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Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

We will define new pointwise spaces of distributions with values
in Banach spaces. The aims of this lecture are:

1 To present their characterization through the wavelet
transform.

2 To illustrate how they are effective tools in the study of
pointwise, asymptotic, and local regularity properties of
functions and distributions.

S. Pilipović and J. Vindas Pointwise scaling properties of distributions and wavelets



Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Introduction

Distributions are not pointwisely defined objects. How can one
study their behavior at individual points?
Two views of the problem:

1 Local regularity. Fix a global space of functions: a
distribution is said to be regular at a point if it coincides
near the point with an element of the global space.

2 Pointwise regularity. In several contexts, one is interested
in finer pointwise measurements that allow one to
distinguish special features in an irregular background.

The pointwise behavior may drastically and suddenly change
from point to point, which makes the local regularity approach
sometimes inadequate for these purposes.
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Introduction

Representative example: Riemann’s “non-differentiable”
function,

∞∑
n=1

sin(πn2t)
n2 . (1)

Its point behavior depends on Diophantine approximations of
the point, and radically changes from point to point.

Jaffard and Meyer showed that (1), and other functions, can be
fully understood via a refined analysis of scaling and oscillating
properties of distributions. Their key notion: 2-microlocal
spaces, introduced by Bony in the context of PDE.

Zavialov (1973) introduced a natural measure of scaling
properties. Closely related to 2-microlocal spaces.
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Outline

1 Pointwise weak spaces
Weak-asymptotics
Pointwise weak Hölder spaces

2 Tauberian theorems: Wavelet characterization
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

3 Several applications
Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

General Notation

E always denotes a fixed Banach space with norm ‖ · ‖.

S ′(Rn,E) = Lb(S(Rn),E), E-valued tempered distributions.

S0(Rn) ⊂ S(Rn) is defined by

ϕ ∈ S0(Rn) ⇔
∫

Rn
tmϕ(t)dt = 0, ∀m ∈ Nn.

S ′0(Rn,E) = Lb(S0(Rn),E), the space of E-valued tempered
distributions modulo E-valued polynomials.

L always denotes a slowly varying function at the origin

lim
ε→0+

L(aε)
L(ε)

= 1, ∀a > 0.

For test functions, ϕy (t) = y−nϕ(t/y).
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Weak-asymptotics (by scaling)

Definition

Let f ∈ S ′(Rn,E). We write (as ε→ 0+):

f(x0 + εt) = O(εαL(ε)) in S ′(Rn,E) if ∀ϕ ∈ S(Rn)

‖〈f (x0 + εt) , ϕ(t)〉‖ = ‖(f ∗ ϕ̌ε)(x0)‖ = O(εαL(ε)). (2)

f(x0 + εt) = O(εαL(ε)) in S ′0(Rn,E) if (2) is just assumed to hold
∀ϕ ∈ S0(Rn)

f(x0 + εt) ∼ εαL(ε)g(t) in S ′(Rn,E) if

lim
ε→0+

1
εαL(ε)

f(x0 + εt) = g(t) in S ′(Rn,E).
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Examples

Let x0 ∈ Rn and v ∈ E . We say that f has Łojasiewicz point
value v ∈ E at x0, and write f(x0) = v, distributionally, if

lim
ε→0+

f(x0 + εt) = v in S ′(Rn,E),

i.e.,

lim
ε→0+

〈f(x0 + εt), ϕ(t)〉 = v
∫

Rn
ϕ(t)dt , ∀ϕ ∈ S(Rn).

Meyer defined the weak scaling exponent of f ∈ S ′(Rn) at
x0 ∈ Rn as the supremum over all α such that

f (x0 + εt) = O(εα) in S ′0(R).
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Classical Pointwise Hölder spaces

Let x0 ∈ Rn and α > 0.
We say f ∈ Cα(x0) if there is a polynomial P such that

|f (x0 + h)− P(h)| ≤ C|h|α,

for small h.

Not stable under differentiation.
We look for a flexible substitute of Cα(x0).
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Pointwise weak Hölder spaces

Definition
Let f ∈ S ′(Rn,E). For x0 ∈ Rn and α ∈ R, we write:

1 f ∈ Oα,L(x0,E) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′(Rn,E).
2 f ∈ Cα,L

w (x0,E) if there is an E-valued polynomial P such
that f− P ∈ Oα,L(x0,E).

3 f ∈ Cα,L
∗,w (x0,E) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′0(Rn,E).

In the scalar-valued case we write Oα,L(x0), Cα,L
w (x0) and

Cα,L
∗,w (x0). If L ≡ 1, we omit it from the notation.

Meyer denotes Cα
∗,w (x0) = Γα(x0).

S. Pilipović and J. Vindas Pointwise scaling properties of distributions and wavelets



Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Pointwise weak Hölder spaces

Definition
Let f ∈ S ′(Rn,E). For x0 ∈ Rn and α ∈ R, we write:

1 f ∈ Oα,L(x0,E) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′(Rn,E).
2 f ∈ Cα,L

w (x0,E) if there is an E-valued polynomial P such
that f− P ∈ Oα,L(x0,E).

3 f ∈ Cα,L
∗,w (x0,E) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′0(Rn,E).

In the scalar-valued case we write Oα,L(x0), Cα,L
w (x0) and

Cα,L
∗,w (x0). If L ≡ 1, we omit it from the notation.

Meyer denotes Cα
∗,w (x0) = Γα(x0).
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Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Properties of these pointwise spaces

Oα,L(x0,E) ⊆ Cα,L
w (x0,E) ⊆ Cα,L

∗,w (x0,E).

If α < 0, Oα,L(x0,E) = Cα,L
w (x0,E) = Cα,L

∗,w (x0,E).

If α > 0, Oα,L(x0,E) ( Cα,L
w (x0,E). But actually

f ∈ Cα,L
w (x0,E) if and only if the following “Taylor formula”

holds,

f(t)−
∑
|m|<α

f(m)(x0)

m!
(t − x0)

m ∈ Oα,L(x0,E).

where f(m)(x0) are its Łojasiewicz point values.

If α /∈ N, then Cα,L
w (x0,E) = Cα,L

∗,w (x0,E).
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S. Pilipović and J. Vindas Pointwise scaling properties of distributions and wavelets



Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Notation
Weak-asymptotics
Pointwise weak Hölder spaces

Properties of these pointwise spaces

When α ∈ N, we have Cα,L
w (x0,E) ( Cα,L

∗,w (x0,E).

In fact f ∈ Cα,L
∗,w (x0,E) if and only if it has a weak asymptotic

expansion

f(x0 + εt) = P(εt) + εα
∑
|m|=α

tmcm(ε) + O (εαL(ε)) , in S ′(Rn,E)

where P is an E-valued polynomial and the cm : (0,∞) 7→ E
are continuous E-valued functions such that

cm(aε) = cm(ε) + O(L(ε)), ∀a > 0.
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Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

The φ− and wavelet transforms

Let f ∈ S ′(Rn,E). We denote Hn+1 = Rn × (0,∞).
The moments of ϕ ∈ S(Rn) are denoted by

µm(ϕ) =

∫
Rn

tmϕ(t)dt , m ∈ Nn.

φ−transform: We always assume µ0(φ) =
∫

Rn φ(t)dt = 1.

Fφf(x , y) := 〈f(x + yt), φ(t)〉 = (f ∗ φ̌y )(x) ∈ E , (x , y) ∈ Hn+1.

Wavelet transform: Assume ψ is a wavelet, meaning
µ0(ψ) =

∫
Rn ψ(t)dt = 0.

Wψf(x , y) :=
〈
f(x + yt), ψ̄(t)

〉
= (f∗ ˇ̄ψy )(x) ∈ E , (x , y) ∈ Hn+1.
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Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Non-degenerate wavelets

Definition
Let ϕ ∈ S(Rn). It is said to be degenerate if there is a ray
through the origin along which ϕ identically vanishes. In
contrary case, the test function it is said to be non-degenerate.

Our Tauberian kernels are the non-degenerate test functions.
In Wiener Tauberian theory the Tauberian kernels are
those ϕ such that ϕ̂ do not vanish at any point.
In our theory the Tauberian kernels will be those ϕ such
that ϕ̂ does not identically vanish on any ray through the
origin.
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Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Comments on the Tauberian theorems

The Tauberians to be presented improve several results of
Drozhzhinov and Zavilov, and Y. Meyer (see references at the
end).
Main improvements:

Enlargement of the Tauberian kernels. Actually, our class
of non-degenerate wavelets is the optimal one.
Analysis of critical degrees, i.e., α ∈ N.
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Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Characterization of Cα,L
∗,w(x0, E)

Let ψ be non-degenerate with moments µm(ψ) = 0, ∀ |m| ≤ [α].

Theorem
The following are equivalent:

f ∈ Cα,L
∗,w (x0,E)

There exists k ∈ N such that

lim sup
ε→0+

sup
|x |2+y2=1, y>0

yk

εαL(ε)
‖Wψf (x0 + εx , εy)‖ <∞.

The number k may be arbitrarily large!
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Characterization of Oα,L(x0, E)

Let φ have
∫

Rn φ(t)dt = µ0(φ) = 1.

Theorem
The following are equivalent:

f ∈ Oα,L(x0,E).
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Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Weak-asymptotic behavior
Tauberian theorem for the φ−transform

Theorem

f(x0 + εt) ∼ εαL(ε)g(t) in S ′(Rn,E) if and only if

lim
ε→0+

1
εαL(ε)

Fφf(x0 + εx , εy) = Fx,y ∈ E , ∀(x , y) ∈ Sn ∩Hn+1,

and the Tauberian condition: ∃k ∈ N such that

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
‖Fφf (x0 + εx , εy)‖ <∞.

In such a case, g is completely determined by Fφg(x , y) = Fx,y .

Sn is the unit sphere in Hn+1. As usual µ0(φ) = 1.
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Several applications
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Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Weak-asymptotic behavior
Tauberian theorem for the wavelet transform

What do the following conditions tell us about pointwise behavior?

lim
ε→0+

1
εαL(ε)

Wψf(x0 + εx , εy) = Wx,y ∈ E , ∀(x , y) ∈ Sn ∩Hn+1 (3)

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
‖Wψf (x0 + εx , εy)‖ <∞ (4)

Assume ψ is non-degenerate with µm(ψ) = 0, |m| ≤ [α].

Theorem

If α /∈ N. Condition (3) and (4) are necessary and sufficient for the
existence of g and an E-valued polynomial P such that

f(x0 + εt)− P(εt) ∼ εαL(ε)g(t) S ′(Rn,E).

g homogeneous and completely determined by Wψg(x , y) = Wx,y .
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Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Transforms
Characterizations of pointwise weak spaces
Tauberians for weak-asymptotic behavior

Weak-asymptotic behavior
Tauberian theorem for the wavelet transform (continuation)

Theorem
If α ∈ N. Condition (3) and (4) are necessary and sufficient for
the existence of g, an E-valued polynomial P, and E-valued
continuous functions cm : (0,∞) 7→ E such that in S ′(Rn,E)

f(x0 + εt) = P(εt) + εαL(ε)g(t) + εα
∑
|m|=α

tmcm(ε) + o (εαL(ε)) .

g determined by Wψg(x , y) = Wx ,y up to homogeneous
polynomials of degree α.
The cm satisfy for some vector vm ∈ E

cm(aε) = cm(ε) + L(ε) log a vm + o(L(ε)), ∀a > 0.
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Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions

Riemann type distributions

Using our Tauberian theorems, we fully described the pointwise
weak properties of the family of Riemann distributions

Rβ(t) =
∞∑

n=1

eiπn2t

n2β ∈ S ′(R), β ∈ C,

at points of Q.
We split Q into two disjoint subsets S0 and S1 where

S0 =

{
2ν + 1

2j
: ν, j ∈ Z

}
∪

{
2j

2ν + 1
: ν, j ∈ Z

}
and

S1 =

{
2ν + 1
2j + 1

: ν, j ∈ Z
}
.
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Pointwise weak spaces
Tauberian theorems: Wavelet characterization

Several applications

Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions

Generalized Riemann zeta function

Interestingly, the pointwise behavior of Rβ is intimately related
to the analytic continuation properties of the zeta-type function

ζr (z) :=
∞∑

n=1

eiπrn2

nz , <e z > 1, (5)

where r ∈ Q. If r = 0, (5) reduces to ζ0 = ζ, the familiar
Riemann zeta function.
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Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions

Case r ∈ S1 =
{

2ν+1
2j+1 : ν, j ∈ Z

}
Point behavior of Riemann distributions

Theorem
Let r ∈ S1. The following Dirichlet series is entire in z,

ζr (z) =
∞∑

n=1

eiπrn2

nz (C), z ∈ C, (6)

where the sums for <e z < 1 are taken in the Cesàro sense.

Theorem
Let r ∈ S1. Then Rβ ∈ C∞

w (r) for any β ∈ C. Moreover,

Rβ (r + εt) ∼
∞∑

m=0

ζr (2β − 2m)

m!
(iεπt)m as ε→ 0+ in S ′(R).
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Case r ∈ S0
Analytic continuation of generalized Riemann zeta function

Theorem

Let r ∈ S0. Then, ζr admits an analytic continuation to C \ {1}, it has
a simple pole at z = 1 with residue pr , and the entire function

Ar (z) = ζr (z)− pr

z − 1

can be expressed as the Cesàro limit

Ar (z) = lim
x→∞

∑
1≤n<x

eiπrn2

nz − pr

∫ x

1

dξ
ξz (C).

The pr are completely determined by the transformation equations:

p0 = 1, pr+2 = pr , and p− 1
r

=

√
− i

r
pr .
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Case r ∈ S0
Point behavior of Riemann distributions

We define the generalized gamma constant as

γr := Ar (1).

Observe that in fact γ0 = γ, the familiar Euler gamma constant.

Theorem. Let r ∈ S0. We have the expansions as ε→ 0+ in S ′(R).
(i) If β ∈ C \ {1/2}, then

Rβ(r+εt) ∼
(−iπ)β−

1
2 Γ

( 1
2 − β

)
pr

2
(εt+i0)β−

1
2 +

∞∑
m=0

ζr (2β − 2m)

m!
(iεπt)m.

(ii) When β = 1/2, we have

R 1
2
(r+εt) ∼ γr+

pr

2

(
− log

(
ε |t |
π

)
+

iπ
2

sgnt − γ

)
+

∞∑
m=1

ζr (1− 2m)

m!
(iεπt)m.
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Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions

Application
Regularity theorem in the tempered generalized function algebra

We show a regularity Theorem of G. Hörmann for the algebra
of regular tempered generalized functions

G∞τ (Rn) ⊂ Gτ (Rn)

Theorem
S ′(Rn) ∩ G∞τ (Rn) = OM(Rn).

This equality means that if f ∈ S ′(Rn) and the net fε = f ∗ φε
determines an element of G∞τ (Rn), i.e.,

(∃a ∈ R)(∀m ∈ Nn)(∃N ∈ N)(sup
x∈Rn

(1+|x |)−N |f (m)
ε (x)| = O(ε−a)),

then f ∈ OM(Rn).
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Pointwise analysis of Riemann distributions
Application to regularity in generalized function algebras
Characterization of distributionally small distributions

Proof
Regularity theorem in the tempered generalized function algebra

Fix m ∈ Nn. It suffices to show f (m) is continuous of polynomial
growth. Let k ∈ N be such that β = 2k − a > 0.

Step 1. Set ψ = ∆k φ̌, a non-degenerate wavelet.

(1+|x |)−N0ε2k
∣∣∣((∆k f (m)) ∗ φε)(x)

∣∣∣ = (1+|x |)−N0

∣∣∣Wψf (m)(x , ε)
∣∣∣ = O(εβ).

Step 2. Define the vector-valued distribution h by 〈h, ρ〉 = f (m) ∗ ρ̌.
∃N > N0 such that h ∈ S ′(Rn,E), where E is the Banach space of
continuous functions v with norm

‖v‖ := sup
ξ∈Rn

(1 + |ξ|)−N |v(ξ)| <∞.

Step 3. Since Wψh(x , y)(ξ) = Wψf (m)(ξ + x , y),

lim sup
ε→0+

sup
|x|≤1, 0<y<1

ε−β ‖Wψh(εx , εy)‖ <∞.
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Proof (continuation)
Regularity theorem in the tempered generalized function algebra

The conclusion from the Tauberian theorem is: h ∈ Cβ
w (0,E).

So, the Łojasiewicz point value h(0) = v ∈ E exits, i.e.,

lim
ε→0+

f (m) ∗ ρ̌ε = lim
ε→0+

〈h(εt), ρ(t)〉 = v
∫

Rn
ρ(t)dt , ∀ρ ∈ S(Rn)

where the limit holds in E . But we take in particular ρ = φ̌, so

lim
ε→0+

(f (m) ∗ φε)(ξ) = v(ξ), uniformly for ξ ∈ Rn,

thus f (m) = v is a continuous function of at most polynomial
growth.
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Estrada’s distributionally small distributions at infinity

f ∈ S ′(Rn,E) is said to be distributionally small at infinity if it
satisfies the Estrada-Kanwal moment asymptotic expansion

f(λt) ∼
∞∑

|m|=0

(−1)|m|

m!λ|m|+n δ
(m)(t)wm as λ→∞ in S ′(Rn,E), (7)

for some multi-sequence {wm}m∈Nn in E , in the sense that ∀N

〈f(λt), ϕ(t)〉 =
∑
|m|≤N

ϕ(m)(0)

m!λ|m|+n wm + O
(

1
λN+n+1

)
as λ→∞.

Distributions in many important distribution spaces, such as
E ′(Rn,E),O′

M(Rn,E), and O′
C(Rn,E), satisfy (7).
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Estrada characterization

f satisfies (7) ⇔ f ∈ K′(Rn,E).

Here K(Rn) is the space of symbols of pseudodifferential
operators given by

K(Rn) =
⋃
β

Kβ(Rn) = ind lim
β→∞

Kβ(Rn),

where Kβ(Rn) consists of those smooth functions ϕ such that

ϕ(m)(t) = O(|t |β−|m|) as |t | → ∞, ∀m ∈ Nn.
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Distributionally small distributions at infinity
Wavelet characterization

Fourier transforming (7), f ∈ K′(Rn,E) ⇔ f̂ ∈ C∞
w (0,E), where

C∞
w (x0,E) :=

⋂
α∈R

Cα
∗,w (x0,E) =

⋂
α∈R

Cα
w (x0,E), x0 ∈ Rn.

By the Tauberian theorem for the wavelet transform,

Theorem
An E-valued tempered distribution f belongs to K′(Rn,E) if and
only if ∃ {νp}∞p=0 of non-negative integers such that ∀p ∈ N

lim sup
ε→0+

sup
|x |2+y2=1, y>0

yνp

εp

∥∥∥Wψ f̂(εx , εy)
∥∥∥ <∞.

The wavelet is assumed ψ ∈ S0(Rn) and non-degenerate.
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