
Statement of the problem and motivation
The non-wavelet case

The wavelet case

Tauberian class estimates for wavelet and
non-wavelet transforms of vector-valued

distributions

Jasson Vindas
jvindas@cage.Ugent.be

Department of Mathematics
Ghent University

Fourier Analysis and Pseudo-Differential Operators
Helsinki, June 28, 2012

J. Vindas Tauberian class estimates



Statement of the problem and motivation
The non-wavelet case
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In this talk we study vector-valued distributions via integral
transforms of the form

Mϕf(x , y) = (f ∗ ϕy )(x), (x , y) ∈ Rn × R+, (1)

where
ϕy (t) = y−nϕ(t/y).

We call such transforms regularizing transforms.
Two important cases can be distinguished:

1 The wavelet case:
∫
Rn ϕ(t)dt = 0.

2 The non-wavelet case:
∫
Rn ϕ(t)dt 6= 0.

Our aim is:
To present several precise characterizations of the spaces
of distributions with values in Banach spaces in terms of
norm size estimates for (1).
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General Notation

E always denotes a fixed Banach space with norm ‖ · ‖E .
X stands for a (Hausdorff) locally convex topological vector
space.
S ′(Rn,X ) = Lb(S(Rn),X ), the space of X -valued tempered
distributions.
Hn+1 = Rn × R+, the upper half-space.
ϕ̂ denotes the Fourier transform.
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Statement of the problem

Suppose that f a priori takes values in the “broad” space X , i.e.,
f ∈ S ′(Rn,X ).

Suppose that the “narrower” space
E is continuously embedded in X .

If we know that f takes values in E , that is, f ∈ S ′(Rn,E), then
(for some k , l ,C):

‖Mϕf(x , y)‖E ≤ C
(1 + y)k (1 + |x |)l

yk , (x , y) ∈ Hn+1. (2)

We call (2) a (Tauberian) class estimate.

Converse problem: Up to what extend does the class estimate
(2) allow one to conclude that f actually takes values in E?
The problem has a Tauberian character.
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Motivation

The stated problem was first raised and studied by Drozhzhinov
and Zav’yalov (2002,2003). It gives a general setting to attack
problems such as:

1 Classical Hardy-Littlewood-Karamata type Tauberian
theorems for various integral transforms (e.g., the Laplace
transform).

2 Stabilization in time for certain Cauchy problems (e.g., for
the heat equation).

3 Norm estimates for solutions to certain PDE (e.g., the
Schrödinger equation)

4 Wavelet characterizations of important Banach spaces of
functions and distributions (e.g., Besov type spaces).

5 Pointwise and (micro-)local analysis.
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Local and global class estimates

We shall consider local and global versions of the Tauberian
class estimate:

Global class estimate:

‖Mϕf(x , y)‖E ≤ C
(1 + y)k (1 + |x |)l

yk , for almost all (x , y) ∈ Hn+1.

(GCE)
Local class estimate:

‖Mϕf(x , y)‖E ≤ C
(1 + |x |)l

yk , for almost all (x , y) ∈ Rn×(0,1].

(LCE)
for some k , l ∈ N and C > 0.
Furthermore, we assume from now on that:

The Banach space E is continuously embedded in the
locally convex space X .
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Non-degenerate test functions

Naturally, not all kernels ϕ will be well-suited to our problem.
The good ones are:

Definition
Let ϕ ∈ S(Rn). It is said to be degenerate if there is a ray
through the origin along which ϕ̂ identically vanishes. In
contrary case, the test function it is said to be non-degenerate.

Our Tauberian kernels are the non-degenerate test functions.
In Wiener Tauberian theory the Tauberian kernels are
those ϕ such that ϕ̂ do not vanish at any point.
In our theory the Tauberian kernels will be those ϕ such
that ϕ̂ do not identically vanish on any ray through the
origin.
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The non-wavelet case

For the non-wavelet case, we always obtain a full
characterization of S ′(Rn,E).

Theorem
Let f ∈ S ′(Rn,X ) and let ϕ ∈ S(Rn) be such that

∫
Rn ϕ(t)dt 6= 0.

Then, f ∈ S ′(Rn,E) if and only if

1 Mϕf(x , y) takes values in E for almost all
(x , y) ∈ Rn × (0,1] and is measurable as an E-valued
function on Rn × (0,1], and,

2 A (LCE)

‖Mϕf(x , y)‖E ≤ C
(1 + |x |)l

yk

is satisfied.
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The wavelet case

The analysis of the wavelet case is more complicated. We only
obtain characterizations of S ′(Rn,E) up to a correction term
that is totally controlled by the wavelet.

From now on, we assume that ϕ is a non-degenerate wavelet,
namely, ∫

Rn
ϕ(t)dt = 0 and ϕ is non-degenerate.
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We begin with global class estimates:

Theorem
Let f ∈ S ′(Rn,X ) and let ϕ ∈ S(Rn) be a non-degenerate
wavelet. The two conditions:

1 Mϕf(x , y) takes values in E for almost all (x , y) ∈ Hn+1 and
is measurable as an E-valued function on Hn+1, and,

2 A (GCE) is satisfied.
are necessary and sufficient for the existence of G ∈ S ′(Rn,X )
such that f−G ∈ S ′(Rn,E) and supp Ĝ ⊆ {0}.

Corollary
If X is a normed space, the function G = P, a polynomial with
values in X.
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Local class estimates

For local class estimates, the support of the correction term Ĝ
is not any longer the origin, but it is still controlled by ϕ.
We first need a definition.

Definition

Let ϕ ∈ S(Rn) be non-degenerate. Given ω ∈ Sn−1, we
consider ϕ̂ω(r) := ϕ̂(rω) as a function of one variable r . We
define its index of non-degenerateness as

τ = inf
{

r ∈ R+ : supp ϕ̂ω ∩ [0, r ] 6= ∅,∀ω ∈ Sn−1
}
.
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Local class estimates

Theorem
If we replace the (GCE) by merely a (LCE) in the previous
theorem, then: for every r > τ , there is an X-valued entire
function G such that

f−G ∈ S ′(Rn,E)

and

supp Ĝ ⊆ {t ∈ Rn : |t | ≤ r} .

The result is optimal, namely, in general, Ĝ cannot be taken
with support in {t ∈ Rn : |t | ≤ τ} .
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Strongly non-degenerate wavelets

It is still possible to strengthen the previous result, but one
should use the following kind of wavelets:

Definition

Let ϕ ∈ S(Rn) be a wavelet. We call ϕ strongly non-degenerate
if there exist constants N ∈ N, r > 0, and C > 0 such that

C |u|N ≤ |ϕ̂(u)| , for all |u| ≤ r .

The above property is equivalent to the following one. There
exists N such that PN , the Taylor polynomial of ϕ of order N at
the origin, satisfies: for any given ω 6= 0, the polynomial of one
variable

PN(rω) is not identically zero on r ∈ (0,∞).
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Theorem
Let f ∈ S ′(Rn,X ) and let ϕ ∈ S(Rn) be a strongly
non-degenerate wavelet. The two conditions:

1 Mϕf(x , y) takes values in E for almost all
(x , y) ∈ Rn × (0,1] and is measurable as an E-valued
function.

2 A (LCE) is satisfied.
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such that f−G ∈ S ′(Rn,E) and supp Ĝ ⊆ {0}.

Corollary
If X is a normed space, the function G = P is indeed a
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Eliminating the correction term
Generalized Littlewood-Paley pairs

It is possible to eliminate the correction term in the the wavelet
case, provided that one counts with additional convolution data.

Definition
Let θ, ϕ ∈ S(Rn). The pair (θ, ϕ) is said to be a Littlewood-Paley
pair (LP-pair) if:

1 ϕ is non-degenerate with index of non-degenerateness τ .
2 θ̂(u) 6= 0 on the ball |u| ≤ τ.

Example. Let θ ∈ S(Rn) be a radial function such that θ̂ is
nonnegative, θ̂(u) = 1 for |u| < 1/2 and θ̂(u) = 0 for |u| > 1.
Set ϕ̂(u) = −u · ∇θ̂(u). Then (θ, ϕ) is a LP-pair.
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Eliminating the correction term

Theorem
Let f ∈ S ′(Rn,X ) and let (θ, ϕ) be a LP-pair. Then, f ∈ S ′(Rn,E)
if and only if

1 Mϕf(x , y) takes values in E for almost all
(x , y) ∈ Rn × (0,1] and is measurable.

2 A (LCE) is satisfied.
3 (f ∗ θ)(x) takes values in E for almost all x ∈ Rn, it is

measurable, and it is of slow growth, i.e.,

||(f ∗ θ)(x)||E ≤ C(1 + |x |)a.
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Comments on the (Tauberian) theorems

The theorems we have discussed improve several earlier
results of Drozhzhinov and Zav’ylov.
Main improvements:

Enlargement of the Tauberian kernels. Actually, our class
of non-degenerate kernels is the optimal one.
Our results are valid for general locally convex spaces X
(Drozhzhinov and Zav’ylov only considered normed
spaces in the multidimensional case).

J. Vindas Tauberian class estimates



Statement of the problem and motivation
The non-wavelet case

The wavelet case

Global class estimates
Local class estimates

References

For further results see our preprint (joint with S. Pilipović):
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