An introduction to Hilbert's Tenth Problem and Recursively Enumerable Subsets of $\mathbb{F}_{q}[Z]$

Jeroen Demeyer

Abstract

Hilbert's Tenth Problem is the following: find an algorithm which can decide whether or not a given a Diophantine equation (a polynomial equation over the integers in any number of variables) has a solution. The famous result by Davis, Putnam, Robinson and Matiyasevič (1970) states that such an algorithm does not exist. Actually, they proved something stronger, namely the equivalence of recursively enumerable and Diophantine sets.

Obviously, this question can be asked for other rings besides the integers. I plan to introduce some basic concepts regarding Hilbert 10, with focus on general rings.

In the second half of my talk, I will give an overview of my recent result that every recursively enumerable subset of $\mathbb{F}_{q}[Z]$ is Diophantine over $\mathbb{F}_{q}[W, Z]$. In other words, if we take a recursively enumerable subset of $\mathbb{F}_{q}[W, Z]$, where all elements happen to depend only on the variable Z, then that set is Diophantine.

Wednesday 23 december 2003
14:30-17:00
Universiteit Gent
Zuivere Wiskunde en Computeralgebra
Galglaan 2
9000 Gent
Building S 22, Room 14

