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Introduction

Following ideas of Manin [10] and Soulé [14], and inspired by Kurokawa-Ochiai-
Wakayama [8], the author introduced the notion of F1-schemes in [2]. This
notion turned out to be a generalisation of a “fan” introduced by Kato [6] in
the context of logarithmic schemes.

For (hopefully) possible number theoretical applications it is necessary to de-
velop homological algebra over F1-schemes. As the descent from Z-schemes to
F1-schemes comes about by “forgetting additivity”, the categories in question
are no longer additive categories, therefore fail the usual approach to homo-
logical algebra. The author first tried to establish a homotopical algebra á la
Quillen [11] in this case, but failed to verify the axioms. The more traditional
approach through resolutions, however, finally worked out. This forms the first
part of the paper.

Homological algebra has been extended to more general settings by many au-
thors, for instance, see [1, 3, 5, 7, 13, 12], but sooner or later each of the papers
known to the author introduces assumptions (pre-additivity, existence of biprod-
ucts) which are not satisfied in the case of interest here. Thus it was necessary
to develop homological algebra on belian categories from scratch. We proceed
rather slowly here and people used to this kind of arguments might urge for more
speed, but readers, like myself, who are very much used to additive categories
and want to make sure that no additivity is used indeed, might feel relieved that
all details are worked out.

To counterbalance failing additivity we have to impose heavy conditions on the
category otherwise, such as having enough injectives and projectives. These
conditions have to be verified in applications.

In the second part of the paper we verify the conditions in the context of sheaves
over F1-schemes. Where the first part is more algebraic in nature, this part is
more geometric. We prove some of the results one might expect, like vanish-
ing of cohomology in degrees above the dimension or that cohomology can be
computed using flabby resolutions. Finally, the quite useful compatibility with
base change is proved. This allows one to compute the Z-lift of cohomology by
means of ordinary Zariski-sheaf cohomology.

I thank Alexander Schmidt for useful remarks on the contents of this paper and
the referee for pointing out gaps in an earlier version.

1 Belian categories

A category is called balanced if every morphism which is a monomorphism as
well as an epimorphism, already has an inverse, i.e., is an isomorphism. For
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example, the category of groups is balanced, but the category of fields is not.

Let B be a category. An object I ∈ B is called injective if for every monomor-
phism M →֒ N the induced map Mor(N, I) → Mor(M, I) is surjective. Dually,
an object P ∈ B is called projective if for every epimorphism M →→ N the
induced map Mor(P,M) → Mor(P,N) is surjective. We say that B has enough
injectives if for every A ∈ B there exists a monomorphism A →֒ I, where I is
an injective object. Likewise, we say that B has enough projectives if for every
A ∈ B there is an epimorphism P →→ A with P projective.

A category C is pointed if it has an object 0 such that for every object X the
sets Mor(X, 0) and Mor(0, X) have exactly one element each. The zero object is
uniquely determined up to unique isomorphism. In every set Mor(X,Y ) there
exists a unique morphism which factorises over the zero object, this is called the
zero morphism. In a pointed category it makes sense to speak of kernels and
cokernels. Kernels are always mono and cokernels are always epimorphisms.

Assume that kernels and cokernels always exist. Then every kernel is the kernel
of its cokernel and every cokernel is the cokernel of its kernel. For a morphism
f let im (f) = ker(coker (f)) and coim(f) = coker (ker(f)). If C has enough
projectives, then the canonical map im (f) → coim(f) has zero kernel and if C
has enough injectives, then this map has zero cokernel.

A belian category is a balanced pointed category B which

• contains fibre products and cofibre products, and

• has the property that every morphism with zero cokernel is an epimor-
phism.

Every abelian category is belian.

As a special case of fibre and cofibre products, a belian category contains finite
products, finite sums (=co-products), kernels and cokernels.

The third axiom says that a morphism with zero cokernel is an epimorphism
and consequently a monomorphism with zero cokernel is an isomorphism. How-
ever, not every morphism with zero kernel is a monomorphism. We will call a
morphism with zero kernel a weak monomorphism. Likewise, a morphism with
zero kernel and cokernel will be called a weak isomorphism.

The third axiom implies that for every morphism f the canonical map from
coim(f) to im (f) is an epimorphism. If this map is indeed an isomorphism,
we call f a strong morphism. Monomorphisms and cokernels are strong. If

A
f
→ B

g
→ C is given with g being strong and gf = 0, then the induced map

coker (f) → C is strong. Likewise, if f is strong and gf = 0, then the induced
map A→ ker g is strong.

As many results of this section are formulated for strong morphisms, one might
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wonder why to bother with non-strong morphisms at all. The reason is that
the class of strong morphisms is, in general, not closed under fibre products and
the precise conditions which would then replace this axiom are quite messy to
formulate and to verify in applications. Further, much of what we do depends
on having enough projectives, another property that fails in applications if one
restricts to strong morphisms.

Note that in a belian category, although one cannot add morphisms, one can
“add” morphisms from direct sums thanks to the universal property of direct
sums: Suppose given two morphisms ϕi : Mi → N , i = 1, 2. Then there exists
a unique morphism

ϕ1 ⊕ ϕ2 : M1 ⊕M2 → N

such that Mi M1 ⊕M2 N// //
ϕ1⊕ϕ2

equals ϕi for i = 1, 2.

The simplest example of a belian category is the category Set0 of pointed sets.
Objects are pairs (X,x0) where X is a set and x0 ∈ X is an element. A
morphism ϕ ∈ Mor((X,x0), (Y, y0)) is a map ϕ : X → Y with ϕ(x0) = y0. Any
singleton ({x0}, x0) is a zero object. The kernel of a morphism ϕ : X → Y is the
inverse image ϕ−1({y0}) of the special point and the cokernel is Y/ϕ(X), where
the image ϕ(X) is collapsed to a point. The product is the Cartesian product
and the coproduct is the disjoint union with the special points identified. A
morphism ϕ ∈ Mor((X,x0), (Y, y0)) is strong if and only if ϕ is injective outside
ϕ−1({y0}).

Other examples include the category of pointed simplicial sets, pointed CW -
complexes, or the categories of sheaves of these.

If B is a belian category, then for X,Y ∈ B the set MorB(X,Y ) is a pointed set,
the special point being the zero morphism.

1.1 Complexes

In a belian category a sequence of morphisms,

. . . M i M i+1 . . .// //di

//di+1

is called a complex if di+1 ◦ di = 0 for every i. In that case there is an induced
morphism im di → ker di+1 which is a monomorphism since the maps im (di) →
M i+1 and ker(di+1) → M i+1 are monomorphisms. We call the complex exact,
if this morphism is an isomorphism. For a given complex let

Hi(A•) def
= coker

(
im di → ker di+1

)
∈ B

be the cohomology of the complex M•. Then the cohomology is zero if and only
if the complex is exact.
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A complex is called a strong complex if every differential di is strong.

Let B be a belian category and let C(B) be the category of complexes over B.
Morphisms in C(B) are morphisms f : X → Y of complexes, i.e., f is a sequence
f i : X i → Y i of morphisms is B such that every square

X i X i+1

Y i Y i+1

//

��
�
�
�
�
�
�
�
�

fi

��
�
�
�
�
�
�
�
�

fi

//

is commutative.

Let C+(B) be the full subcategory of complexes Y which are bounded below,
i.e., Y i = 0 for i << 0. Further C−(B) denotes the subcategory of complexes
which are bounded above and finally let Cb(B) = C+(B)∩C−(B) be the category
of bounded complexes.

1.2 Pull-backs and push-outs

Lemma 1.1 Let B be a category and let

A X

B Y

//
f ′

��

g′

��

g

//
f

be a Cartesian square in B.

• If f is a monomorphism, then so is f ′.

• If B contains enough projectives and f is an epimorphism, then f ′ is an
epimorphism.

• If B is belian and contains enough projectives, and if g is a monomorphism
and f is strong, then f ′ is strong.

Likewise, let

A B

C P

//h

��

j

��

j′

//h′

be co-Cartesian.
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• If h is an epimorphism, then so is h′.

• If B contains enough injectives and h is a monomorphism, then h′ is a
monomorphism.

• If B is belian and contains enough injectives, h is a monomorphism and
j a strong morphism then j′ is strong.

Proof: Assume the first situation and let α, β be two morphisms Z → A with
f ′α = f ′β. We have to show α = β. Since fg′α = fg′β and f is injective, we
have g′α = g′β. The square being Cartesian implies α = β as claimed. For
the second assertion, let α : P → X be an epimorphism with P projective. The
resulting morphism P → Y can be lifted to B, giving a commutative square

P X

B Y.

//

�� ��
//

Since the original square was Cartesian, the epimorphism P → X factorises as

P → A
f ′

→ X , hence f ′ is an epimorphism. For the third assertion, let K,K ′ be
the kernels of f and f ′ respectively. Write A/K for coker (ker f) and B/K ′ for
coker (ker f ′). We have the diagram

A/K

K A X

B/K ′

K ′ B Y.

��
??

??
??

??

// //
� _

��

g′

?? ??��������

��

η

� _

��

g
� o

��
??

??
??

??

//

?? ??��������
//

We claim that η is a monomorphism. For this let α, β be morphisms from some
Z to A/K with ηα = ηβ. Replacing Z with a projective cover if necessary we
may assume that Z is projective. Since g is injective, the induced morphisms
from Z to X coincide. Since Z is projective, the morphism Z → B/K ′ can be
lifted to Z → B. Since the diagram is Cartesian, there is a unique morphism
Z → A making the diagram commutative. This uniqueness implies that α = β,
so η is indeed a monomorphism and so is A/K → X which implies that f ′ is
strong.
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The first two assertions for co-Cartesian squares follow by reversing the arrows.
For the third let A/K = coker (ker(j)) and B/K ′ = coker (ker(j′)). We have
the commutative diagram

A B

A/K B/K ′

C P

//h

$$ $$JJJJJJ

��

j

����

j′

$$ $$JJJJJJ

zzttttttτ

//

zztttttt

ε
� � //

h′

It is easy to see that P also is the cofibre product of B/K ′ and C over A/K.
Since j is strong, τ is a monomorphism, hence by the above, ε is a monomor-
phism, so j′ is strong. �

Let B be a category which contains fibre-products and has enough projectives.
Let Y be an object in B. On the class of morphisms h : X → Y we define an
equivalence relation as follows. We say that (h,X) ∼ (h′, X ′) if there exists a
commutative diagram

Z X ′

X Y

// //

���� ��

h′

//h

where the arrows emanating at Z are epimorphisms. One has to check that
this indeed is an equivalence. The only problem is transitivity. For this assume
(h,X) ∼ (h′, X ′) and (h′, X ′) ∼ (h′′, X ′′). This means that we have the solid
arrows in the following diagram,

Z ′′ Z ′ X ′′

Z X ′ Y

X Y.

//

��

// //

���� ��

h′′

// //

����

//h′

��

h′

//h

Let Z ′′ be the fibre-product so that the upper left square is cartesian. Then
by the last lemma the dotted arrows are epimorphisms and so are the arrows
Z ′′ → X and Z ′′ → X ′′. This proves that ∼ is an equivalence relation.
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1.3 Snake Lemma

A functor between belian categories is called strong-exact if it maps strong exact
sequences to strong exact sequences.

Let B be a belian category. An ascent functor F is functor from B to an abelian
category C, which is faithful, strong-exact, and preserves fibre- and cofibre-
products. We observe that a sequence in B is strong exact if and only if its
image under F is exact. To see the “if”-part let

A B C//α
//

β

be a sequence in B which is exact after applying F . Then 0 = F (β)F (α) =
F (βα) and the faithfullness implies βα = 0. So we get a natural map f :
imα → kerβ. Then F (imα) = imF (α) and F (kerβ) = kerF (β) and F (f) is
the natural map coming from the sequence in C, hence it is an isomorphism. As
F is faithful, f is epi and mono, hence also an isomorphism as B is balanced.
So the sequence is strong-exact.

Lemma 1.2 (Snake Lemma) Let B be a category which is belian, has enough
injectives and projectives, and admits an ascent functor. Given a strong com-
mutative diagram with exact rows

X1 X2 X3 0

0 Y1 Y2 Y3.

//
g1

��

f1

//
g2

��

f2

//

��

f3

// //
h1

//
h2

Then the induced sequences

ker(f1) → ker(f2) → ker(f3)

and
coker (f1) → coker (f2) → coker (f3)

are strong and exact, and there is a natural strong morphism δ : ker(f3) →
coker (f1) making the whole sequence exact.

Proof: The first part of the Lemma is a standard verification. We will now
construct the snake morphism δ. Note first that, applying an ascent functor
F : B → C, one gets a snake morphism in C. So we only have to show that the
standard construction of this snake morphism already works in B, gives a strong
morphism, and is compatible with F . Once this is achieved, the exactness of
the sequence follows from the corresponding exactness in C.
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To construct δ, extend the diagram as follows:

X1 Z ker(f3) 0

X1 X2 X3 0

0 Y1 Y2 Y3

0 coker (f1) Z ′ Y3.

//t

��
�
�
�
�
�
�
�
�
�

Id

//s

��
�
�
�
�
�
�
�
�
�

l

//

��
�
�
�
�
�
�
�
�
�

k

//
g1

��
�
�
�
�
�
�
�
�
�

f1

//
g2

��
�
�
�
�
�
�
�
�
�

f2

//

��
�
�
�
�
�
�
�
�
�

f3

// //
h1

����
�
�
�
�
�
�
�
�
�

k′

//
h2

��
�
�
�
�
�
�
�
�
�

l′

��
�
�
�
�
�
�
�
�
�

Id

// //s′

//t′

Here Z is the fibre product of ker(f3) and X2 over X3 and Z ′ is the cofibre
product of coker (f1) and Y2 over Y1. By Lemma 1.1, s is an epimorphism and
s′ is a monomorphism. The morphism t is the fibre product of g1 and the zero
map. We claim that the first row is exact. Since st = 0 it remains to show
that t is surjective on ker(s). Now g1 is surjective on ker(g2). Replacing g1
by ker(g2) amounts to the same as assuming that g1 is injective. It suffices to
prove the claim under that assumption. Indeed, then t is the kernel of s. To see
this, let W

w
→ Z be a morphism with sw = 0. We shall show that w factorises

uniquely over t. The induced arrow W → X3 is zero, therefore there is a unique
morphism r : W → X1 such that the solid arrow diagram

W Z

X1 X2

//w

��

r

��

l

//

??

t

is commutative. We have to show that it remains commutative when t is in-
serted. We have two morphisms w, tr : W → Z with lw = ltr and sw = str,
where the second equality stems from the fact that k is a monomorphism. By
the universal property of the fibre product Z it follows that w = tr, hence the
diagram commutes and so t is indeed the kernel of s, in particular, t is a strong
morphism. Further, by construction the morphisms k and k′ are strong, so by
Lemma 1.1 the morphisms s and l′ are strong.

In the last row the morphism t′ is the cofibre product of h2 and zero. The
exactness of this row and the strongness of t′ follows from the previous part
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by reversing all arrows. So the rows are exact and all morphisms are strong.
Consider the morphism ε = l′f2l : Z → Z ′. It satisfies εt = s′k′f1 = 0 and
t′ε = f3ks = 0. Since the top and the bottom row are exact, there exists a
unique morphism δ : ker(f3) → coker (f1) such that ε = s′δs. We claim that δ
is strong. For this consider the strong diagram with exact rows

X Z ker f3

0 coker f1 Z ′ Y3.

//t

��
??

??
??

??
??

??

0

//s

��
??

??
??

??
??

??

0

��
�
�
�
�
�
�
�
�
�

ε

//0

// //s′

//t′

Firstly,the induced morphism δ1 : ker f3 → Z ′ such that ε = δ1s is strong, as
there are natural isomorphisms coimδ1 ∼= coimε and im δ1 ∼= im ε identifying
the natural map coimδ1 → im δ1 with coimε → im ε which is an isomorphism.
Similarly, the natural map δ such that δ1 = s′δ is strong.

So we have made clear that the construction of δ works in B and that δ is
strong. As the ascent functor F is strong exact, it translates the snake diagram
to a snake diagram. As it preserves fibre- and cofibre-products, it translates the
extended diagram to the extended diagram in C. This implies that F (δ) is the
snake morphism in C and that the sequence

ker(f2)
g̃2
→ ker(f3)

δ
→ coker (f1)

h1→ coker (f2)

is exact after applying F . As F is an ascent functor, the above sequence is
strong exact. �

As an application we will show the existence of a long exact cohomology sequence
attached to a short exact sequence of complexes. We assume that B has enough
injectives and projectives and admits ascent. Let

0 → F
e
→ F

f
→ G→ 0

be a strong and exact sequence of complexes over the belian category B. Assume
further that e is a monomorphism. At each stage i ∈ Z one gets a strong
commutative and exact diagram

cokerdi−1
E coker di−1

F cokerdi−1
G 0

0 kerdi+1
E ker di+1

F kerdi+1
G

��

//

��

//

��

//

// // //

and the snake lemma gives a long exact sequence

· · · → Hi(F ) → Hi(G)
δ
→ Hi+1(E) → Hi+1(F ) → · · · .
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1.4 Delta functors

Let B,B′ be belian categories. A delta functor from B to B′ is a sequence of
functors (Fn)n≥0 and to each strong exact sequence

0 → A′ → A→ A′′ → 0

in B, an associated family of strong morphisms

δn : Fn(A′′) → Fn+1(A′), n ≥ 0,

satisfying the following conditions.

D1. For each short exact sequence as above the induced sequence

0 → F 0(A′) → F 0(A) → F 0(A′′)
δ
→ F 1(A′) → . . .

is exact.

D2. For each commutative strong diagram in B with exact rows

0 A′ A A′′ 0

0 A′
1 A1 A′′

1 0

// //

��

//

��

//

��

// // // //

the δ’s give commutative diagrams

Fn(A′′) Fn+1(A′)

Fn(A′′
1 ) Fn+1(A′

1).

//δ

�� ��

//δ

A functor F : B → B′ of belian categories is called strong if F maps strong
morphisms to strong morphisms. A delta functor (Fn) is called strong if all the
Fn are strong for n = 0, 1, 2, . . . . This definition will be used later.

A δ-functor (Fn) is called universal if given another δ-functor from B to B′

and a morphism of functors f0 : F 0 → G0 there exists a unique sequence of
morphisms fn : Fn → Gn, n ≥ 0 which commute with the δn for each short
exact sequence. Given two universal δ-functors (Fn) and (Gn) with F 0 ∼= G0 it
follows that Fn ∼= Gn for every n.

A functor F from B to B′ is called erasable, if to each object B there exists a
monomorphism u : B → I in A with F (u) = 0.
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Theorem 1.3 Suppose that the categories B,B′ are belian and B has enough
injectives. Let (Fn) be a δ-functor. If Fn is erasable for n ≥ 1, then (Fn) is
universal.

Proof: Let G be another δ-functor and given f0 : F 0 → G0. Given an object
A, we erase it with and object I and we get a strong exact seqeunce

0 → A
u
→ I

v
→ C → 0

with F 1(u) = 0. This yields the following solid arrow commutative and exact
diagram,

F 0(I) F 0(C) F 1(A) 0

G0(I) G0(C) G1(A).

//
F 0(v)

��
�
�
�
�
�
�
�
�
�

f0(I)

//
δF

��
�
�
�
�
�
�
�
�
�

f0(C)

//

��

f1(A)

//
G0(v)

//
δG

By exactness and strongness it follows that δF = coker (F 0(v)). Since the second
row is exact, we get δGG

0(v)f0(I) = 0 and thus δGf0(C)F 0(v) = 0. Hence there
exists a unique map f1(A) making the whole diagram commutative.

We show now that f1(A) is functorial in A. For this let ϕ : A→ B be a morphism
in B. We consider the cofibre product P ,

A I

B P.

� � //u

��

ϕ

��
//

Since u is a monomorphism, Lemma 1.1 implies that the map B → P also is
mono. Next let P → N be a monomorphism which erases P . This yields a
commutative strong and exact diagram

0 A I C o

0 B N Y 0,

// //

��

ϕ

//

��

α

//

��

β

// // // //
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whereB → N is the compositeB → P → N and Y is the cokernel. Functoriality
in A means that the following diagram is commutative

F 1(A) F 1(B)

G1(A) G1(B).

//
F 1(ϕ)

��
�
�
�
�
�
�
�
�
�

f1(A)

��
�
�
�
�
�
�
�
�
�

f1(B)

//
G1(ϕ)

This is the right hand face of the following cube

F 0(C) F 1(A)

F 0(Y ) F 1(B)

G0(C) G1(A)

G0(Y ) G1(B).

//
δF

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f0(C)

��
??

??
??

??
??

F 0(β)

�
�
�
�
�
�
�
�

��
??

??
??

??
??

F 1(ϕ)

//

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f1(B)

��
??

??
??

??
??

G0(β)

//

��
??

??
??

??
??

G1(ϕ)

//

All faces of the cube are commutative except possibly the right hand one. But
since δF is an epimorphism, also the last face must be commutative. This shows
functoriality. Next we have to show that f1 commutes with the connection
morphism δ. Let

0 → A→ B → C → 0

be a strong exact sequence in B. The same cofibre construction as before yields
an erasing monomorphism A→ I and a commutative exact diagram

0 A B C 0

0 A I X 0.

// //

��

Id

//

��

α

//

��

β

// // // //
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Consider the diagram

F 0(C)

G0(C)

F 0(X) F 1(A)

G0(X) G1(A).

����
��

��
��

��
��

��
��

��
��

F 0(β)
��

f0(C)

��
??

??
??

??
??

??
??

??
??

??

δF

??
??

??
??

?

��
��

��
��

�

//
δF

��

f0(X)

����
��

��
��

�

G0(β)
��

??
??

??
??

?

δG

��

f1(A)

//
δG

Our aim is to prove that the right hand face is commutative. The triangles on
top and bottom are commutative by the definition of a δ-functor. The left hand
square is commutative since f0 is a morphism of functors. The front square
is commutative by the definition of f1. This implies that the last face also is
commutative. An iteration of the argument with index pair (n, n + 1) instead
of (0, 1) implies the Theorem. �

1.5 Derived functors

Let B be a belian category. An injective class in B is a class I of injective
objects in B such that

• every object of B injects into an object in I, and

• I is closed under finite products.

Note that every belian category B with enough injectives admits injective classes.

A resolution of an object X in B is a strong exact sequence

0 → X → I0
X → I1

X → · · · .

Let I be an injective class, an I-resolution is a resolution with all Ij
X in I.

We show that I-resolutions always exist. For given X ∈ B choose a monomor-
phism X →֒ I0

X with I0
X in I. This starts the inductive construction. Suppose

0 → X → I0
X

d0

→ · · ·
dj−1

→ Ij
X already constructed. Choose a monomorphism

coker (dj−1) →֒ Ij+1
X for some Ij+1

X ∈ I. The induced morphism dj : Ij
X → Ij+1

X

gives a strong exact sequence.

Dually we define a projective class to be a class P of projective objects such
that



BELIAN CATEGORIES 15

• for every object X there exists an epimorphism P → X with P ∈ P ,

• P is closed under finite sums.

A functor F : B → B′ between belian categories is called left strong-exact if for
every strong exact sequence

0 → X
ϕ
→֒ Y → Z

in B, the sequence
0 → F (X) → F (Y ) → F (Z)

is strong exact in B′.

Let F : B → B′ be left strong-exact and assume that B has enough injectives.
Fix an I-resolution X → IX for every X ∈ B. For j = 0, 1, . . . define

RjF (X) def
= Hj(F (IX)).

One finds that RjF defines a functor B → B′, called the j-th derived functor of
F .

Lemma 1.4 There is a natural isomorphism R0F ∼= F .

Proof: Let 0 → X → I0
X → · · · be the chosen resolution of X ∈ B. Since

F is left strong-exact, the sequence 0 → F (X) →֒ F (I0
X) → F (I1

X) is exact.
Therefore there exists a natural functorial isomorphism,

R0F (X) = H0F (IX) ∼= F (X). �

By construction, the derived functors RjF depend on the choice of the reso-
lutions. We will now give a criterion which implies that the derived functors
depend on this choice only up to canonical isomorphism.

The ascent functor F is said to be I-injective if it maps objects in I to injective
objects and to be P-projective if it maps all objects in P to projectives. Here
I and P are an injective and a projective class respectively. If we can choose I
to be the class of all injective objects we simply say that F preserves injectives
and likewise in the projective case.

Example. Let Set0 be the category of pointed sets as before. For a ring R
and a pointed set (M,m0) let R[M ] be the free R-module generated by M and
let R[M ]0 = R[M ]/Rm0. Then F : M 7→ R[M ]0 from Set0 to the category of
R-modules is an ascent functor which is P-projective for any projective class P .
If R is a field, it will also be I-injective for every injective class I. Note that
this functor indeed is strong exact but not exact.
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Let now F : B → B′ be a left strong-exact functor and assume that B and B′

are equipped with ascent functors

AscB : B → CB

AscB′ : B′ → CB′

for some abelian categories CB and CB′ . We say that F is compatible with ascent
if F lifts to an additive left exact functor F : CB → CB′ such that the diagram
of functors

CB CB′

B B′

//F

OO

AscB

//F

OO

AscB′

commutes.

An ascent datum is a pair (I,Asc) consisting of an injective class I and an
ascent functor Asc which is I-injective.

Lemma 1.5 Let (I,AscB) be an ascent datum on B and AscB′ be an ascent
functor on B′ Assume that the left strong-exact functor F is compatible with
ascent. Then the derived functors RjF depend on the choice of the ascent datum
and the injective resolutions only up to canonical isomorphism.

Proof: Let (I,AscB) and (I ′,Asc′B) be two different ascent data and let AscB′

as well as Asc′B′ be two ascent functors on B′ such that F is compatible with
both ascents. Let IX ∈ I and I ′X ∈ I′ be two different choices of injective
resolutions and let RjF and R′jF be the corresponding derived functors. The
injectivity implies the existence of morphisms ϕj making the diagram

0 X I0
X I1

X
· · ·

0 X I ′
0
X I ′

1
X

· · ·

// //

��
�
�
�
�
�
�
�
�

Id

//

��
�
�
�
�
�
�
�

ϕ0

//

��
�
�
�
�
�
�
�

ϕ1

// // // //

commutative. We view this as a morphism ϕ of complexes from IX to I ′X . This
morphism ϕ is not uniquely determined, but for any other choice ψ it follows
that Asc′B(ϕ) and Asc′B(ψ) are homotopic [9]. This implies that both induce the

same map RjF (X) → R′jF (X) which then must be an isomorphism. �

Theorem 1.6 Let F : B → B′ be a left strong-exact functor on belian categories
compatible with ascent. Assume that the B-ascent is I-injective for an injective
class of B, and that B′ contains enough injectives and projectives. Then the
sequence (RnF )n is a strong universal δ-functor.
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Proof: We show thatR•F is a delta functor and that RnF is erasable by objects
in I for n ≥ 1. By Theorem 1.3 it will then follow that R•F is universal.

We will now construct the δ-homomorphisms. Given a strong exact sequence
0 → X →֒ Y → Z → 0 in B let IX and IY be given I-resolutions of X and Z.
Consider the diagram

0 0 0

0 X Y Z 0

0 I0
X I0

X × I0
Z I0

Z 0,

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

// � � //

��
�
�
�
�
�
�
�
�
�

//

��
�
�
�
�
�
�
�
�
�

β

//

��
�
�
�
�
�
�
�
�
�

// //α
//

γ
//

where α is the natural map given by the universal property of the product and

the maps I0
X

id
→ I0

X and I0
X

0
→ I0

Z . For the definition of β recall that since I0
X

is injective, the map X → I0
X extends to Y → I0

X and β is given by this map
and the composition Y → Z → I0

Z . Finally, γ is the projection onto the second
factor. The commutativity of the diagram is immediate. We claim that it is
strong and exact everywhere. The commutativity of

I0
X I0

X × I0
Z

I0
X

//α

��
??

??
??

??
??

?

id

��
�
�
�
�
�
�
�
�

pr1

implies that α is a monomorphism. Since γ is a projection, it is an epimorphism.
It is easy to see that β is a weak monomorphism, so indeed, the diagram is strong
and exact. Since I is an injective class, I0

X × I0
Z lies in I.



BELIAN CATEGORIES 18

We write I0
Y = I0

X × I0
Z and extend the diagram by the corresponding cokernels

X ′, Y ′, Z ′ to get a commutative strong exact diagram

0 0 0

0 X Y Z 0

0 I0
X I0

Y I0
Z 0

0 X ′ Y ′ Z ′ 0

0 0 0.

�� �� ��
// � � //

��

//

��

//

��

// //

��

//

��

//

��
// //

��

//

��

//

��

One uses diagram chase to verify the exactness of this diagram. We repeat the
procedure with the exact sequence 0 → X ′ → Y ′ → Z ′ → 0. Iteration leads to
a commutative and exact diagram of injective resolutions

0 0 0

0 X Y Z 0

0 IX IY IZ 0.

�� �� ��
// � � //

��

//

��

//

��
// � � // // //

Applying F to this diagram yields a strong exact sequence of complexes,

0 → F (IX) →֒ F (IY ) → F (IZ) → 0.

To verify the exactness recall that by construction Ij
Y is the direct product of

Ij
X and Ij

Z . For any two objects A,B in B the map A
id×0
→ A × B → A is an

automorphism of A. Hence the same is true for F (A) → F (A × B) → F (A),
so the map F (A × B) → F (A) is an epimorphism and F (A) → F (A × B) is a
monomorphism.

To this sequence of complexes we now apply the snake lemma to get a long
exact sequence

· · · → RiF (Y ) → RiF (Z)
δ
→ Ri+1F (X) → Ri+1F (Y ) → · · ·
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which is the first ingredient of a delta functor. The functoriality comes from the
naturality of the snake construction. So (RnF ) indeed is a delta functor. It is
erasable, as RiF (I) = 0 for every object I in I and every i > 0 by construction.

�

Fix the situation as in the theorem. An object X in B is called F -acyclic if
RiF (X) = 0 for every i > 0.

Theorem 1.7 Let 0 → X → A0 → A1 → · · · be a resolution by F -acyclics.
Then RiF (X) ∼= Hi(F (A•)), so cohomology can be computed using resolutions
by arbitrary acyclics..

Proof: We need a lemma.

Lemma 1.8 Let 0 → Y 0 → Y 1 → · · · be a strong exact sequence of F -acyclics.
Then the sequence 0 → F (Y 0) → F (Y 1) → . . . is exact.

Proof: Since F is left strong-exact, the sequence

0 → F (Y 0) → F (Y 1) → F (Y 2)

is exact. Let Zj = coker (Y j−1 → Y j). Since the morphisms Y j → Y j+1 are
strong we get an exact, strong, and commutative diagram

0 Y 0 Y 1 Y 2 Y 3

Z1 Z2

0 0 0.

// // //

$$JJ
JJ

JJ
J

//

$$JJ
JJ

JJ
J::ttttttt

$$JJJJJJJ

::ttttttt

$$JJJJJJJ::ttttttt

::ttttttt

Applying F we get an exact sequence

0 → F (Y 0) → F (Y 1) → F (Z1) → R1F (Y 0) = 0,

and thus an epimorphism coker (F (Y 0) → F (Y 1)) →→ F (Z1). Next the exact
sequence 0 → Z1 → Y 2 → Y 3 gives exactness of

0 → F (Z1) → F (Y 2) → F (Y 3).

Thus we get an exact sequence

coker (F (Y 0) → F (Y 1)) → F (Y 2) → F (Y 3),

which is the desired exactness at F (Y 2). We conclude by induction. �
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To finish the proof of the theorem we choose an I-resolution

0 → X → I0 → I1 → . . .

such that we get a commutative diagram

0 X A0 A1 · · ·

0 X I0 I1 · · ·

// //

��

=

//
� _

��

//
� _

��

// // // //

where the vertical maps can be chosen injective by enlarging Ij is necessary. Let
(Y j) be the sequence of cokernels so that we get an exact, strong, commutative
diagram,

0 0

0 X A0 A1 · · ·

0 X I0 I1 · · ·

0 Y 0 Y 1 · · ·

0 0

�� ��

// //

��

=

//

��

//

��

// // //

��

//

��

// //

��

//

��

Since Ai and Ii are acyclic, the exact sequence
RkF (Ii) → RkF (Y i) → Rk+1F (Ai) tells us that Y i is acyclic. Applying F we
obtain a short exact seqeunce of complexes

0 → F (A) →֒ F (I) → F (Y ) → 0.

The corresponding cohomology sequence reads

Hi−1F (Y ) → HiF (A) → HiF (I) → HiF (Y ).

Both ends are zero by Lemma 1.8, so we get an isomorphism in the middle, i.e.,

HiF (A) ∼= RiF (X).

�
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2 Pointed modules and sheaves

Let A be a commutative monoid. A module over A is a set M together with an
action A ×M → M sending (a,m) to am and satisfying (ab)m = a(bm) and
1m = m for all a, b ∈ A and every m ∈ M . Let N ⊂ M be a sub-module, then
we define the quotient module M/N by collapsing N : as a set, M/N equals
M/ ∼, where ∼ is the equivalence relation with the equivalence classes {m},
m /∈ N and N . The module structure is defined by a[m] = [am], where [m] is
the class of m ∈M .

An element m0 ∈M is called stationary if am = m for every a ∈ A. A pointed
module is a pair (M,m0) consisting of an A-module M and a stationary point
m0 ∈ M . A homomorphism of pointed modules from (M,m0) to (N,n0) is
an A-module homomorphism ϕ with ϕ(m0) = n0. Let Mod0(A) denote the
category of pointed modules and their homomorphisms. The special point m0

of a pointed module M is also denoted by 0M or 0 if no confusion is likely. It is
called the zero element of M .

If M is a module over A, we define the pointed module M+ to be M ∪ {0},
where 0 is a new stationary point which we choose to be the special point of
M+.

The category Mod0(A) contains a terminal and initial object, the zero module
{0}, also written 0. A morphism ϕ : M → N is called zero if ϕ factors over
zero. This is equivalent to ϕ(M) = {0N}.

The category Mod0(A) contains products and coproducts. Products are the
usual Cartesian products and coproducts are given as follows: Let (Mi)i∈I be
a family of objects in Mod0(A), then the coproduct is

∐

i∈I

Mi =

·⋃

i∈I

Mi

/
∼

where the union means the disjoint union of the Mi and the equivalence relation
just identifies all zeros 0Mi

to one. We also write coproducts as direct sums.

2.1 Limits

Proposition 2.1 The category Mod0(A) contains direct and inverse limits.

Proof: Let I be a small category and F : I → Mod0(A) be a functor. Write
Mi for F (i), i ∈ I. Define

M def
=

∐

i∈I

Mi/ ∼,
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where ∼ is the equivalence relation given by m ∼ F (ϕ)(m) whenever m ∈ Mi

and ϕ : i → j is a morphism in I. A straightforward verification shows that M
is a direct limit.

Likewise,

N def
=

{
x ∈

∏

i∈I

Mi

∣∣∣∣∣ xj = F (ϕ)(xi) ∀ϕ ∈ MorI(i, j)

}

is an inverse limit. �

Lemma 2.2 A morphism ϕ : X → Y in Mod0(A) is an epimorphism if and
only if ϕ is a surjective map.

Proof: Suppose ϕ is an epimorphism, then Y/imϕ is zero, so imϕ = Y , i.e., ϕ
is surjective. The rest is clear. �

2.2 Injectives and projectives, ascent

Theorem 2.3 The category Mod0(A) is a belian category with enough injectives
and enough projectives.

Proof: We start with the existence of enough injectives. For any set X we have
an A-module structure on the set Map(A,X) of all maps α : A→ X given by

aα(b) = α(ab).

Further, if X is a pointed set, then Map(A,X) is a pointed module, the special
point being α0 with α0(a) = x0, where x0 is the special point of X . For a given
pointed module M we define IM to be

IM
def
= Map(A,M).

We have a natural embeddingM →֒ Map(A,M) ofA-modules given bym 7→ αm

with αm(a) = am. The theorem will follow if we show that Map(A,M) is
indeed injective. For this note that for any A-module P and any set X there is
a functorial isomorphism of A-modules

ψ : Map(P,X) → HomA(P,Map(A,X))

given by
ψ(α)(p)(a) = α(ap).

The inverse is given by
ψ−1(β)(p) = β(p)(1).
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Now let P →֒ N be an injective A-module homomorphism, then for any set X
one has the commutative diagram

HomA(N,Map(A,X)) HomA(P,Map(A,X))

Map(N,X) Map(P,X)

//

��

∼=

��

∼=

//

The second horizontal map is surjective, therefore the first horizontal map is
surjective as well. For X = M this implies the first part of the theorem.

For the existence of enough projectives, consider A as a module over itself. Let
PM =

⊕
m∈M A+

m be a direct sum of copies of A+. Then the pointed module
PM is projective as a straightforward verification shows. For a given module M
define a map

ϕ : PM → M

a ∈ Am 7→ am,

0 7→ m0.

Then ϕ : PM →M is the desired surjection. �

Theorem 2.4 The category Mod0(A) admits an ascent functor which preserves
injectives and projectives.

Proof: One can choose for example the category C of Q-vector spaces and
F : Mod0(A) → C mapping M to the vector space Q[M ]/Qm0, where m0 is the
special point of M . Since every object in C is injective as well as projective, the
theorem follows. �

2.3 Pointed sheaves

Let X be a monoidal space, i.e., a topological space with a sheaf OX of monoids.
A given topological space can be made monoidal by defining OX to be the
constant sheaf OX(U) = {1}. A pointed sheaf is a sheaf of pointed OX -modules
where the restrictions are assumed to preserve the special points. Let Mod0(X)
denote the category of pointed sheaves.

Let ϕ : F → G be a morphism in Mod0(X). Then kerϕ : U 7→ kerϕU is a
sheaf, where ϕU is the induced morphism from F(U) to G(U). We call it the
kernel sheaf kerϕ. Further, U 7→ cokerϕU and U 7→ imϕU are pre-sheaves the
sheafifications of which we call the cokernel and image sheaf.

Proposition 2.5 The category Mod0(X) is belian and contains enough injec-
tives.
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Proof: The zero object is the zero sheaf. Consider a diagram of pointed sheaves
over X ,

F

G H.
��

//

Let P(U) = G(U)×H(U)F(U). Then P forms a sheaf, which is the fibre product
of G and F over H. Similarly one shows that cofibre products exist. To verify
the last axiom let ϕ : F → G be a morphism with zero cokernel and let G −→

−→ Z
be two morphisms such that the induced morphisms from F to Z agree. For
any x ∈ X one has the exact sequence of the stalks Fx

−→
−→ Gx → 0. Therefore

ϕx is an epimorphism and thus the two maps Gx
−→
−→ Zx agree. Since this holds

for every x ∈ X , the two morphisms G −→
−→ Z agree, so ϕ is an epimorphism.

The existence of enough injectives is proved in the next subsection. �

Lemma 2.6 The following holds in Mod0(X).

(a) A morphism f : F → G is strong if an only if all fibres fx : Fx → Gx,
x ∈ X, are strong.

(b) A sequence F
f
→ G

g
→ H is exact if and only if all the sequences at the

fibres Fx
fx
→ Gx

gx
→ Hx, x ∈ X, are exact.

Proof:

(a) A morphism f in a belian category is strong if and only if the induced
f̃ : coimf → im f is an isomorphism. This map is always a weak isop-
morphism. If f is a morphism in Mod0(X), then for every x ∈ X one
has (f̃)x = f̃x. Replacing f by f̃ it therefore suffices to show that f is a
monomorphism if and only if all its fibres fx are.

Let’s assume that f is a monomorphism and let x ∈ X . We have to show
that fx is injective. For this assume fx(sx) = fx(tx) for some sx, tx ∈
Fx. Then there exists an open neighbourhood U of x and representatives
sU , tU ∈ FU with fU (sU ) = fU (tU ) in G(U). We can consider O|U as
an OU -module, but not a pointed one in general. To make it pointed we
add an extra stationary point ωV to OV for every open V ⊂ U . Thus we
get a pointed OU -module Z = (O|U )0. We extend this module by zero
outside the open set U to obtain a pointed OX -module which we likewise
denote by Z. We define a morphism α : Z → F as follows. For V ⊂ U
open, αV : Z(V ) → F(V ) is defined as αv(a) = asV for a ∈ OV and
αV (ωV ) = 0. This defines a morphism α in Mod0(X). Using t instead of
s we define β : Z → F in the same manner. Then fα = fβ and since f
is a monomorphism, α = β, hence sU = tU and so sx = tx. The other
direction is trivial.
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(b) This assertion is shown in the same way as for sheaves of abelian groups.

�

2.4 Injectives and ascent

Proposition 2.7 The category Mod0(X) has enough injectives. In particular,
the class I of products of skyscraper sheaves with injective stalks is an injective
class.

Proof: To see that there are enough injectives, let F be a pointed OX -module.
For each point x ∈ X the stalk Fx is a pointed OX,x-module. Therefore there
is an injection Fx →֒ Ix into an injective OX,x-module. Let ix denote the
injection of x in X and consider the sheaf I =

∏
x∈X ix,∗Ix. For any OX -

module G we have HomOX
(G, I) ∼=

∏
x HomOX

(G, ix,∗Ix) and for every x ∈ X
also HomOX

(G, ix,∗Ix) ∼= HomOX,x
(Gx, Ix). So there is a monomorphism F →֒ I

obtained from the maps Fx →֒ Ix. Also it follows that I is injective and hence
the claim. �

Proposition 2.8 The category Mod0(X) admits an ascent datum (I,Asc).

Proof: For injective class we choose the class I of all products of skyscraper
sheaves with injective stalks. This means that the stalk Fx has to be injective
as OX,x-module.

Let C be the category of all sheaves of Q-vector spaces on X . The ascent functor

Asc: Mod0(X) → C

maps a sheaf F to
Asc(F)(U) = Q[F(U)]/Qx0(U),

where x0(U) is the special point of F(U). Since Asc maps products of skyscraper
sheaves to products of skyscraper sheaves the claim follows. �

2.5 Sheaf cohomology

Let X be a monoidal space and set A = OX(X). We consider the global sections
functor Γ(X, ·) from Mod0(X) to Mod0(A).

Lemma 2.9 The global sections functor Γ(X, ·) is left strong-exact.

Proof: Let 0 → F
f
→ G

g
→ H be an exact sequence in Mod0(X), where

f is strong, i.e., f is a monomorphism. We have to show that the sequence
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0 → F(X)
fX
→ G(X)

gX
→ H(X) is exact in Mod0(A). So let α ∈ ker(fX). Then

OX · α is a subsheaf of F which by f is mapped to zero. Hence OX · α = 0, so
α = 0. Next let β ∈ ker(gX). Then OX ·β is a subsheaf of G mapped to zero by
g. Now f , being a monomorphism, gives an isomorphism F → ker(g). Hence
the map OX · β → G factorizes over f as claimed. �

we define the cohomology of a sheaf F ∈ Mod0(X) by

Hi(X,F) def
= RiΓ(X,F), i = 0, 1, . . .

A sheaf F is called flabby if for any two open sets U ⊂ V the restriction map
F(V ) → F(U) is surjective.

Lemma 2.10 Every injective sheaf is flabby.

Proof: For any open set U ⊂ x let OU denote the sheaf j!(OX |U ), which is the
restriction of OX to U , extended by zero outside U . Now let I be an injective
OX -module and let U ⊂ V be open sets. We have an inclusion OU →֒ OV

and since I is injective we get a surjection Hom(OV , I) → Hom(OU , I). But
Hom(OV , I) ∼= I(V and Hom(OU , I) ∼= I(U), so I is flabby. �

Lemma 2.11 Let 0 → F
f
→ H

h
→ G → 0 be a strong exact sequence in

Mod0(X).

(a) If F is flabby, then for every open set U ⊂ X the sequence

0 → F(U)
fU
→ H(U)

hU→ G(U) → 0

is exact.

(b) If F and H are flabby, then so is G.

Proof: After applying the ascent functor, the claim follows from the corre-
sponding result for sheaves of abelian groups [4]. �

Proposition 2.12 If F is a flabby sheaf in Mod0(X), then Hi(X,F) = 0 for
i > 0.

Proof: Embed F in an object I ∈ I and let G be the quotient. Then the
sequence

0 → F → I → G → 0
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is strong and exact. Since F and I are flabby, so is G. Since F is flabby, the
sequence

0 → H0(X,F) → H0(X, I) → H0(X,G) → 0

is exact. Since I ∈ I, we have Hi(X, I) = 0 for i > 0 and so the long exact
cohomology sequence shows that H1(X,F) = 0 and Hi(X,F) ∼= Hi−1(X,G)
for i ≥ 2. But G is also flabby, so the claim follows by induction. �

Note that according to Theorem 1.7 we now can compute cohomology using
flabby resolutions.

This has interesting consequences. For instance, it shows that vanishing of co-
homology does not depend on the sheaf of monoids OX as the following Lemma
shows.

Lemma 2.13 Let For be the forgetful functor from the category Mod0(A) to
Set0 ∼= Mod0(1). Then the isomorphy class of For(Hi(X,F)) in Set0 does not
depend on the choice of the sheaf OX .

Proof: Let Set0(X) denote the category of pointed sheaves over X for the
trivial structure sheaf OX = const. To compute the cohomology, use flabby
resolutions in Mod0(X). They will remain flabby in Set0(X). �

2.6 Noetherian Spaces

We say that a monoid A is noetherian if every chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ . . .
is eventually stationary, i.e., there exists an index j0 such that Ij = Ij0 for
every j ≥ j0. A topological space X is called noetherian if every sequence of
closed subsets Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . is eventually stationary. The dimension of
a topological space is the supremum of the lengths of strictly descending chains
of closed subsets. A noetherian topological space is not necessarily of finite
dimension.

If X = Spec FA, then X is noetherian if and only if A is. An F1-scheme X is
called noetherian if X can be covered by finitely many affine schemes Spec (Ai)
where each monoid Ai is noetherian. A noetherian scheme is noetherian and
finite dimensional as topological space.

Let (Fα) be a direct system of pointed sheaves. By lim
→

Fα we denote the

sheafification of the presheaf U 7→ lim
→

Fα(U).

Let X be a monoidal space.

Lemma 2.14 Let (Fα)α∈I be a direct system of flabby sheaves and assume that
X is noetherian. Then lim

→
Fα is flabby.
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Proof: As in the group valued case one proves that if X is noetherian, then the
presheaf U 7→ lim

→
Fα(U) already is a sheaf. For every α ∈ I and every inclusion

V ⊂ U of open sets the restriction Fα(U) → Fα(V ) is surjective. This implies
that lim

→
Fα(U) → lim

→
Fα(V ) also is surjective. Since X is noetherian we have

lim
→

Fα(U=(lim
→

Fα)(U), so lim
→

Fα is flabby. �

Proposition 2.15 Let X be a noetherian monoidal space and (Fα)α∈I a di-
rect system of pointed sheaves on X. Then for every i ≥ 0 there is a natural
isomorphism

lim
→
Hi(X,Fα) → Hi(X, lim

→
Fα).

Proof: For every β ∈ I we have a natural map Fβ → lim
→

Fα. This induces

a map on cohomology and we take the direct limit of these maps. For i = 0
the result is clear. For i > 0, consider the category indI(Mod0(X)) of all direct
systems in Mod0(X) indexed by I. This category is belian. Furthermore, lim

→
is

an exact functor and so one has a natural transformation of δ-functors

lim
→
Hi(X, ·) → Hi(X, lim

→
·)

from indI(Mod0(X)) to Modx(A), where A = Γ(X,OX). This transformation
is the identity for i = 0, so it suffices to show that both functors are erasable
for i > 0. So let (Fα) be in indI(Mod0(X)). For each α let Gα be the sheaf of
discontinuous sections of Fα, i.e.,

Gα(U) = {s : U →
⋃

u∈U

(Fα)u : s(u) ∈ (Fα)u ∀u ∈ U}.

Then Gα is flabby and there is a natural inclusion Fα →֒ Gα. Furthermore, the
Gα form a direct system and we obtain a monomorphism (Fα) →֒ (Gα) in the
category indI(Mod0(X)). All Gα are flabby and so is their limit. This implies
that both functors are indeed erasable. �

Let Y be a closed subset of X and F a pointed sheaf on Y . Let j∗F be the
extension by zero outside Y . Then one has Hi(Y,F) = Hi(X, j∗F) as a flabby
resolution J • of F gives a flabby resolution j∗J

• of j∗F .

Theorem 2.16 Let X be noetherian of dimension n. Then for every i > n and
every pointed sheaf F on X we have Hi(X,F) = 0.

Proof: By Lemma 2.13 we may assume that OX is the trivial sheaf of monoids.
For a closed subsed Y ofX and a pointed sheaf F onX we write FY for j∗(F|Y ).

If U ⊂ X is open, we write FU = i!(F|U ). Then, if U −X H Y , we have an
exact sequence

0 → FU →֒ F → FY → 0,
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as one easily checks.

We next reduce the proof to the case when X is irreducible. For assume X is
reducible, then X = Y ∪ Z with closed sets Y, Z both different from X . Let
U = X H Y and consider the exact sequence

0 → FU →֒ F → FY → 0.

By the long exact sequence of cohomology it suffices to show Hi(X,FU ) = 0
and Hi(X,FY ) = 0. Now FU can be viewed as a sheaf on Z and so the proof if
reduced to the components Y and Z. By induction on the number of components
we can now assume that X is irreducible.

We prove the Theorem by induction on n = dimX . If n = 0 then X has only
two open sets, itself and the empty set. Then Γ(X, ·) is exact, so the claim
follows. Now for the induction step let X be irreducible of dimension N > 0
and let F be a pointed sheaf on X . Since every pointed sheaf is a direct limit
of sheaves which are generated by finitely many sections, we are reduced by
Proposition 2.15 to the case of F being finitely generated. By an induction
argument it suffices to assume that F is generated by a single section in F(U),
say, for an open set U . Let Z be the constant sheaf with fibre Z/2Z. Then F ,
being generated by a single section, is a quotient of ZU . So we have an exact
sequence,

0 → R →֒ ZU → F → 0.

By the long exact cohomology sequence it suffices to show the vanishing of the
cohomology of R and ZU . If R 6= 0, then there exists an open set V ⊂ U such
that RV

∼= ZV . So we have an exact sequence

0 → ZV →֒ R → R/ZV → 0.

The sheaf R/ZV is supported in U H V which has dimension < n since X
is irreducible. So it follows that Hi(X,R/ZV ) = 0 for i > n by induction
hypothesis. It remains to show vanishing of cohomology for ZV . We show that
for every open U ⊂ X we have Hi(X,ZU ) = 0 for i > n. Let Y = X H U . We
have an exact sequence

0 → ZU →֒ Z → ZY → 0.

Since X is irreducible, we have dimY < n. So by induction hypothesis we have
Hi(X,ZY ) = 0 for i ≥ n. On the other hand, Z is flabby as it is a constant
sheaf on an irreducible space. Hence Hi(X,Z) = 0 for i > 0. So the long exact
cohomology sequence gives the claim. �

2.7 Base change

Now assume that X is an F1-scheme. Let XZ = X ⊗ Z be the base change
to Z. Instead of Z one could take any other ring here. Let F be a pointed



BELIAN CATEGORIES 30

sheaf over X . For a pointed module (M,m0) over a monoid A write MZ for
the Z[A]-module Z[M ]/Zm0. Every open set U in X defines an open set UZ in
XZ as follows. If X = Spec F1

A is affine, then U defines an ideal a of A. Then
Z[a] is an ideal of Z[A] which defines an open set UZ of XZ = Spec Z[A]. For
non-affine X define UZ locally and take the union. We define the sheaf FZ to
be the sheafification of the presheaf

U 7→ lim
−→

VZ⊃U

F(V )Z.

here the inductive limit is taken over all open sets in XZ which contain U and
are of the form VZ for some V open in X .

If F is a skyscraper sheaf in x ∈ X , then the closed set x̄ = {x} is given by an
ideal sheaf which base changes to an ideal sheaf of XZ which defines a closed
subset x̄Z of XZ. It turns out that FZ is a constant sheaf on x̄Z extended by
zero outside x̄Z. In particular, FZ is flabby.

The functor F 7→ FZ is an ascent functor from Mod0(X) to Mod(XZ) which
maps sheaves in the injective class I to flabby sheaves, hence I-resolutions are
mapped to flabby resolutions.

Theorem 2.17 As functors in F ,

Hp(X,F)Z
∼= Hp(XZ,FZ).

Proof: For p = 0 the claim follows from the definitions. Both sides define
δ-functors from Mod0(X) to Mod(XZ). The right hand side is clearly universal.
The left hand side is also universal since if F ∈ I, then FZ is flabby, we conclude
that F 7→ Hp(XZ,FZ) is erasable for p > 0. �

Corollary 2.18 If X = Spec F1
(A) is affine and M is a pointed A-module, then

Hp(X, M̃) = 0 for p > 0.

Proof: Since (M̃)Z
∼= M̃Z, the claim follows from the corresponding claim for

schemes. �
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72076 Tübingen

Germany

deitmar@uni-tuebingen.de


	Belian categories
	Complexes
	Pull-backs and push-outs
	Snake Lemma
	Delta functors
	Derived functors

	Pointed modules and sheaves
	Limits
	Injectives and projectives, ascent
	Pointed sheaves
	Injectives and ascent
	Sheaf cohomology
	Noetherian Spaces
	Base change


