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Abstract. These are lecture notes of a talk at the School of Mathe-
matics of the National University of Costa Rica. The aim is to present
a wavelet expansion theory for tempered distributions. It is shown that,
for suitable orthogonal wavelets, the wavelet expansion of a tempered
distribution converges to its proyection in the quotient of S ′(R) mod-
ulo the space of polynomials; we also characterize bounded sets and
convergence in such a quotient space via wavelet coefficients.

1. Introduction

Wavelet theory is a powerful tool in analysis. It has shown to be of im-
portance in areas such as time-frequency analysis and approximation theory,
among others. The existent applications of wavelet methods in functional
analysis are very rich. Wavelet analysis can also be used to provide intrinsic
characterizations of important function and distribution spaces [10]. Our
goal in this note is to study wavelet expansions of tempered distributions.
The present paper is based on a joint work with K. Saneva [15].

Previous attempts to study wavelet expansions of general tempered dis-
tributions have been based on approximations by finitely regular multireso-
lution analysis [23, 12, 18]; consequently, they are only applicable to finite
order distributions. In theory and practice, it is difficult to determine the
order of a distribution, it is then desirable to have a theory independent of it.
In this paper we develope a distribution wavelet expansions theory within
the framework of the space of highly time-frequency localized test functions
over the real line S0(R) ⊂ S(R) and its dual space S ′0(R), i.e., the quotient of
the space of tempered distributions modulo polynomials. Such an approach
has been taken in [4] to study the wavelet transform of distributions. It is
proved that the wavelet expansion of a tempered distributions converges to
its projection in S ′0(R). Using these ideas we characterize boundedness and
convergence in the space S ′0(R).
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It should be metioned that the results discussed herein were obtained in
order to study local and and non-local asymptotic properties of Schwartz
distributions via wavelet expansions; indeed, in [15], we provide Abelian
and Tauberian type results relating the asymptotic behavior of tempered
distributions with the asymptotics of wavelet coefficients. For other results
in this direction the reader can consult the references [4, 5, 6, 11, 12, 13, 14,
17, 20, 21, 22, 23].

2. Preliminaries and Notations

The set H denotes the upper half-plane, that is, H = R×R+; we use the
notation N0 = N ∪ {0} .

2.1. Spaces of Functions and Distributions. The Schwartz spaces of
test functions and distributions on the real line R are denoted by D(R) and
D′(R), respectively; the space of rapidly decreasing smooth functions and its
dual, the space of tempered distributions, are denoted by S(R) and S ′(R).
We refer to [16] for the well known properties of these spaces.

Following [4], we define the space of highly time-frequency localized func-
tions over the real line as the set of those elements of φ ∈ S(R) for which
all the moments vanish, i.e.,

(2.1)
∫ ∞

−∞
xnφ(x)dx = 0 , ∀n ∈ N0 .

The space of highly time-frequency localized functions over the real line
will be denoted by S0(R), provided with the relative topology inhered from
S(R). Observe that S0(R) is closed subspace of S(R). Its dual space is
S ′0(R). Notice that there exists a well-defined continuous linear projector
from S ′(R) to S ′0(R) as the transpose of the trivial inclusion from the closed
subspace S0(R) to S(R). This map is surjective due to the Hanh-Banach
theorem; however, there is no continuous right inverse for it [2]. The kernel
of this projection is the space of polynomials; hence, the space S ′0(R) can be
regarded as the quotient space of S ′(R) by the space of polynomials. We do
not want to introduce a notation for this map, so if f ∈ S ′(R), we will keep
calling by f the restriction of f to S0(R).

The corresponding space of highly localized function over H is denoted
by S(H). It consists of those smooth functions Φ on H for which

sup
(b,a)∈H

(
a+

1
a

)m
(1 + |b|)n

∣∣∣ ∂k+lΦ
∂ak∂bl

(b, a)
∣∣∣ <∞ ,

for all m,n, k, l ∈ N0. The canonical topology of this space is defined in the
standard way [4].
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2.2. The Wavelet Transform of Distributions. The wavelet transform
of f ∈ S ′(R) with respect to ψ ∈ S0(R) is the C∞-function on H defined by

(2.2) Wψf(b, a) := 〈f(b+ ax), ψ̄(x)〉 =
〈
f(t),

1
a
ψ̄

( t− b

a

)〉
, (b, a) ∈ H .

Note that Wψ : S0(R) 7−→ S(H) is continuous linear map [4]. For an arbi-
trary tempered distribution f ∈ S ′(R), one can verify that Wψf is a function
of slow growth on H, that is, it satisfies an estimate of the form

(2.3) |Wψf(b, a)| ≤ O

((
a+

1
a

)m

(1 + |b|)n
)
,

for some m,n ∈ N0.
Naturally, the wavelet transform (2.2) may be considered for f seen merely

as an element of S ′0(R). The reader can find a complete distribution wavelet
transform theory based on the spaces S0(R) and S ′0(R) in Holschneider’s
book [4].

2.3. Orthogonal Wavelets. We shall merely recall some concepts of the
theory of orthonormal wavelet bases in L2(R). In particular, we are not
concerned with the construction of wavelets. A detailed introduction to this
theory can be found in [1, 8, 23] while a more comprehensive treatment in
[3, 10].

An orthonormal wavelet on R is a function ψ ∈ L2(R) such that the family
{ψm,n : m,n ∈ Z} is an orthonormal basis of L2(R), where ψm,n(x) =
2m/2ψ(2mx− n), m, n ∈ Z. So, any f ∈ L2(R) can be written as

(2.4) f =
∑
m∈Z

∑
n∈Z

(f, ψm,n)L2(R) ψm,n

with convergence in L2(R)-norm. The series representation of f in (2.4) is
called a wavelet series. We will denote the wavelet coefficients of f with
respect to the ortonormal wavelet ψ by cψm,n(f), i.e.,

(2.5) cψm,n(f) = (f, ψm,n)L2(R) =
∫ ∞

−∞
f(x)ψ̄m,n(x)dx, m, n ∈ Z.

Note that the relation between the wavelet coefficients and the wavelet trans-
form of f is given by

(2.6) cψm,n(f) = 2−
m
2 Wψf

(
n2−m, 2−m

)
.

Since we are interested in tempered distributions, we will only use or-
thonormal wavelets which are elements of S(R). It is well known that every
orthonormal wavelet from S(R) must belong to the space S0(R) [3, Cor.3.7,
p.75]. The existence of such wavelets was proved by Lemarié and Meyer
[7, 9]. Indeed, Meyer constructed in [9] orthonormal wavelets ψ ∈ S(R)
such that ψ̂ ∈ D(R), arising from a Littlewood-Paley MRA [10, p.25]; in [7],
they found the corresponding multidimensional wavelets of this type.
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3. Wavelet Expansions Theory on S0(R) and S ′0(R)

In this section we provide a wavelet expansion theory for the spaces S0(R)
and S ′0(R). We will show convergence of the wavelet series on these spaces.
We shall always assume that the orthogonal wavelet ψ ∈ S0(R). Therefore,
it makes sense to consider the wavelet coefficients of f ∈ S ′0(R), defined as
usual by

(3.1) cψm,n(f) :=
〈
f, ψ̄m,n

〉
.

We shall also use wavelet expansions to characterize boundedness and con-
vergence on S ′0(R), provided with the strong dual topology; for this purpose,
we describe below a natural isomorphisms of S0(R) with a certain space of
sequences identified with the wavelet coefficients. To describe the topology
on S0(R), we use the following family of seminorms

‖φ‖S0
l := sup

x∈R, 0≤k≤l
(1 + |x|)l

∣∣∣φ(k)(x)
∣∣∣ , l ∈ N0 .

3.1. Convergence of Wavelet Expansions in S0(R). We start by esti-
mating the wavelet coefficients of functions from S0(R).

Lemma 3.1. Let φ ∈ S0(R) and ψ ∈ S0(R) be an orthonormal wavelet.
Then, given β, γ > 0 there exists l ∈ N0 and a constant C > 0 such that

(3.2)
∣∣∣cψm,n(φ)

∣∣∣ ≤ C ‖φ‖S0
l (|n|+ 1)−β

(
2m +

1
2m

)−γ
, ∀φ ∈ S0(R) .

Proof. The proof follows from the relation (2.6) and the fact that Wψ :
S0(R) 7−→ S(H) is a continuous linear map. Therefore, given k, j ∈ N0,
k > j, we have the existence of an integer l and a constant Cj,k > 0 such
that

|cψm,n(φ)| ≤ Cj,k ‖φ‖S0
l

(
1 +

|n|
2m

)−j( 1
2m

+ 2m
)−k

.

From the following inequality

(
1 +

|n|
2m

)−j
=


2mj

(2m + |n|)j
≤ 2mj

(1 + |n|)j
, m ≥ 0,

1(
1 + |n|

2m

)j ≤ 1
(1 + |n|)j

, m < 0,

≤ 1
(1 + |n|)j

(
2m +

1
2m

)j
,

we obtain

(3.3) |cψm,n(φ)| ≤ Cj,k ‖φ‖S0
l (1 + |n|)−j

( 1
2m

+ 2m
)−(k−j)

.

Relation (3.2) follows by taking j > β and k > j + γ. �

We now show convergence of the wavelet series in topology of S0(R).
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Theorem 3.2. Let φ ∈ S0(R) and ψ ∈ S0(R) be an orthonormal wavelet.
Then φ can be expanded as

(3.4) φ =
∑
m∈Z

∑
n∈Z

cψm,n(φ)ψm,n ,

with convergence in S0(R).

Proof. Observe that the fast decrease of the wavelet coefficients (3.2) gives
us that the representation (3.4) converges uniformly to φ; by the same reason
(3.4) can be differentiated and we still get uniform convergence. To show
convergence in S0(R), we should prove that for each l ∈ N0

lim
M→∞
N→∞

∥∥∥∥∥∥φ−
∑
|m|≤M

∑
|n|≤N

cψm,n(φ)ψm,n

∥∥∥∥∥∥
S0

l

= 0

i.e.,

lim
M→∞
N→∞

sup
x∈R, 0≤k≤l

(1 + |x|)l
∣∣∣ ∑
|m|>M

∑
|n|>N

cψm,n(φ)(ψm,n(x))(k)
∣∣∣ = 0 .

We have then

sup
x∈R, 0≤k≤l

(1 + |x|)l
∣∣∣ ∑
|m|>M

∑
|n|>N

cψm,n(φ)(ψm,n(x))(k)
∣∣∣

= sup
x∈R, 0≤k≤l

(1 + |x|)l
∣∣∣ ∑
|m|>M

∑
|n|>N

cψm,n(φ)(2
m
2 ψ(2mx− n))(k)

∣∣∣
≤ sup

x∈R, 0≤k≤l
(1 + |x|)l

∑
|m|>M

∑
|n|>N

2m(k+1/2)|cψm,n(φ)| |ψ(k)(2mx− n)|

≤ O(1) sup
x∈R, 0≤k≤l

(1 + |x|)l
∑

|m|>M

∑
|n|>N

(
2m +

1
2m

)k+1 |cψm,n(φ)|
(1 + |2mx− n|)l

≤ O(1) sup
x∈R

(1 + |x|)l
∑

|m|>M

∑
|n|>N

(
2m +

1
2m

)l+1 |cψm,n(φ)|
(1 + |2mx− n|)l

.

If we now use the elementary inequality

1 + |x|
1 + |x− y|

≤ 1 + |y| ,
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we obtain that
1

(1 + |2mx− n|)l
=

1
(1 + 2m|x|)l

(1 + 2m|x|)l

(1 + |2mx− n|)l

≤ (1 + |n|)l

(1 + 2m|x|)l

≤


2−ml(1 + |n|)l

(1/2m + |x|)l
, m < 0 ,

(1 + |n|)l

(1 + |x|)l
, m ≥ 0 ,

≤ (1 + |n|)l

(1 + |x|)l

(
2m +

1
2m

)l

.

Therefore, from the last two inequalities, we get

sup
x∈R, 0≤k≤l

(1 + |x|)l
∣∣∣ ∑
|m|>M

∑
|n|>N

cψm,n(φ)(ψm,n(x))(k)
∣∣∣

≤ O(1)
∑
|m|>M

∑
|n|>N

|cψm,n(φ)| (1 + |n|)l
(

2m +
1

2m

)2l+1

.

Finally, the rapid decay obtained in Lemma 3.1 for the wavelet coefficients
implies that the last term tends to 0. Indeed, it is enough to choose β = l+2
and γ = 2l + 2 in (3.2) to ensure that the term in the last inequality is less
than O(N−12−M ).

�

We obviously obtain the next corollary from Theorem 3.2.

Corollary 3.3. Let ψ ∈ S0(R) be an orthonormal wavelet. Then, the linear
span of {ψm,n}(m,n)∈Z2 is dense in the space S0(R).

3.2. Convergence of Wavelet Expansions in S ′0(R). For the conver-
gence of wavelet series expansions in the space S ′0(R), we first show the
following lemma.

Lemma 3.4. Let ψ ∈ S0(R) be an orthonormal wavelet. The wavelet coef-
ficients of f ∈ S ′0(R) satisfy an estimate

(3.5) |cψm,n(f)| ≤M(|n|+ 1)β
( 1

2m
+ 2m

)γ
for some β, γ,M > 0.

Proof. It follows from the growth properties of Wψf on H that the wavelet
coefficients satisfy an estimate of the form (2.3); the same argument used in
the proof of Lemma 3.1 shows an estimate of the form (3.5) for the wavelet
coefficients. �

From Theorem 3.2, Lemma 3.1, and Lemma 3.4, we easily obtain the
ensuing convergence result.
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Theorem 3.5. Let ψ ∈ S0(R) be an orthonormal wavelet. Then, the wavelet
expansion series of f ∈ S ′0(R),

(3.6) f =
∑
m∈Z

∑
n∈Z

cψm,n(f)ψm,n ,

converges in (the strong dual topology of) S ′0(R).

Proof. If we show weak convergence of (3.6), then the strong convergence
would follow from it and the Banach-Steinhauss theorem [19]. Let φ ∈
S0(R). Since ψ̄ is also an orthonormal wavelet, we have from Theorem 3.2

φ =
∑
m∈Z

∑
n∈Z

cψ̄m,n(φ)ψ̄m,n ,

with convergence in S0(R). Using Lemma 3.1 and Lemma 3.4, we obtain
the convergence of the wavelet series with coefficients cψm,n(f). Moreover,

〈f, φ〉 =
∑
m∈Z

∑
n∈Z

cψ̄m,n(φ)
〈
f, ψ̄m,n

〉
=

∑
m∈Z

∑
n∈Z

cψm,n(f) 〈ψm,n, φ〉

=

〈∑
m∈Z

∑
n∈Z

cψm,n(f)ψm,n, φ

〉
,

which shows (3.6).
�

Corollary 3.6. Let ψ ∈ S0(R) be an orthonormal wavelet. Then, for f ∈
S ′0(R) and φ ∈ S0(R)

(3.7) 〈f, φ〉 =
∑
m∈Z

∑
n∈Z

cψm,n(f)cψ̄m,n(φ) .

3.3. The Space of Diadic Rapidly Decreasing Sequences. We shall
say that a double sequence {cm,n}(m,n)∈Z2 is of diadic rapid decrease if
(3.8)

‖{cm,n}‖Wl := sup
(m,n)∈Z2

|cm,n| (1 + |n|)l
(

2m +
1

2m

)l

<∞ , for all l ∈ N0 .

We denote the space of all sequences satisfying (3.8) by W(Z2), we call
it the space of diadic rapidly decreasing sequences. The canonical Fréchet
space topology in W(Z2) is defined by means of the seminorms (3.8). Its
dual is W ′(Z2), the space of diadic slowly increasing sequences. One readily
verifies that this dual space is canonically identificable with those sequences
satisfying
(3.9)∥∥{
c′m,n

}∥∥W ′

−l := sup
(m,n)∈Z2

|cm,n| (1+|n|)−l
(

2m +
1

2m

)−l
<∞ , for some l ∈ N0 .

So, we obtain the following isomorphisms.
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Proposition 3.7. Let ψ ∈ S0(R) be an orthonormal wavelet. The linear
map cψ : S0(R) 7−→ W(Z2) which takes φ 7→

{
cψm,n(φ)

}
(m,n)∈Z2

is an iso-

morphism of Fréchet spaces.

Proof. The continuity of the map follows directly from Lemma 3.1. The
map is injective because {ψm,n}(m,n)∈Z2 is an orthonormal basis of L2(R).
That it is onto can be established as in the proof of Lemma 3.4, being its
inverse {cm,n} 7→

∑∑
cm,nψm,n. Finally, one shows easily that the inverse

is continuous, for instance, applying the open mapping theorem [19]. �

Proposition 3.8. Let ψ ∈ S0(R) be an orthonormal wavelet. The map
which takes f ∈ S ′0(R) to its wavelet coefficients is an isomorphism of S ′0(R)
onto W ′(Z2) for the strong dual topologies.

Proof. It is enough to observe that its inverse is the transpose of �

Remark 3.9. We can describe W ′(Z2) as an inductive limit of an increasing
sequence of Banach spaces. For each l ∈ N0, set

W−l(Z2) :=
{{
c′m,n

}
:
∥∥{
c′m,n

}∥∥W ′

−l <∞
}

with norm ‖ · ‖W
′

−l ; then,

W ′(Z2) =
⋃
l∈N0

W−l(Z2) = ind lim
l∈N0

W−l(Z2) .

3.4. Characterization of Boundedness and Convergence in S ′0(R)
through Wavelet Coefficients. We now use Proposition 3.8 and Remark
3.9 to obtain a characterization bounded sets in S ′0(R) in terms of local-
ization of wavelet coefficients; note that because of the Banach-Steinhaus
theorem weak boundedness is equivalent to strong boundedness [19].

Corollary 3.10. Let ψ ∈ S0(R) be an orthonormal wavelet. A subset
B ⊂ S ′0(R) is (strongly) weakly bounded in S ′0(R) if and only if there ex-
ist constants C, β, γ > 0 such that

(3.10) |cψm,n(f)| ≤ C(|n|+ 1)β
(
2m +

1
2m

)γ
, ∀f ∈ B .

Proof. By Proposition 3.8, B is bounded if and only if
{
cψ(f) : f ∈ B

}
is

bounded in W ′(Z2), and since the latter is the inductive limit of the Banach
spaces W−l(Z2), it holds if and only if that set lies in one of these spaces
and is bounded in a ‖ ‖W

′

−l norm, which is obvioulsy equivalent to (3.10). �

As a corollary of Corollary 3.10, we characterize convergent sequences.
We state this result in the next theorem.

Theorem 3.11. Let ψ ∈ S0(R) be an orthonormal wavelet. A net {fλ}λ∈R
is (strongly) weakly convergent (λ → ∞) in S ′0(R) if and only each of the
following limits exist

(3.11) lim
λ→∞

cψm,n(fλ) = am,n <∞ ,
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and there exist constants λ0, C, β, γ > 0 such that

(3.12) |cψm,n(fλ)| ≤ C(|n|+ 1)β
(
2m +

1
2m

)γ
, ∀ λ ≥ λ0 .

In such a case the limit functional, limλ→∞ fλ = g, satisfies cψm,n(g) = am,n.

Proof. Assume (3.11) and (3.12). By Corollary 3.10, relation (3.12), and
the Banach-Steinhaus theorem {fλ}λ∈R is strongly bounded in S ′0(R); on
the other hand, as a consequence of (3.11), it is weakly convergent on the
the linear span of {ψm,n}, which turns out to be dense in S0(R) (Corollary
3.3), hence the net is weakly convergent. The Montel property [19, p.358]
of S0(R) shows now that the net is in fact strongly convergent. Conversely,
the weak convergence gives directly (3.11) while (3.12) is a consequence of
Corollary 3.10. �
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[13] K. Saneva, A. Bučkovska, Tauberian theorems for distributional wavelet transform,
Integral Transforms Spec. Funct. 18 (2007), 359–368.

[14] K. Saneva, Asymptotic behaviour of wavelet coefficients, Integral Transforms Spec.
Funct. 20(3–4) (2009), 333–339.

[15] K. Saneva, J. Vindas, Wavelet expansions and asymptotic behavior of distributions,
2009, preprint.
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