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Introduction

Most modern cryptosystems use S-boxes that are based on
Boolean functions.

There are situations (encrypting credit card numbers or social
security numbers, for example) where non-binary data is a natural
part of the application and one might use non-binary functions in
the cryptosystem. The SAFER family of cryptosystems, proposed
by Jim Massey, uses non-binary functions.
In fact they use a mixture of binary and non-binary arithmetic to
increase the confusion.
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Ciphers

Many modern ciphers are (roughly speaking) a series of ROUNDS,
where each round consists of an S-box and a P-box.

x −→ S(x) −→ P(S(x)) −→︸ ︷︷ ︸
one round

S(P(S(x))) −→ · · ·

The S-box has to satisfy certain criteria to be secure against
certain attacks. Some are

1 The PN or APN property provides resistance of the S-box to
differential cryptanalysis.

2 High nonlinearity provides resistance of the S-box to linear
cryptanalysis

3 The permutation property (i.e. S being invertible) makes it
easier to invert (to decrypt).
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S-Boxes Criteria

(see M-Alvarez, Proc. NATO workshop)

1 Balanced.
2 Resilience.
3 Nonlinearity.
4 XOR Table.
5 Avalanche.
6 Propagation.
7 Bit Independence.
8 Linear Structures.
9 Linear Redundancy.
10 Fixed Points.
11 Algebraic Degree.
12 Degree.
13 Algebraic Immunity.
14 Cube.
15 Branch Number.
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Definitions

Definition (Perfect Nonlinear function)

Let A,B be finite abelian groups, written additively, of the same
cardinality. We say f : A→ B is a perfect nonlinear (PN) function
iff f (x + a)− f (x) = b has at most one solution for all a ∈ A,
a 6= 0, and all b ∈ B.

The definition implies that f (x + a)− f (x) = b has exactly one
solution, or equivalently, the function f (x + a)− f (x) is bijective,
or equivalently,

f (x + a)− f (x) = f (y + a)− f (y) =⇒ a = 0 or x = y .

PN functions are also called planar functions if A = B = Fq.

Example: f (x) = x2 on a finite field of odd characteristic.
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Definitions

PN functions do not exist in characteristic 2, because if x is a
solution to f (x + a)− f (x) = b then so is x + a /

This is why the following definition is made.

Definition (Almost Perfect Nonlinear function)

Let A,B be finite abelian groups, written additively, of the same
cardinality. We say f : A→ B is an almost perfect nonlinear
(APN) function iff f (x + a)− f (x) = b has at most two solutions
for all a ∈ A, a 6= 0 and all b ∈ B.

Example: f (x) = x3 on any finite field.
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Permutations

Theorem

PN permutations do not exist.

Proof: Let f be a PN function. Choosing b to be 0, for all nonzero
a there must exist a solution to f (x + a)− f (x) = 0. Therefore, f
cannot be a permutation. �

What about APN permutations? Do they exist?
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APN Permutations

It depends on the group.

Big Open Problem: Do APN permutations exist on finite fields
GF (2n) where n is even?
(Remember x3 is bijective iff n is odd)

n = 4 was checked by exhaustive computer search - none found.

Recent News:
On July 14, 2009, at the Fq 9 conference, John Dillon announced
an APN permutation on GF (64)!! (Dillon-Wolfe example)
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Alternative Definition of APN

The binary double-error-correcting BCH code is defined by parity
check matrix

H =

[
1 α α2 · · · α2n−2

1 α3 α6 · · · α3(2n−2)

]

Think of this matrix as having columns labelled by nonzero field
elements, and column x has the form[

x
x3

]
.

This code is cyclic, has minimum distance 5, dimension
2n − 1− 2n.
Definition: A function f : K −→ K is called an APN function if
the binary linear code with parity check matrix having columns[

x
f (x)

]
, x ∈ K ∗

has minimum distance 5, and f (0) = 0.
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Equivalence

An extended APN code has parity check matrix

H =

 1 1 1 · · · 1 1
1 α α2 · · · α2n−2 0
1 f (α) f (α2) · · · f (α2n−2) 0


and has minimum distance 6.

Definition: Two APN functions are said to be (CCZ) equivalent if
their corresponding extended APN codes are equivalent (as binary
codes).
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Known APN Functions

Monomial functions: xd where d is 2k + 1, 4k − 2k + 1, 2r − 2 ,
2(r−1)/2 + 3, 4t + 2t − 1, 24t + 23t + 22t + 2t − 1
Non-monomial APN functions: Sporadic examples, Edel
Kyureghyan Pott, Browning-Dillon et al, Edel-Pott non-quadratic,
Cannon et al.
Infinite families since discovered are:
(due to Budeghyan, Leander, Carlet, Felke, Pott, McGuire, Byrne,
Bracken, Markin,...apologies...)

x2i+1 + ux2k+i+2k(r−1)
(BCFL) (BCL)

ux2−k+2k+s
+ u2k

x2s+1 + vx2k+s+2s
(BBMM)

bx2s+1 + b2k
x2k+s+2k

+ cx2k+1 (BBMM)
x3 + Tr(x9) (BCL)

u2k
x2−k+2k+s

+ ux2s+1 + vx2k+s+2s
(BBMM)

u2k
x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s
(BBMM)
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General Speculation

Could it be that there are a finite number of sporadic APN
functions, and some infinite families ?
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General Speculation

The study of APN functions is a Goldilocks story...

There are not too many APNs, not too few APNs, the number is
just right!

The topic continues to surprise us.
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The Equivalence Problem

If you find an APN function, how do you know it is new?
Proving by hand the equivalence (or inequivalence) of two APN
functions seems to be very difficult.
We have no good theoretical techniques.
Computing code invariants such as the weight distribution,
automorphism group, is not always possible theoretically. Can be
done for small n by computer.

We have been able to compute the weight distribution for all but
one of the infinite families, and they are all the same!

Results:
Bracken-Byrne-Markin-M (2007): x3 + Tr(x9) has same weight
distribution as x3.
Bracken-Byrne-Markin-M (2007): The binomials of Budaghyan,
Carlet, Felke, Leander have same weight distribution as x3.
Bracken-Byrne-Markin-M (2007): The trinomials of BBMM have
same weight distribution as x3.
Proofs involve ranks of bilinear forms and quadratic forms.
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n=12

224 × 224 matrices

Family Function Delta-Rank
Gold x3 7550
Gold x33 7550

Kasami-Welch x993 62550
1 u16x768 + ux33 7816
2 x3 + u7x528 7822
5 x3 + x65 + ux129 + u64x66 + u3x130 + x192 7550
6 x3 + Tr(x9) 7846
7 u16x768 + ux33 + u290x544 7900
8 u16x768 + ux33 + x257 7900
9 u16x768 + ux33 + x257 + u290x544 7900
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Equivalence Results

First - all the infinite families have been confirmed to be pairwise
inequivalent by computer. Not proved by hand generally.

Second - we have one recent theoretical result.

Theorem (Bracken-Byrne-M-Nebe)

The APN trinomial functions

bx2s+1 + b2k
x2k+s+2k

+ cx2k+1

are not equivalent to Gold functions.

Proof uses the automorphism groups of both codes.
Now I’ll give more details.
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Equivalence Results

Conjecture (Edel)

If two quadratic APN functions are CCZ equivalent, then they are
EA equivalent.

Theorem (Bracken-Byrne-M-Nebe)

True if one of the functions is a Gold function.
In other words, if a quadratic APN function is CCZ equivalent to a
Gold function, then it is EA equivalent to that Gold function.

This is proved for some functions “directly” in some papers (e.g.
Budaghyan Carlet Leander binomials).
Our proof uses the fact that we know the exact automorphism
group of the Gold codes (Berger, and classification of finite simple
groups), and any quadratic APN function has the additive group of
the field in its automorphism group.
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Equivalence Results

Sketch of Proof:
Let E be the additive group of the field K = GF (2n).
Show that normalizer of E in Sym(2n) is A = E · GLn(F2).
Use (Cannon-Nebe)

Theorem

A acts on {Cf | f : K → K}. Functions f and g are EA equivalent
functions if and only if the codes Cf and Cg are in the same
A-orbit.

Use uniqueness of E as subgroup of

G := Aut(Cg ) ∼= (K ,+) : K ∗ : Gal(K/F2).

(g is Gold function)
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Equivalence Results

If f and h are CCZ-equivalent, there is π ∈ Sym(2n) such that
π(Cf ) = Ch.
The subgroup E ≤ Aut(Cf ) is hence conjugated to
πEπ−1 ≤ Aut(Ch).
By uniqueness of E this implies that π normalizes E , and hence
π ∈ Normalizer(E ) = A.
This means that the two functions are EA-equivalent.

Gary McGuire Recent developments on APN functions and related topics



Equivalence Results

More generally

Theorem

Let h be a quadratic APN-function such that Aut(Ch) is
isomorphic to a subgroup of G. Then all quadratic APN-functions
that are CCZ equivalent to h are indeed EA equivalent to h.

This method will not generalize completely, because there are
functions whose automorphism group is not contained in G.

h1 := x3 + x5 + u62x9 + u3x10 + x18 + u3x20 + u3x34 + x40

Then h1 is APN on GF (26) and |Aut(Ch1)| = 26.5, which is not a
divisor of 26(26 − 1)6. (Dillon)
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APN Permutations

The Dillon-Wolfe example is very exciting.
Where did it come from ...

Theorem (Browning-Dillon-Kibler-McQuistan (2007))

The following are equivalent.

1. f is CCZ equivalent to an APN permutation

2.C⊥f is an extended double simplex code of dimension 6

So to find an APN permutation we want to write C⊥f = W1 ⊕W2

where each Wi is a simplex code.
This paper told us how to find APN permutations...
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Classification Result

Call d exceptional if xd is APN on infinitely many extensions of
F2. (Dillon)

Conjecture: the only exceptional exponents d are Gold and
Kasami-Welch.

Building on work of van Lint, Wilson, Janwa, McGuire, Jedlicka,
we have a proof:

Theorem (M, Fernando Hernando)

The conjecture is true.

Proof uses Weil bound.

Conjecture: The Gold and Kasami-Welch are the only APN
functions which are APN on infinitely many extensions of their
field of definition.
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Definitions

Definition (Costas permutation)

Let [n] = {0, . . . , n − 1}, considered as a subset of Z, and let
f : [n]→ [n] be a permutation. We say that f is a Costas
permutation iff

f (i + k)− f (i) = f (j + k)− f (j) =⇒ k = 0 or i = j

for all i , j , k ∈ [n] such that i + k , j + k ∈ [n].

Note that the implication is not required to hold if one of
i , j , k , i + k, j + k is outside the set [n].

The similarity between this definition and the definition of a PN
function motivated the paper
”APN Permutations on Zn and Costas Arrays” Konstantinos
Drakakis, Rod Gow, Gary McGuire, accepted Discrete Applied
Mathematics.

Gary McGuire Recent developments on APN functions and related topics



Definitions

Definition (Costas permutation)

Let [n] = {0, . . . , n − 1}, considered as a subset of Z, and let
f : [n]→ [n] be a permutation. We say that f is a Costas
permutation iff

f (i + k)− f (i) = f (j + k)− f (j) =⇒ k = 0 or i = j

for all i , j , k ∈ [n] such that i + k , j + k ∈ [n].

Note that the implication is not required to hold if one of
i , j , k , i + k, j + k is outside the set [n].

The similarity between this definition and the definition of a PN
function motivated the paper
”APN Permutations on Zn and Costas Arrays” Konstantinos
Drakakis, Rod Gow, Gary McGuire, accepted Discrete Applied
Mathematics.

Gary McGuire Recent developments on APN functions and related topics



Exponential Welch construction

Let Zp be the finite field of prime order p, p > 2, and let g be a
primitive root of Zp.

Consider the function f : Zp−1 → Zp defined by the formula

f (i) = g i .

The values of f lie in Zp \ {0}.
In order to get a (bijective) function from [p − 1] to [p − 1], we
subtract 1 from the values of f . Denote the resulting function by f
again.Finally, consider f as a function f : Zp−1 → Zp−1.
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Exponential Welch construction

Example
Let p = 7, and we will use g = 3 as our primitive element, so
f (i) = 3i . The sequence 3i modulo 7, i = 0, 1, . . . , 5, is

1, 3, 2, 6, 4, 5.

Subtracting 1 gives
0, 2, 1, 5, 3, 4

which we now consider as elements of Z6.
The periodic differences f (i + 1)− f (i), i = 0, 1, . . . , 5 as integers
are

2,−1, 4,−2, 1,−4.

These differences modulo 6 are

2, 5, 4, 4, 1, 2.

No number appears more than twice, by the APN property.
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APN Permutations

Theorem (Drakakis, Gow, M)

Exponential Welch Costas functions are APN permutations on
Zp−1.

Choosing p = 17 gives an APN permutation on Z16.
(Z16 used e.g. in GOST)
Choosing p = 257 gives an APN permutation on Z256.
(Z256 used e.g. in SAFER)
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Nonlinearity

Another requirement of an S-box is that it be resistant to linear
cryptanalysis. This requires that the function have a high
nonlinearity.
Let f : A −→ B be a function between finite abelian groups.
We use isomorphisms α 7→ χα from A to Â (the group of
characters of A) and β 7→ ψβ from B to B̂.

We define the value of the Fourier transform of f at α ∈ A and
β ∈ B by

f̂ (α, β) =
∑
a∈A

(ψβ ◦ f )(a) χα(a) for all α ∈ A. (1)

We define the linearity of f by

L(f ) = max
α∈A,β∈B∗

|f̂ (α, β)|. (2)
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Nonlinearity

In the special but important for us case where A = B = Zm, the
characters are the functions χj : Zm → C, j ∈ Zm, where

χj(k) = e
2πijk

m , with k ∈ Zm.

It follows then from (1) that

f̂ (α, β) =
∑
x∈Zm

e
2πi
m

(βf (x)+αx). (3)

Recall
L(f ) = max

α∈A,β∈B∗
|f̂ (α, β)|. (4)
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Nonlinearity

Theorem

If f : Zm → Zm then
√

m ≤ L(f ) ≤ m.

(This follows from Parseval’s identity.)
We want functions with small linearity (highly nonlinear).

Question: what is the linearity of the Exponential Welch Costas
permutations?

”On the Nonlinearity of Exponential Welch Costas Functions,”
Konstantinos Drakakis, Verónica Requena, Gary McGuire, accepted
IEEE Transactions Info. Theory.
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Nonlinearity of EWC Functions

We proved that the linearity is independent of the primitive root.

We computed the linearity of EWC functions for all primes up to
2,000. The results suggest the following conjecture:

Conjecture

A pair (α, β) that maximizes |f̂ (α, β)| always satisfies the
condition that either α = n

2 or β = n
2 .

(n = p − 1)
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Simulations
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Linearity
Approximation by 2p0.55

This assumes the conjecture.
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Nonlinearity of EWC Functions

There are 40 primes less than 50,000 where the maximum occurs
at a pair with both α = n

2 and β = n
2 , namely 3, 11, 59, 131, 251,

419, 971, 1091, 1811, 1979, 2939, 3251, 4091, 4259, 5099, 6299,
6971, 8291, 8819, 9539, 10139, 10331, 11171, 12011, 12899,
13859, and 19379, 20411, 22571, 23099, 26171, 27011, 28019,
28859, 31379, 31391, 41051, 48179, 48611, 49451

We relate this to the class number h(−p) on the next slide, and
this relation potentially implies that the linearity of EWC functions
is a rather complicated quantity. Also we have:

Theorem (Drakakis, Gow, M)

Let f be an EWC function; then, f̂ (α, β) = 0 if β = (p − 1)/2 and
α is even.
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Nonlinearity of EWC Functions

Theorem (Drakakis, Requena, M)

Let f be an EWC function. Then

∣∣∣∣f̂ (p − 1

2
,
p − 1

2

)∣∣∣∣ =


0, if p ≡ 1 mod 4;

2h(−p), if p ≡ 7 mod 8;

6h(−p), if p ≡ 3 mod 8.

Proof uses a result from Drakakis-Gow-Rickard, ”Parity properties
of Costas arrays defined via finite fields” In Advances in
Mathematics of Communications.

This value is the actual nonlinearity for the 40 primes previously
mentioned.
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Nonlinearity of EWC Functions

So 6h(−p) is the actual nonlinearity for the following primes up to
50,000.

3, 11, 59, 131, 251, 419, 971, 1091, 1811, 1979, 2939, 3251, 4091,
4259, 5099, 6299, 6971, 8291, 8819, 9539, 10139, 10331, 11171,
12011, 12899, 13859, 19379, 20411, 22571, 23099, 26171, 27011,
28019, 28859, 31379, 31391, 41051, 48179, 48611, 49451

If you can see a pattern, let me know!
It would be interesting to know if there are infinitely many such
primes. Asymptotics of h(−p) compared to 2p0.55 might be
relevant here.
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