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ERROR CORRECTING CODES: MOTIVATION

Without Coding Theory:

Message
Noisy Channel
−−−−−−−−−−−→ received message

0 → 0
0  1



ERROR CORRECTING CODES: MOTIVATION

With coding theory:

Message : NO = 0

↓ Encoding
Codeword : 000

↓ Noisy Channel

 
Vector : 010

↓ Decoding
Decoded message : 010 ∼= 000 = NO.
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ERROR CORRECTING CODES: DEFINITIONS

I A linear code of length n and dimension k , over the
alphabet Fq, is a k -dimensional subspace C of V (n, q).

I Codeword: vector of C.
I A linear [n, k , d ]-code C can be defined

I by a generator matrix G of the subspace C
(G : k × n-matrix)

I by a parity check matrix H: x ∈ C ⇐⇒ x .HT = 0.
(H : (n − k)× n-matrix)

I Encoding: Message: Vector v of V (k , q) 7→ v .G: codeword
in V (n, q).
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ERROR CORRECTING CODES: DEFINITIONS

I (Hamming) distance d(c, c′): Number of positions in which
the codewords c and c′ differ .

I Minimum distance d(C): min{d(c, c′)|c 6= c′ ∈ C}.

I Weight of c: Number of non-zero positions in c = d(c, 0).
I Minimum weight of C: min{wt(c)|c 6= 0 ∈ C}.
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PROPERTIES OF A LINEAR ERROR-CORRECTING CODE

EASY TO CHECK
For a linear code C:

I Minimum weight of C=minimum distance of C.
I Minimum distance determines the number of errors that

can be corrected (by using nearest-neighbour-decoding).



THE DUAL CODE

The dual code C⊥ of C:
Set of vectors v with v .c = 0 for all c ∈ C.

Parity check matrix of C=generator matrix of C⊥ and vice versa.
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PROJECTIVE SPACES

NOTATION
V : Vector space
PG(V ): Corresponding projective space.



FROM VECTOR SPACE TO PROJECTIVE SPACE



FROM VECTOR SPACE TO PROJECTIVE SPACE

The projective dimension of a projective space is the dimension
of the corresponding vector space minus 1



PROJECTIVE PLANES

Points, lines and three axioms

(a) ∀r 6= s ∃!L (b) ∀L 6= M ∃!r (c) ∃r , s, t , u



PROJECTIVE PLANES OVER A FINITE FIELD

DEFINITION
The order of a projective plane is the number of points on a line
minus 1.

The order of PG(2, q) is q, so a line contains q + 1 points, and
there are q + 1 lines through a point.



EXISTENCE OF A PROJECTIVE PLANE OF ORDER n

PG(2, q) is an example of a projective plane of order q = ph, p
prime.

I Are there projective planes of order n, where n is not a
prime power?



THE EXISTENCE OF A PROJECTIVE PLANE OF ORDER n

THEOREM [BRUCK, CHOWLA, RYSER (1949)]
Let n be the order of a projective plane, where n ≡ 1or 2
mod 4, then n is the sum of two squares.

This theorem rules out projective planes of orders 6 and 14.
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THE EXISTENCE OF A PROJECTIVE PLANE OF ORDER n

Does a projective plane of order 10 exist?

The answer was found using coding theory.
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CODES FROM DESARGUESIAN PROJECTIVE PLANES

I Incidence matrix of PG(2, q):
I rows=lines of PG(2, q)
I columns=points of PG(2, q)
I with entry

aij =

{
1 if point j belongs to line i ,
0 otherwise.

I Generator matrix=incidence matrix of PG(2, q).
I Generated over Fp.

Notation: C1(2, q)
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THE SMALLEST PROJECTIVE PLANE: PG(2, 2)

The projective plane of order 2, the Fano plane, has:
I q + 1 = 2 + 1 = 3 points on a line,
I 3 lines through a point.



CODE OF PG(2, 2)

The incidence matrix of PG(2, 2) is equal to:

A =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


.



The codewords are:

0̄ = 0 0 0 0 0 0 0
1̄ = 1 1 1 1 1 1 1
ā1 = 1 1 0 1 0 0 0
ā2 = 0 1 1 0 1 0 0
ā3 = 0 0 1 1 0 1 0
ā4 = 0 0 0 1 1 0 1
ā5 = 1 0 0 0 1 1 0
ā6 = 0 1 0 0 0 1 1
ā7 = 1 0 1 0 0 0 1
b̄1 = 0 0 1 0 1 1 1
b̄2 = 1 0 0 1 0 1 1
b̄3 = 1 1 0 0 1 0 1
b̄4 = 1 1 1 0 0 1 0
b̄5 = 0 1 1 1 0 0 1
b̄6 = 1 0 1 1 1 0 0
b̄7 = 0 1 0 1 1 1 0



A GAP IN THE WEIGHT ENUMERATOR

Incidence vector of a line:
codeword of weight q + 1.

Difference of the incidence vectors of two lines:
codeword of weight 2q.

I We exclude all codewords with weight in

]q + 1, 2q[

in the code C1(2, q) of points and lines of PG(2, q),
using blocking sets in PG(2, q).
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BLOCKING SETS IN PG(2, q)

DEFINITION
A blocking set of PG(2, q) is a set B of points such that every
line contains at least one of the points of B. (The set B ’blocks’
all lines of the projective plane.)

DEFINITIONS
Minimal blocking set B: B has no proper subset that is still a
blocking set.
Small blocking set B: |B| < 3(q + 1)/2.
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THE LINK WITH BLOCKING SETS

THEOREM [LAVRAUW, STORME, VDV (2008)]
A codeword c ∈ C1(2, q) with weight < 2q defines a small
minimal blocking set.

i.e: the set of non-zero positions in the codeword c corresponds
to a set of points in PG(2, q) forming a blocking set.
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COROLLARIES OF THE LINK WITH BLOCKING SETS

THEOREM [BOSE, BURTON (1966)]
If B is a blocking set in PG(2, q), then |B| ≥ q + 1 and
|B| = q + 1 iff B is a line.

COROLLARY
The minimum weight of C1(2, q) is q + 1 and the minimum
weight vectors correspond to the incidence vectors of lines.
This result was first obtained by Assmus and Key.
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COROLLARIES OF THE LINK WITH BLOCKING SETS

THEOREM [A. BLOKHUIS (1994)]
A small minimal blocking set in PG(2, p), p prime, is a line.

COROLLARY
There are no codewords in C1(2, p), p prime, with weight in
]p + 1, 2p[.
This result was already obtained by Chouinard and by McGuire
and Ward for ]p + 1, 3(p + 1)/2[.
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THE LINK WITH BLOCKING SETS CONTINUED

We can prove more:

THEOREM [LAVRAUW, STORME, SZIKLAI, VDV (2009)]
A codeword c ∈ C1(2, q) with weight < 2q defines a small
minimal blocking set, intersecting every other small minimal
blocking set in 1 mod p points.



RESULTS FOR C1(2, q), q A PRIME POWER
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As a corollary:
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EXTENSIONS TO LARGER DIMENSIONS

Ck (n, q): Generated by the incidence matrix of points and
k -spaces in PG(n, q).

Similar results:
I M. Lavrauw, L. Storme, G. VdV: On the code generated by

the incidence matrix of points and k -spaces in PG(n, q)
and its dual.
Finite Fields Appl. 20 (2008), 1020–1038.

I M. Lavrauw, L. Storme, P. Sziklai, G. VdV: An empty
interval in the spectrum of small weight codewords in the
code from points and k -spaces of PG(n, q).
J. Combin. Theory Ser. A 116 (2009), 996–1001.
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RECENT IMPROVEMENT

THEOREM [A. GÁCS, T. SZŐNYI, ZS. WEINER (20??)]
A codeword c in C1(2, q), q = ph, with weight smaller than
q
√

q + 1 is a linear combination of at most dwt(c)
q+1 e lines, when q

is large and h > 2.



BACK TO THE AXIOMATIC PROJECTIVE PLANES

The incidence matrix A of a projective plane of order n satisfies:

A.AT = n.I + J = AT .A,

with J the all-one matrix.

THE BRUCK-CHOWLA-RYSER THEOREM
They proved that: if an (n2 + n + 1)× (n2 + n + 1)-matrix A
satifies this condition and if n ≡ 1 or 2 mod 4, then n is the
sum of two squares.



THE PROJECTIVE PLANE OF ORDER 10

METHOD

I Lam, Swierz and Thiel studied the binary code generated
by the incidence matrix of a putative plane of order 10.

I Weight enumerator is determined by the number Ai of
codewords with weight i , for i = 12, 15, 16.

I A (lengthy!) computer calculation shows that
A12 = A15 = A16 = 0.

I There is no projective plane of order 10.
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QUADRICS: DEFINITION

Every homogeneous quadratic polynomial f (X0, . . . , XN) in
N + 1 variables defines a quadric Q(N, q) of PG(N, q).

There are 3 kinds of non-singular quadrics:
I Elliptic quadrics Q−(2n + 1, q): equivalent to

X0X1 + · · ·+ X2n−2X2n−1 + f (X2n, X2n+1) = 0 where f is an
irreducible homogeneous polynomial of degree 2.

I Hyperbolic quadrics Q+(2n + 1, q): equivalent to
X0X1 + · · ·+ X2n−2X2n−1 + X2nX2n+1 = 0.

I Parabolic quadrics Q(2n, q): equivalent to
X0X1 + · · ·+ X2n−2X2n−1 + X 2

2n = 0.
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GENERATORS

We denote the largest dimensional spaces contained in a
quadric by the generators.
Quadric dimension generator
Q−(2n + 1, q) n − 1
Q(2n, q) n − 1
Q+(2n + 1, q) n



BLOCKING SETS AND OVOIDS OF QUADRICS

Blocking set of Q: set of points meeting every generator.
Ovoid of Q: set of points meeting every generator in exactly
one point.



OVOIDS OF A HYPERBOLIC QUADRIC

I The number of points on a hyperbolic quadric is
(qn + 1)(qn+1 − 1)/(q − 1).

I The size of an ovoid of Q+(2n + 1, q) is qn + 1.

DO OVOIDS OF A HYPERBOLIC QUADRIC EXIST?

I Q+(3, q): 3

I Q+(5, q): 3

I Q+(7, q), q even or q = 0 or 2 mod 3: 3

I Q+(2n + 1, 2), n ≥ 4: 7

I Q+(2n + 1, 3), n ≥ 4: 7

I What about the other cases?

The non-existence of ovoids in some particular hyperbolic
quadrics was shown using ideas from coding theory.
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A PARTITION OF THE INCIDENCE MATRIX OF POINTS

AND HYPERPLANES

Points of Q+(2n + 1, q): P1, . . . , Ps.
Other points of PG(2n + 1, q): Ps+1, . . . , Pm.

Tangent hyperplane at Pi : Hi .
Other hyperplanes: Hs+1, . . . , Hn.
Incidence matrix:

A =

(
A11 A12
A21 A22

)
.

CONDITION FOR THE EXISTENCE OF AN OVOID OF
Q+(2n + 1, q)

p-rank A11 ≥ qn + 1.
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Q+(2n + 1, q)

p-rank A11 ≥ qn + 1.



THE EXISTENCE OF AN OVOID OF Q+(2n + 1, q)

p-rank A= dimension of the code of points and hyperplanes in
PG(n, q) (known).

p-rank A11 can be calculated in a similar way

p-rank A11 ≥ qn + 1 gives a contradiction in some cases.

THEOREM [A. BLOKHUIS, E. MOORHOUSE (1995)]
There are no ovoids in
Q+(9, 2e),Q+(9, 3e),Q+(11, 5e),Q+(11, 7e).
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THE CODE OF POINTS AND LINES OF Q(4, q)

C(Q(4, q)): code generated by incidence matrix of points and
lines of Q(4, q).

C(Q(4, q)): subcode of C1(4, q) → e.g. no codewords with
weight in ]q + 1, 2q[ if q is prime.
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THE DUAL CODE C(Q(4, q))⊥

Codeword c of C(Q(4, q))⊥, q even, corresponds to a set S of
points such that every line contains an even number of points of
S.

CODEWORDS OF MINIMUM WEIGHT
Trivial lower bound: d ≥ q + 2.

THEOREM [J.L. KIM, K. MELLINGER, L. STORME (2007)]
Let c ∈ C(Q(4, q))⊥:

I wt(c) ≥ 2q + 2 if q is even (sharp)

I wt(c) ≥ (q+1)
√

q
2 if q is odd.
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CODEWORDS OF LARGE WEIGHT

Codeword c of C(Q(4, q))⊥, q even, corresponds to a set S of
points such that every line contains an even number of points of
S.
A line of Q(4, q), q even, contains an odd number of points of
Q(4, q).

OBSERVATION
The complement of a codeword c of C(Q(4, q))⊥, q even,
determines a set S of points such that every line of Q(4, q)
contains an odd number of points of S.

COROLLARY
The complement of a codeword of C(Q(4, q))⊥, q even, is a
blocking set of Q(4, q).
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CODEWORDS OF LARGE WEIGHT

NOTATION: B= COMPLEMENT OF A CODEWORD c

If every line contains exactly one point of B: B is an ovoid of
Q(4, q). Ovoids of Q(4, q) have q2 + 1 points.

LEMMA [V. PEPE, L. STORME, G. VDV (20??)]
Let c be a codeword of C(Q(4, q))⊥, q even. Then
wt(c) ≤ q3 + q and wt(c) = q3 + q iff B is an ovoid.

THEOREM [V. PEPE, L. STORME, G. VDV (20??)]
A blocking set B of Q(4, q), q even, with |B| ≤ q2 + q/6, always
contains an ovoid.
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A GAP IN THE WEIGHT ENUMERATOR OF C(Q(4, q))⊥

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]
There are no codewords in C(Q(4, q))⊥ with weight in
[q3 + 5q/6, q3 + q[.

PROOF.
I c: codeword with weight ≥ q3 + 5q/6.
I B: blocking set of size ≤ q2 + q/6
I B′: ovoid contained in B
I c′: vector such that complement of c′ is B′

I c′= codeword!
I c − c′ codeword with weight ≤ q/6 < 2q + 2
I c = c′ ⇒ wt(c) = q3 + q.
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DEFINITION

DEFINITION
Consider a non-singular quadric Q of PG(N, q). Let
Q = {P1, . . . , Pn}. Let F be the set of all homogeneous
quadratic polynomials f (X0, . . . , XN) defined by N + 1 variables.
The functional code C2(Q) is the linear code

C2(Q) = {(f (P1), . . . , f (Pn))||f ∈ F ∪ {0}}.

n = |Q|,

k =

(
N + 2

2

)
− 1,

d =?
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THE MINIMUM WEIGHT

A codeword of small weight:
I codeword with many zeros
I quadric having a large intersection with Q.



RESULTS

THEOREM [F. EDOUKOU (2007)]
Minimum weight codewords for C2(Q) in PG(3, q) and PG(4, q)
correspond to singular quadrics consisting of two hyperplanes.

THEOREM [F. EDOUKOU, A. HALLEZ, F. RODIER, L.
STORME (20??)]

I Minimum weight codewords for C2(Q) in PG(N, q)
correspond to a singular quadric consisting of two
hyperplanes.

I Codewords of small weight: determination of the
possibilities for the intersection of quadrics with a set of
two hyperplanes.
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SMALL WEIGHT CODEWORDS IN C2(Q), Q A

HYPERBOLIC QUADRIC Q+(2l + 1, q)

Weight Number of codewords

w1 = q2l − q2l−1 − ql + ql−1 (q3l+q2l )(ql+1−1)
2

w1 + ql − ql−1 (q2l+1−q)(ql+1−1)(ql−1+1)
2(q−1) +

(q3l−1 − ql−1)(ql+2 − q)

w1 + ql (q3l + q2l)(ql+1 − 1)(q − 1)

w1 + 2ql − 2ql−1 q2l+1(ql+1−1)(ql−1)(q−1)
4

w1 + 2ql − ql−1 (q3l−1−ql−1)(ql+1−1)(q2−q)
2

w1 + 2ql (q3l+q2l )(ql+1−1)(q2−3q+2)
4
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