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In this talk we present the following viewpoint:

There is a notion of a ‘field of characteristic 1’ denoted F1.

Roughly speaking, if G is a group that is defined over a finite field Fq and G has
a Dynkin diagram D, then Tits provides us with a geometry X such that G is
‘essentially’ the group of automorphisms of X.

It makes sense to talk about G and X in the limit Fq −→ F1 in such a way
that G inherits a discrete structure and X inherits the geometry of this discrete
structure.

These ideas are deeply embedded in the work of Tits concerning finite geometries,
buildings and Kac-Moody group functors.

We will consider the following cases:

Finite groups: G is a Chevalley group scheme over Fq, X is the Bruhat-Tits
spherical building of G.

Finite dimensional groups: G is a simple algebraic group over a nonar-
chimedean local field, X is the Bruhat-Tits affine building of G.

‘Infinite dimensional’ groups: - G is a Kac-Moody group functor of Tits
over Fq, X is the Tits building of G.



Using the geometry of the Tits building over F1, I was able to prove:

◦ Let G be a Kac-Moody group over a finite field that has ‘type ∞’, that is, the
Weyl group W is a free product of Z/2Z’s. Then G acts ‘nicely’ on a simplicial
tree. This gives a proof of the Kac-Peterson conjecture on the internal structure
of G.

◦ Let G be a Kac-Moody group over a finite field that has rank 2 or rank 3
noncompact hyperbolic type. Then G satisfies the Baum-Connes conjecture
with coefficients in any C∗-algebra.



Chevalley constructed a ‘Chevalley basis’, or ‘Z-form’ for the universal envelop-
ing algebras of complex simple Lie algebras. This can be used to define the
corresponding algebraic groups over Z. It also leads to being able to take points
of these algebraic groups with values in a finite field.

This gave the first unified construction of classical groups over fields other than
R and C, and also gave groups associated to E6, E7, E8, F4, and G2 over finite
fields.

This was an essential stage in the evolving classification of finite simple groups.
After Chevalley’s work, the distinction between classical groups occurring in the
classification of Dynkin diagrams, and sporadic groups which did not, became
sharp enough to be useful.

Chevalley groups over finite fields (1955)



Tits geometries (1956)

Let K be a field, and G a finite dimensional simple Lie group over K.

Tits defined a ‘geometry’ ΓK(G) such that G is the group of ‘transformations’
of this geometry (preserving underlying axioms or properties of ΓK(G)).

Sur les analogues algébriques des groupes semi-simples complexes, Colloque
d’Algébre supérieure [1956, Bruxelles]

Tits’ motivation was to find a ‘geometric’ interpretation of G, in contrast to the
‘algebraic’ analog of G proposed by Chevalley.

Tits’ geometry associated to a classical group G was a precursor to the notion
of a building by Bruhat and Tits (1972).



Fundamental example - projective geometry

Let K = C and let G = PGLn+1(C). Then Tits’ geometry ΓK(G) is
n-dimensional projective geometry Pn over C.

This consists of subspaces Pi ⊆ Pn, i = 0, . . . , n, such that

P0 = ‘points’ = 1-dim subspaces of Cn+1,
P1 = ‘lines’ = 2-dim subspaces of Cn+1, . . . ,
Pn−1 = ‘hyperplanes’ = (n− 1)-dim subspaces of Cn+1,

with incidence given by inclusion as subspaces of Cn+1. We have subgroups Gi

of G

G0 = stabilizer of a point,
G1 = stabilizer of a line, . . .
Gn−1 = stabilizer of a hyperplane,

and families Fi

F0 = G/G0 ↔ points,
F1 = G/G1 ↔ lines, . . .
Fn−1 = G/Gn−1 ↔ hyperplanes

which inherit the incidence relation.

The group G is then the group of automorphisms of ΓK(G) preserving families
Fi and incidence.



Tits geometries over finite fields

Let G be a Chevalley group over a finite field Fq. Let W be the Weyl group of
G, defined as W = N(T )/Z(T ) where T is a maximal torus, N(T ) and Z(T )
are the normalizer and the centralizer of T in G.

If Φ is the root system of G, then W is a subgroup of the isometry group
of Φ. Specifically, it is the subgroup which is generated by reflections in the
hyperplanes orthogonal to the roots.

Tits suggests that there is a ‘field of characteristic 1’ denoted F1 such that in
the limit Fq −→ F1, G takes on the discrete structure of the Weyl group W

G(Fq)
q !→1−→ W,

and the finite geometry associated to G approaches the finite geometry of W

Γ(G) q !→1−→ Γ(W ).



Example: PGL3(F2) −→ PGL3(F1)

Let G = PGL3(F2). Then G is a simple Lie group of type A2 and order

23(23 − 1)(22 − 1) = 168

and W is the dihedral group of order 6.

The Tits geometry ΓF2(G) is the flag complex of a projective plane over F2. A
projective plane is a 2 dimensional incidence geometry of points P0 and lines
P1 satisfying the usual axioms:

P0 = ‘points’ = 1-dim subspaces of F3
2,

P1 = ‘lines’ = 2-dim subspaces of F3
2,

with incidence given by inclusion - a point p ∈ P0 is incident on a line L ∈ P1

if p ⊂ L as subspaces of F3
2.

The flag complex is a graph where adjacent vertices correspond to pairwise in-
cident elements.
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it demonstrates the fact that as many as seven colors may be needed 

for coloring a map on a torus. But Heawood proved also that seven 

colors will suffice for every map on a torus; so the "seven-color prob-

lem" was completely solved. 

FIG. 8. The regular map {6, 3} 2,1. FIG. 9. Another view of the 6-cage. 

Let alternate vertices of {6, 3} 2,1 be numbered 1, 2, 3, 4, 5, 6, 7, 

as in Fig. 8. Each of the remaining seven vertices is then determined 

by the three to which it is joined; so we have a system of seven 

triples 

124, 235, 346, 457, 561, 672, 713, 

derived from one another by cyclic permutation of the digits. If the 

two types of vertices are the red and blue nodes of a Levi graph, 

representing the points and lines of a configuration 73, the seven 

triples show which sets of points are collinear. Every three collinear 

points are the diagonal points of the complete quadrangle formed by 

the remaining four points. This state of affairs is indicated in Fig. 7, 

where the circle is to be regarded as a seventh line. Its impossibility 

in the usual systems of geometry is often taken as an axiom [17, p. 

115; 49, p. 45]. 

But such a configuration occurs in many finite geometries; for 

example, in PG(2, 2) where it is the whole plane [17, p. 114; 49, p. 

202]. This means that each point has three coordinates (not all zero) 

belonging to the field of residue-classes modulo 2, namely 0 and 1 

with the rule 

1 + 1 = 0, 

and three points are collinear whenever their coordinates in each 

ΓF2(G) = flag complex of a projective plane over F2

G = PGL3(F2)
points ↔ G/G0

lines ↔ G/G1

G0 = stabilizer of a point,
G1 = stabilizer of a line

There are 7 points, 7 lines, 14 vertices and 21 edges.

The underlying diagram is taken from Coxeter’s paper Self-dual configurations
and regular graphs Bull. Amer. Math. Soc. 56 (1950), 413-455, where he names
it the ‘6-cage’.



The limit F2 −→ F1
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To understand the limit F2 −→ F1 we must understand the local picture in
X = ΓF2(G). If the vertex v represents a point, then

Star(v) =

| Star(v) |= no. of 1 dim subspaces of the 2 dim space F2
2 =| P1(F2) |=3

As F2 −→ F1, | Star(v) | −→ | P1(F1) | = 2

Geometry of PGL3(F2) −→

This is the Geometry of W , the dihedral group of order 6.

And PGL3(F2) −→ group of type preserving automorphisms of

Thus PGL3(F2) −→W .

The limit q −→ 1 induces a retraction of X onto a single hexagon. This is
known as retracting a building onto an apartment.
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Conversely we can think of X = ΓF2(G) as gluing
together copies of the geometry over F1:

3 hexagons along each edge



Tits geometries for infinite groups
Let G be

◦ A simple algebraic group over a non-archimedean local field K (K = Qp, a
finite extension of Qp or K = Fq((t−1))),

◦ A Kac-Moody group functor over a finite field Fq.

Tits generalized his notion of finite geometries to such groups by associating a
‘building’ X to a collection of group theoretic data called a ‘BN -pair’ or ‘Tits
system’. In the finite dimensional case this was joint work with Bruhat (1972).

A BN -pair is a collection B and N of subgroups of G, such that B∪N generates
G, B ∩ N is normal in N , the Weyl group W equals N/B ∩ N and this data
satisfies other axioms.

A building is a simplicial complex X that can be expressed as a union of sub-
complexes called apartments which are isomorphic Coxeter complexes satisfying
certain axioms.

As in the case of finite Chevalley groups, one can see that G(Fq) −→ W as
q −→ 1 and that the building X approaches the geometry of the Weyl group W
of G, which is an infinite group here.

Whenever ‘possible’, the G is the automorphism group of the building X.



Example - a rank 2 affine group G = SL2(Fq((t−1)))
Let G = SL2(Fq((t−1))). Then G has a BN -pair of Tits, where

B = {
(

a b
c d

)
∈ SL2(Fq[[t−1]]) | c ≡ 0 mod(t−1)},

N = G ∩
(
∗ 0
0 ∗

)
∪ G ∩

(
0 ∗
∗ 0

)
.

We recall that B ∪N generates G, B ∩N is normal in N
and this data satisfies other axioms

Weyl group

The Weyl group W is the infinite dihedral group

W = N/(B ∩N) = < w1 > ∗ < w2 > ∼= Z ! {±I}

where w1 =
(

0 −1
1 0

)
, w2 =

(
0 −t

1/t 0

)
.

Parabolic subgroups

The subgroup B is called a minimal parabolic subgroup.

We define P1 : = B (Bw1B, P2 : = B (Bw2B.

Then P1 = SL2(Fq[[t−1]]), P2
∼= SL2(Fq[[t−1]])}. These are compact subgroups of G

and P1 ∩ P2 = B.

Ihara-Bass-Serre-Tits amalgam decomposition

G ∼= P1 ∗B P2



Bruhat-Tits building of G = SL2(Fq((t−1)))

We define the Bruhat-Tits building of G as follows:

V X = G/P1 !G/P2,

EX = G/B !G/B,

G acts on X by left multiplication on cosets.

For Q1, Q2 ∈ V X, Q1 and Q2 are adjacent if and only if
Q1 ∩Q2 contains a conjugate of B.

Edges emanating from P1 and P2 may be indexed over P1(Fq):

Star(P1) = {B,

(
1 s
0 1

)
w1B/B | s ∈ Fq} ↔ P1(Fq)

StarX(P2) = {B,

(
1 0

s/t 1

)
w2B/B | s ∈ Fq} ↔ P1(Fq)

X is a homogeneous bipartite tree of degree [P1 : B] = [P2 : B] = q + 1.

The stabilizers in G for the vertices of X are conjugates of P1 and P2.
The stabilizers in G of edges are the conjugates of B.

G acts transitively on edges and has 2 orbits for vertices.

Here, G is no longer the full group of automorphisms of X.



P1 P2

B

1   1

0 1
w1P2

w1P2 w2P1

1   0

1/t 1
w2P1

w1w2P1 w2w1P2

1   1

0 1
w1P2

w2

1   0

1/t 1
w2P1

w1

1   0

1/t 1
w2w1P2

1   1

0 1
w1P2

1   0

1/t 1
w2

1   1

0 1
w1w2P1

1   0

1/t 1
w2P1

1   1

0 1
w1

Fig (4.2), for SL2(Fq((1/t))), the tree of a field with 2 elements

For G = SL2(Fq((t−1))), the tree over the field of 2 elements
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As Fq −→ F1, | Star(v) | −→ | P1(F1) | = 2 and the geometry of X
approaches the geometry of the infinite dihedral group W which is a bi-infinite
line. This is the Coxeter complex of W , also called an apartment.

The BN -pair structure gives a Bruhat decomposition G =
⊔

w∈W BwB.

As Fq −→ F1, B −→ {1} so by the Bruhat decomposition, G −→W



KAC-MOODY GROUPS, INTRODUCTORY REMARKS

g Kac-Moody Lie algebra over K, a field
g has finite, affine, or hyperbolic type

If g is affine or hyperbolic, g is infinite dimensional
g is the most natural generalization to infinite dimensions

of a finite dimensional simple Lie algebra.

G Kac-Moody group associated to g,
an abstract group, also constructed over K

No unique method for constructing G
Several constructions using a combination of techniques

and additional external data.

Most constructions use the Tits functor G

If K = Fq then G is locally compact and totally disconnected
G has an action on a locally finite Tits building X



Data for constructing Kac-Moody groups

The data used to construct a Kac-Moody group contains a generalized Cartan
matrix A = (Aij)i,j∈I . The entries satisfy the conditions Aij ∈ Z, i, j ∈ I,
Aii = 2, i ∈ I and Aij ≤ 0 if i #= j. We assume further that A is symmetrizable:
there exist positive rational numbers q1, . . . , ql, such that the matrix DA is
symmetric, where D = diag(q1, . . . , ql).

Three possible types - Bourbaki definition

Finite type A is positive-definite. In this case A is the Cartan matrix of a finite
dimensional semisimple Lie algebra.

Affine type A is positive-semidefinite, but not positive-definite.

Hyperbolic type if A is neither of finite nor affine type, but every proper, inde-
composable submatrix is either of finite or of affine type.

Hyperbolic types

If A is of hyperbolic type, we say that A is of compact hyperbolic type if every
proper, indecomposable submatrix is of finite type.

If A contains an affine submatrix, then we say that A is of noncompact hyperbolic
type. This is equivalent to the condition that the fundamental chamber of the
hyperbolic Weyl group W (A) is not compact (but has finite volume).



The Tits geometry for a Kac-Moody group - a building

A Kac-Moody group G over a finite field is locally compact and totally discon-
nected and G admits an action on a locally finite building X.

G finite dimensional, X finite (spherical) building

G affine type, X affine building

G hyperbolic type, X hyperbolic building

G has rank 2 (affine or hyperbolic), X is a tree

Vertices correspond to cosets G/Pi, where Pi are the maximal parabolic sub-
groups of G. If the Weyl group W is infinite, by the Solomon-Tits theorem X
is contractible. The group G acts on X by left translation of cosets.

If G is of hyperbolic type, apartments in X are hyperbolic spaces tessellated by
the action of the hyperbolic Weyl group W .

We may use data from the action of G on X to obtain a decomposition theo-
rem for G as a free product of standard parabolic subgroups amalgamated over
their intersections. Obtain also structure theorems, generators and relations for
subgroups of G.



The Tits building as a symmetric space

As well as giving an infinite analog of the notion of a flag complex or projective
plane, the Tits building plays the role of a symmetric space ‘G/K’ for a Kac-
Moody group G and maximal compact subgroup K.

Let G be a locally compact Kac-Moody group, K a maximal compact subgroup.
Since G is totally disconnected and K is open, G/K is discrete.

We ‘repair’ G/K to play the role of a symmetric space by making the discrete
set G/K the vertices of a simplicial complex, the Tits building.

If Γ is a nonuniform lattice subgroup, we refer to Γ\G/K as an ‘arithmetic
quotient’.



KAC-MOODY COSET SPACES G/K

Motivation:

◦ The action of G and its subgroups on G/K should reveal much about the
structure of these groups.

◦ ‘Arithmetic quotients’ Γ\G/K for G locally compact and Γ a nonuniform
lattice subgroup are the source of automorphic forms and other arithmetic in-
formation.

◦ Scalars fields in supergravity theories always parametrize a coset space G/H.
After dimensional reduction to dimensions n ≥ 3, G is a noncompact real form
of the exceptional Lie group E11−n and H is its maximal compact subgroup.
In dimensions ≤ 2, G is a hyperbolic Kac-Moody group and H is generated by
Kac-Moody generators invariant under a certain involution. Very mysterious.
(Cremmer and Julia, 1978).

◦ Geometrical objects of 11 dimensional supergravity correspond to coordinates
in the coset space E10/K(E10), where K(E10) is the maximal compact subgroup
of the canonical real form of the hyperbolic Kac-Moody group E10 (Damour,
Henneaux and Nicolai also Brown, Ganor and Helfgott).



Tits geometries for Kac-Moody groups

We consider here the following class of examples. Let G be a Kac-Moody group
over a finite field that has has ‘type ∞’, that is, the Weyl group W is a free
product of Z/2Z’s.

This coincides with the class of all Kac-Moody groups corresponding to gener-
alized Cartan matrices A = (Aij)i,j∈I} with all AijAji ≥ 4, i #= j. In particular,
this includes all rank 2 Kac-Moody groups, whose generalized Cartan matrices
form the infinite family

A =
(

2 −a
−b 2

)
, ab ∈ Z≥4,

which is affine if ab = 4 and hyperbolic if ab > 4.

If rank(G) ≥ 3, then the fundamental chamber for W lies in hyperbolic space
and is not compact but has finite volume. In fact, the the fundamental chamber
for W is an ideal simplex. This class of Kac-Moody groups should fall under
the category ‘noncompact hyperbolic type’.
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<
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The Weyl group of A is the (∞,∞,∞)-triangle group:

W = < w1, w2, w3 | w2
1 = w2

2 = w2
3 = 1 > ∼= Z/2Z ∗ Z/2Z ∗ Z/2Z,

which contains PGL2(Z) as a subgroup of index 6.

Example Let A =




2 −2 −2
−2 2 −2
−2 −2 2





A has Dynkin diagram



Tessellation of Poincare disk by (∞,∞,∞)-triangle group, a rank 3
Kac-Moody Weyl group of noncompact hyperbolic type

Entrance to Department of Mathematical Sciences
University of Durham, UK



Example. A =




2 −2 −2
−2 2 −2
−2 −2 2



, W (A) ∼= Z/2Z ∗ Z/2Z ∗ Z/2Z

Diagram shows the geometry
of the Tits building X over
F1. This is an apartment
(Poincaré disk) with W (A) -
tessellation by ideal triangles
and a naturally inscribed tree

The Tits building can also be viewed
as the universal covering of a complex
of groups over the ideal simplex.
However the theory of Tits already
carries the data from the action of
the Kac-Moody group on this complex of
groups without referring to it explicitly.



Full Tits building over Fq

Constructed by ‘gluing’ (q + 1) apartments along each chamber

The inscribed tree X in
the full Tits building X is
a bi-homogeneous tree

The Kac-Moody group G acts
on the Tits building X and
on the inscribed tree X



THE HAAGERUP PROPERTY AND PROPERTY (T )

Let G be a locally compact group. We say that there is a continuous, isometric
action of G on some affine Hilbert space H if there is a a continuous map
G −→ Isom(H).

We say that the action of G on H is metrically proper if for any bounded subset
B in H the set K(G, B) := {g ∈ G s.t. gB∩B %= ∅} has compact closure in G.

The locally compact group G satisfies the Haagerup property, (or is a-T-menable)
if it admits a continuous, isometric, proper action on an affine Hilbert space.

A locally compact group G has Property (T ) if and only if every continuous
action of G by isometries on a Hilbert space has a fixed point. Other equiva-
lent definitions in representation theory and ergodic theory all indicate that the
Haagerup property is a strong negation of Kazhdan’s Property (T).

Cherix, Martin, and Valette in ‘Spaces with measured walls, the Haagerup prop-
erty and Property (T )’ (2004) showed that a group acting properly on a tree
has the Haagerup property. Here ‘properly’ means that the action has finite
vertex stabilizers.



The Haagerup property, the Baum-Connes conjecture and
Property (T ) for hyperbolic Kac-Moody groups

For all locally compact Kac-Moody groups of rank 2 or rank 3 noncompact
hyperbolic type, we can construct a proper action on a tree, that is, with finite
vertex stabilizers. This implies:

Theorem [C] Let G be a Kac-Moody group over a finite field that has rank 2
or rank 3 noncompact hyperbolic type. Then G has the Haagerup property.

Work of Higson and Kasparov shows that this is sufficient for the Baum-Connes
conjecture. Thus we have revealed a new class of locally compact groups satisfy-
ing the strongest form of the Baum-Connes conjecture, that is with coefficients
in any C∗-algebra.

Using the work of Dymara and Januszkiewicz we have also deduced that if G
has compact hyperbolic type or if rank(G) > 3 and G has noncompact hyperbolic
type then G has Kazhdan’s Property (T ).



CONCLUSION

The ingenuity of Tits shows itself in this subject in many different ways.

His invention of a ‘geometry’ on which a group acts gives the analog of a
symmetric space for a wide class of groups.

This has had a profound impact on the development of both geometric
and algebraic approaches to group theory.

The concept of a ‘field of characteristic 1’ is deeply and naturally embedded
in Tits’ work and is very useful in applications.


