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Zeta functions over F1

By Nobushige Kurokawa

Department of Mathematics, Tokyo Institute of Technology, Oo-okayama, Meguro-ku, Tokyo 152-8551

(Communicated by Shigefumi Mori, m. j. a., Dec. 12, 2005)

Abstract: We show basic properties of zeta functions over the one element field starting
from an algebraic set over the integer ring. We calculate several examples and we investigate
special values via the associated K-group identified as the stable homotopy group of spheres.
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1. Introduction. The study of zeta func-
tions over F1 was started by Manin [9] about 10
years ago (see [10] for a recent survey). Recently
Soulé [15] and Deitmar [2] made further researches.
In this paper we extend these investigations with pre-
senting reformulations. Concerning absolute mathe-
matics we refer to [3–7] also.

Let X be an algebraic set over Z. We denote by

ζ(s,X/Z) =
∏

p: prime

ζ(s,X/Fp)

the Hasse zeta function, where

ζ(s,X/Fp) = exp

( ∞∑
m=1

#X(Fpm)
m

p−ms

)
is the congruence zeta function at p.

Definition 1. We say that X is of F1-type if
ζ(s,X/Z) is expressed via the Riemann zeta function
ζ(s) in the form

ζ(s,X/Z) =
n∏

k=0

ζ(s− k)ak

with ak ∈ Z.
This definition can be reformulated as follows:
Theorem 1. Let X be an algebraic set over Z.

Then the following are equivalent.
(1) X is of F1-type by

ζ(s,X/Z) =
n∏

k=0

ζ(s− k)ak

with ak ∈ Z.
(2)

ζ(s,X/Fp) =
n∏

k=0

(1− pk−s)−ak
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with ak ∈ Z for all primes p.
(3) There exists a polynomial

NX(t) =
n∑

k=0

akt
k

satisfying

#X(Fpm) = NX(pm)

for all p and m.
Remark 1. Soulé [15] and Deitmar [2] used

(3) to characterize a scheme X over Z coming from
a scheme over F1.

Definition 2. Let X be an F1-type algebraic
set over Z. We define the zeta function

ζ(s,X/F1) =
n∏

k=0

(s− k)−ak

and the Euler characteristic

#X(F1) =
n∑

k=0

ak.

Remark 2. We explain the reason why
#X(F1) is considered to be the Euler characteris-
tic. According to Weil’s conjecture we have

ζ(s,X/Fp) =
m∏

l=0

Pl(p−s)(−1)l+1

with

Pl(u) =
bl∏

j=1

(1− αl,ju)

satisfying |αl,j | = pl/2, where bl is the l-th Betti num-
ber. Hence, comparing with the expression

ζ(s,X/Fp) =
n∏

k=0

(1− pk−s)−ak ,
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we obtain

bl =

{
al/2 if l is even,
0 if l is odd.

Thus
n∑

k=0

ak =
m∑

l=0

(−1)lbl

is the Euler characteristic.
Theorem 2. Let X be an F1-type algebraic

set over Z. Then, we have the equality

ζ(s,X/F1) = lim
p→1

ζ(s,X/Fp)(p− 1)#X(F1),

where we consider p as a complex variable when tak-
ing the limit p → 1. In other words, ζ(s,X/F1) is
the “leading coefficient of the Laurent expansion of
ζ(s,X/Fp) around p = 1.”

Remark 3. Soulé [15] and Deitmar [2] use
ζ(s,X/F1)−1 as the zeta function of X over F1. But,
from Theorem 2, our definition seems to be more nat-
ural.

Theorem 3. Basic algebraic sets An, Pn,
GLn and SLn are F1-type algebraic sets over Z.
Their zeta functions have the following properties.
(1)

ζ(s,An/Z) = ζ(s− n),

ζ(s,An/Fp) =
1

1− pn−s
,

ζ(s,An/F1) =
1

s− n
.

(2)

ζ(s,Pn/Z) = ζ(s)ζ(s−1)···ζ(s−n),

ζ(s,Pn/Fp) =
1

(1−p−s)(1−p1−s)···(1−pn−s)
,

ζ(s,Pn/F1) =
1

s(s−1)···(s−n)
.

(3)

ζ(s,GLn/Z) =
n2∏

k=n(n−1)/2

ζ(s− k)a(n,k),

ζ(s,GLn/Fp) =
n2∏

k=n(n−1)/2

(1− pk−s)−a(n,k),

ζ(s,GLn/F1) =
n2∏

k=n(n−1)/2

(s− k)−a(n,k),

where∑
k

a(n, k)tk = t(n(n−1))/2(t−1)(t2−1) · · · (tn−1).

(4)

ζ(s,SLn/Z) =
n2−1∏

k=n(n−1)/2

ζ(s− k)b(n,k),

ζ(s,SLn/Fp) =
n2−1∏

k=n(n−1)/2

(1− pk−s)−b(n,k),

ζ(s,SLn/F1) =
n2−1∏

k=n(n−1)/2

(s− k)−b(n,k),

where∑
k

b(n, k)tk = t(n(n−1))/2(t2−1)(t3−1) · · · (tn−1).

(5) ζ(s,Pn/R) =
∏n

k=0 ζ(s,A
k/R) for R =

Z,Fp,F1.
(6) ζ(s,An/R) = ζ(s,Pn/R)ζ(s,Pn−1/R)−1 for

R = Z,Fp,F1.
(7) ζ(s,GLn/R) = ζ(s − 1,SLn/R)ζ(s,SLn/R)−1

for R = Z,Fp,F1.
(8) ζ(s,SLn/R) =

∏∞
k=1 ζ(s + k,GLn/R) for

R = Z,Fp,F1 except for the case n = 1 and
R = F1 where this equality is not valid.
Theorem 4. Let X be an F1-type algebraic

set over Z. Then

lim
|s|→∞

ζ(s,X/F1) =


0 if #X(F1) > 0,
1 if #X(F1) = 0,
∞ if #X(F1) < 0.

Remark 4. In contrast with the case R = F1

we have classically

lim
Re(s)→+∞

ζ(s,X/R) = 1.

for R = Z and Fp.
Example.

(1) #An(F1) = 1 and lim|s|→∞ ζ(s,An/F1) = 0.
(2) #Pn(F1) = n + 1 and lim|s|→∞ ζ(s,Pn/F1)

= 0.
(3) #GLn(F1) = 0 and lim|s|→∞ ζ(s,GLn/F1)

= 1.

(4) #SLn(F1) =

{
0 (n ≥ 2)
1 (n = 1)

and

lim|s|→∞ ζ(s,SLn/F1) =

{
1 (n ≥ 2)
0 (n = 1)

.
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Now we look at values of ζ(s,X/R). To simplify
the notation we write

ζ(s,R) = ζ(s,A0/R)

for R = Z,Fp,F1:

ζ(s,Z) = ζ(s), the Riemann zeta function,

ζ(s,Fp) = (1− p−s)−1,

ζ(s,F1) =
1
s
.

Concerning ζ(s,Fp), Lichtenbaum [8] and Quillen
[11] gave the interpretation:

|ζ(−m,Fp)| =
#K2m−2(Fp)
#K2m−1(Fp)

for integers m ≥ 1, where Kn(R) is the (higher
Quillen) K-group of R. Actually, #K2m−1(Fp) =
pm− 1 and #K2m−2(Fp) = 1. In the case of ζ(s,Z),
Lichtenbaum [8] made the following

Lichtenbaum conjecture.

|ζ(1−m,Z)| ∼=
#K2m−2(Z)
#K2m−1(Z)

,

where ∼= is indicating “up to some basic factors” (we
may take “leading coefficients” also).

It is easy to examine the value ζ(−m,X/R) for
an F1-type algebraic set X and an integer m ≥ 1,
where R = F1, Fp and Z. In fact, expressions

ζ(s,X/F1) =
n∏

k=0

(s− k)−ak

and

ζ(s,X/Fp) =
n∏

k=0

(1− pk−s)−ak

with ak ∈ Z imply

ζ(−m,X/F1) = (−1)#X(F1)
n∏

k=0

(m+ k)−ak ∈ Q

and

ζ(−m,X/Fp)

= (−1)#X(F1)
n∏

k=0

(pm+k − 1)−ak

= (−1)#X(F1)
n∏

k=0

(#K2m+2k−1(Fp))−ak .

Moreover, from

ζ(s,X/Z) =
n∏

k=0

ζ(s− k)ak

we see that

ζ(−m,X/Z) =
n∏

k=0

ζ(−m− k)ak

∼=
n∏

k=0

(
#K2m+2k(Z)

#K2m+2k+1(Z)

)ak

under the Lichtenbaum conjecture. Thus we obtain
the following result:

Theorem 5. Let X be an F1-type algebraic
set over Z with an integer m ≥ 1.
(1) ζ(−m,X/F1) ∈ Q.
(2) ζ(−m,X/Fp) ∈ Q and it is written explicitly by

the K-groups Kn(Fp).
(3) ζ(−m,X/Z) ∈ Q and it can be essentially writ-

ten by the K-groups Kn(Z) under the Lichten-
baum conjecture.
To investigate ζ(−m,X/F1) K-theoretically we

must know “Kn(X/F1).” We do not know the gen-
eral definition, but we have a definition of Kn(F1).

Definition 3. We define the K-group Kn(F1)
as the stable homotopy group πs

n of spheres:

Kn(F1) = πs
n = lim

k→∞
πn+k(Sk),

which is stable in the range k > n+ 1.
We notice the following points. First, this def-

inition is given by Manin [9] and followed by Soulé
[15]. Second, the naturality of the definition comes
from Quillen’s construction

Kn(R) = πn(BGL∞(R)+)

for a ring R considering GL∞(F1) as the symmetric
group S∞.

The following result gives a partial support to a
K-theoretical interpretation of values ζ(−m,X/F1).

Theorem 6. Let m and n be non-negative in-
tegers. Then

ζ(−m,An/F1)−1 | #K2m+2n−3(F1)

when m+ n is a prime number.
If n = 0 we have the following examples:

Table I. Examples

s p ζ(−p,F1)−1 #K2p−3(F1)
2 −2 2
3 −3 24 = 3 · 23

5 −5 240 = 5 · 3 · 24

7 −7 504 = 7 · 32 · 23

11 −11 528 = 11 · 3 · 24

13 −13 1048320 = 13 · 7 · 5 · 32 · 28



No. 10] Zeta functions over F1 183

From this, it may be interesting to determine
whether the equivalence

m is prime ⇐⇒ ζ(−m,F1)−1 | #K2m−3(F1)

holds.
2. Characterization of zeta functions.

We prove Theorems 1 and 2.
Proof of Theorem 1. The equivalence (1)

⇐⇒ (2) follows from the uniqueness of the Euler
factor. To see (2) ⇐⇒ (3) compare

log ζ(s,X/Fp) =
∞∑

m=1

#X(Fpm)
m

p−ms

and

log

(
n∏

k=0

(1− pk−s)−ak

)
=

∞∑
m=1

∑n
k=0 akp

mk

m
p−ms.

Proof of Theorem 2. From

ζ(s,X/Fp)(p− 1)#X(F1) =
n∏

k=0

(
1− pk−s

p− 1

)−ak

we have

lim
p→1

ζ(s,X/Fp)(p− 1)#X(F1)

=
n∏

k=0

(
lim
p→1

1− pk−s

p− 1

)−ak

=
n∏

k=0

(s− k)−ak

= ζ(s,X/F1).

3. Examples of zeta functions.
Proof of Theorem 3. Expressions (1)–(4)

follow from the following formulas for the number of
rational points over a finite field Fq:

#An(Fq) = qn,

#Pn(Fq) =
n∑

k=0

qk,

#GLn(Fq) = q(n(n−1))/2(q − 1)(q2 − 1) · · · (qn − 1),

and

#SLn(Fq) = q(n(n−1))/2(q2 − 1)(q3 − 1) · · · (qn − 1).

It is easy to see (5) and (6) from (1) and (2). To
show (7) we use the relation

a(n, k) = b(n, k − 1)− b(n, k)

coming from∑
k

a(n, k)tk = (t− 1)
∑

k

b(n, k)tk.

We see that

ζ(s,SLn/Z) =
∏
k

ζ(s− k)b(n,k)

and

ζ(s− 1,SLn/Z) =
∏
k

ζ(s− 1− k)b(n,k)

=
∏
k

ζ(s− k)b(n,k−1).

Hence
ζ(s− 1,SLn/Z)
ζ(s,SLn/Z)

=
∏
k

ζ(s− k)b(n,k−1)−b(n,k)

=
∏
k

ζ(s− k)a(n,k)

= ζ(s,GLn/Z).

The proofs for R = Fp and F1 are exactly similar.
This proves (7). To see (8) we calculate for K ≥ 1:

K∏
k=1

ζ(s+ k,GLn/R) =
K∏

k=1

ζ(s+ k − 1,SLn/R)
ζ(s+ k,SLn/R)

=
ζ(s,SLn/R)

ζ(s+K,SLn/R)
.

Hence, if

lim
K→∞

ζ(s+K,SLn/R) = 1

we obtain the result. This property is easy to see for
R = Z and Fp. We prove this for R = F1 except
for the case n = 1 in Theorem 4 below. In the case
R = F1 and n = 1, the equality of (8) is not valid.
In fact since

ζ(s,GL1/F1) =
s

s− 1
we get

K∏
k=1

ζ(s+ k,GL1/F1) =
s+K

s
,

which does not converge as K →∞.
4. Limit to infinity.
Proof of Theorem 4. Notice that

ζ(s,X/F1) =
n∏

k=0

(s− k)−ak

= s−#X(F1)
n∏

k=0

(
1− k

s

)−ak

.
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Since

lim
|s|→∞

n∏
k=0

(
1− k

s

)−ak

= 1,

we obtain the result.
5. Values of zeta functions.
Proof of Theorem 6. Since

ζ(−m,An/F1)−1 = −(m+ n),

it is sufficient to show the following fact:

p|#K2p−3(F1) for each prime p.

The case p = 2 follows from

K1(F1) = πs
1
∼= Z/2Z.

We show that p|#πs
2p−3 for each odd prime. First

we use the result of Adams [1] and Quillen [12, 13]
saying that πs

2p−3 has a cyclic subgroup of order
denom(Bp−1/(2(p − 1))) (see Ravenel [14] also),
where Bk is the Bernoulli number and denom(r) de-
notes the denominator of a rational number r. Next,
the famous von Staudt-Clausen theorem says that

p|denom(Bk) ⇐⇒ (p− 1)|k

for each prime p. In particular we see that
p|denom(Bp−1). Hence p|denom(Bp−1/(2(p − 1))).
Thus K2k−3(F1) = πs

2p−3 has an element of or-
der p.
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