means that there exists some m ∈ N such that:∫ x

0

N(t)− at
t

(
1− t

x

)m

dt = O
(

x
logγ x

)
, x →∞ .
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Pseudo-functions

A distribution f ∈ S ′(R) is called a pseudo-function if
f̂ ∈ C0(R).
f ∈ D′(R) is locally a pseudofunction if for each φ ∈ D(R),
the distribution φf is a pseudo-function.

f is locally a pseudo-function if and only if the following
‘Riemann-Lebesgue lemma’ holds: for each φ with compact
support

lim
|h|→∞

〈
f (t),e−ihtφ(t)

〉
= 0

Corollary

If f belongs to L1
loc(R), then f is locally a pseudo-function.
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Local pseudo-function boundary behavior

Let G(s) be analytic on <e s > α. We say that G has local
pseudo-function boundary behavior on the line <e s = α if it
has distributional boundary values in such a line, namely,

lim
σ→α+

∫ ∞
−∞

G(σ + it)φ(t)dt = 〈f , φ〉 , φ ∈ D(R) ,

and the boundary distribution f ∈ S ′(R) is locally a
pseudo-function.
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A Tauberian theorem
for local pseudo-function boundary behavior

Theorem

Let {λk}∞k=1 be such that 0 < λk ↗∞.
Assume {ck}∞k=1 satisfies: ck ≥ 0 and

∑
λk<x ck = O(x).

If there exists β such that

G(s) =
∞∑

k=1

ck

λs
k
− β

s − 1
, <e s > 1 , (1)

has local pseudo-function boundary behavior on <e s = 1, then∑
λk<x

ck ∼ βx , x →∞ . (2)
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Functions related to generalized primes

The zeta function is the analytic function (under our hypothesis)

ζ(s) =
∞∑

k=1

1
ns

k
, <e s > 1 .

For ordinary integers it reduces to the Riemann zeta function.
One has an Euler product representation

ζ(s) =
∞∏

k=1

1

1−
(

1
pk

)s , <e s > 1 .
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Functions related to generalized primes

Define the von Mangoldt function

Λ(nk ) =

{
log pj , if nk = pm

j ,

0 , otherwise .

The Chebyshev function is

ψ(x) =
∑

pm
k <x

log pk =
∑
nk<x

Λ(nk ) .

On can show the PNT is equivalent to ψ(x) ∼ x . We also have
the identity

∞∑
k=1

Λ(nk )

ns
k

= −ζ
′(s)

ζ(s)
, <e s > 1 .
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S-asymptotics
Boundary behavior of zeta function

S-asymptotics

Let A(R) be a topological vector space of functions.

Definition (Pilipović-Stanković)

f ∈ A′(R) has S-asymptotic behavior with respect to ρ if

〈f (x + h), φ(x)〉 = (f ∗ φ̌)(h) ∼ ρ(h) 〈g(x), φ(x)〉 , φ ∈ A(R).

We write in short: f (x + h) ∼ ρ(h)g(x), h→∞ in A′(R).

f ∈ A′(R) is S-asymptotic bounded with respect to ρ if

〈f (x + h), φ(x)〉 = O(ρ(h)), φ ∈ A(R).

We write in short: f (x + h) = O(ρ(h)), h→∞ in A′(R).
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S-asymptotics
Boundary behavior of zeta function

S-asymptotics and the zeta function

Special distribution:
∞∑

k=1

1
nk
δ(x − log nk )

Observe: L{v ; s} =
〈
v(x),e−sx〉 = ζ(s + 1)

The condition

N(x) = ax + O
(

x
logγ x

)
(C)

is equivalent to

v(x + h) = aH(x + h) + O
(

1
hγ

)
, |h| → ∞, in S ′(R)
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S-asymptotics
Boundary behavior of zeta function

Under N(x) = ax + O(x/ logγ x) (C)

Using ‘generalized distributional asymptotics’, we translated the
Cesàro estimate into:

For γ > 1, ζ(s)− a
s − 1

has continuous extension to

<e s = 1.
For γ > 3/2

(s − 1)ζ(s) is free of zeros on <e s = 1.

−ζ
′(s)

ζ(s)
− 1

s − 1
has local pseudo-function boundary

behavior on the line <e s = 1
A Chebyshev upper estimate:

∑
nk <x Λ(n) = ψ(x) = O(x)

So, the Tauberian theorem implies the PNT (γ > 3/2)
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Under N(x) = ax + O(x/ logγ x) (C)

Using ‘generalized distributional asymptotics’, we translated the
Cesàro estimate into:

For γ > 1, ζ(s)− a
s − 1

has continuous extension to

<e s = 1.
For γ > 3/2

(s − 1)ζ(s) is free of zeros on <e s = 1.

−ζ
′(s)

ζ(s)
− 1

s − 1
has local pseudo-function boundary

behavior on the line <e s = 1
A Chebyshev upper estimate:

∑
nk <x Λ(n) = ψ(x) = O(x)

So, the Tauberian theorem implies the PNT (γ > 3/2)
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Other related results (γ > 3/2)

Theorem
Our theorem is a proper extension of Beurling’s PNT, namely,
there is a set of generalized numbers satisfying the Cesàro
estimate but not Beurling’s one.

Theorem
Let µ be the Möbius function. Then,

∞∑
k=1

µ(nk )

nk
= 0 and lim

x→∞

1
x

∑
nk<x

µ(nk ) = 0 .
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