Linear codes arising from geometrical structures

Geertrui Van de Voorde

Academy Contact Forum "Coding Theory and Cryptography III" September 25, 2009 Brussels

OUTLINE

INTRODUCTION

PROJECTIVE SPACES

CODES FROM PROJECTIVE SPACES

CODES AND OVOIDS OF QUADRICS

FUNCTIONAL CODES

OUTLINE

INTRODUCTION

Projective spaces

Codes from projective spaces

Codes and ovoids of quadrics

Functional codes

Without Coding Theory:

Message	Noisy Channel	received message
0	\rightarrow	0
0	~ →	1

With coding theory:

Message : NO = 0

With coding theory:

Message : NO = 0

↓ Encoding

Codeword : 000

With coding theory:

```
Message : NO = 0
```

↓ Encoding

Codeword: 000

↓ Noisy Channel

}

Vector: 010

With coding theory:

```
Message : NO = 0
```

↓ Encoding

Codeword: 000

↓ Noisy Channel

}

Vector : 010

↓ Decoding

Decoded message : $010 \approx 000 = NO$.

▶ A linear code of length n and dimension k, over the alphabet \mathbb{F}_q , is a k-dimensional subspace \mathbb{C} of V(n,q).

- ▶ A linear code of length n and dimension k, over the alphabet \mathbb{F}_q , is a k-dimensional subspace \mathbb{C} of V(n,q).
- ▶ Codeword: vector of C.

- ▶ A linear code of length n and dimension k, over the alphabet \mathbb{F}_q , is a k-dimensional subspace \mathbb{C} of V(n,q).
- Codeword: vector of C.
- ▶ A linear [n, k, d]-code C can be defined
 - by a generator matrix G of the subspace C (G: k × n-matrix)
 - by a parity check matrix $H: x \in C \iff x.H^T = 0.$ $(H: (n-k) \times n\text{-matrix})$

- ▶ A linear code of length n and dimension k, over the alphabet \mathbb{F}_q , is a k-dimensional subspace \mathbb{C} of V(n,q).
- Codeword: vector of C.
- ▶ A linear [n, k, d]-code C can be defined
 - by a generator matrix G of the subspace C (G: k × n-matrix)
 - by a parity check matrix $H: x \in C \iff x.H^T = 0.$ $(H: (n-k) \times n\text{-matrix})$
- ▶ Encoding: Message: Vector v of $V(k, q) \mapsto v.G$: codeword in V(n, q).

- ► (Hamming) distance d(c, c'): Number of positions in which the codewords c and c' differ.
- ▶ Minimum distance d(C): min{ $d(c, c') | c \neq c' \in C$ }.

- ► (Hamming) distance d(c, c'): Number of positions in which the codewords c and c' differ.
- ▶ Minimum distance d(C): min{ $d(c, c') | c \neq c' \in C$ }.
- ▶ Weight of *c*: Number of non-zero positions in c = d(c, 0).
- ▶ Minimum weight of C: $min\{wt(c)|c \neq 0 \in C\}$.

PROPERTIES OF A LINEAR ERROR-CORRECTING CODE

EASY TO CHECK

For a linear code C:

- Minimum weight of C=minimum distance of C.
- Minimum distance determines the number of errors that can be corrected (by using nearest-neighbour-decoding).

THE DUAL CODE

The dual code C^{\perp} of C: Set of vectors v with v.c = 0 for all $c \in C$.

THE DUAL CODE

The dual code C^{\perp} of C:

Set of vectors v with v.c = 0 for all $c \in C$.

Parity check matrix of C=generator matrix of C^{\perp} and vice versa.

OUTLINE

Introduction

PROJECTIVE SPACES

Codes from projective spaces

Codes and ovoids of quadrics

Functional codes

PROJECTIVE SPACES

NOTATION

V: Vector space

PG(V): Corresponding projective space.

FROM VECTOR SPACE TO PROJECTIVE SPACE

FROM VECTOR SPACE TO PROJECTIVE SPACE

The projective dimension of a projective space is the dimension of the corresponding vector space minus 1

PROJECTIVE PLANES

Points, lines and three axioms

PROJECTIVE PLANES OVER A FINITE FIELD

DEFINITION

The order of a projective plane is the number of points on a line minus 1.

The order of PG(2, q) is q, so a line contains q+1 points, and there are q+1 lines through a point.

PG(2, q) is an example of a projective plane of order $q = p^h$, p prime.

► Are there projective planes of order *n*, where *n* is not a prime power?

THEOREM [BRUCK, CHOWLA, RYSER (1949)]

Let *n* be the order of a projective plane, where $n \equiv 1$ or 2 mod 4, then *n* is the sum of two squares.

THEOREM [BRUCK, CHOWLA, RYSER (1949)]

Let *n* be the order of a projective plane, where $n \equiv 1$ or 2 mod 4, then *n* is the sum of two squares.

This theorem rules out projective planes of orders 6 and 14.

Does a projective plane of order 10 exist?

Does a projective plane of order 10 exist?

The answer was found using coding theory.

OUTLINE

Introduction

Projective spaces

CODES FROM PROJECTIVE SPACES

Codes and ovoids of quadrics

Functional codes

CODES FROM DESARGUESIAN PROJECTIVE PLANES

- ▶ Incidence matrix of PG(2, q):
 - rows=lines of PG(2, q)
 - columns=points of PG(2, q)
 - with entry

$$a_{ij} = \begin{cases} 1 & \text{if point } j \text{ belongs to line } i, \\ 0 & \text{otherwise.} \end{cases}$$

CODES FROM DESARGUESIAN PROJECTIVE PLANES

- ▶ Incidence matrix of PG(2, q):
 - ▶ rows=lines of PG(2, q)
 - ► columns=points of PG(2, q)
 - with entry

$$a_{ij} = \begin{cases} 1 & \text{if point } j \text{ belongs to line } i, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ Generator matrix=incidence matrix of PG(2, q).
- ▶ Generated over \mathbb{F}_p .

Notation: $C_1(2, q)$

The smallest projective plane: PG(2,2)

The projective plane of order 2, the Fano plane, has:

- p q + 1 = 2 + 1 = 3 points on a line,
- 3 lines through a point.

Code of PG(2,2)

The incidence matrix of PG(2,2) is equal to:

ō	=	0	0	0	0	0	0	0
ī	=	1	1	1	1	1	1	1
$ar{a_1}$	=	1	1	0	1	0	0	0
$ar{a_2}$	=	0	1	1	0	1	0	0
ā2 ā3 ā4 ā5 ā6 ā7 b1 b2 b3 b4 b5 b6 b7	=	0	0	1	1	0	1	0
$ar{a_4}$	=	0	0	0	1	1	0	1
$ar{a_5}$	=	1	0	0	0	1	1	0
$ar{a_6}$	=	0	1	0	0	0	1	1
$ar{a_7}$	=	1	0	1	0	0	0	1
$ar{b_1}$	=	0	0	1	0	1	1	1
$\bar{b_2}$	=	1	0	0	1	0	1	1
$\bar{b_3}$	=	1	1	0	0	1	0	1
$\bar{b_4}$	=	1	1	1	0	0	1	0
$\bar{b_5}$	=	0	1	1	1	0	0	1
$\bar{b_6}$	=	1	0	1	1	1	0	0
$\bar{b_7}$	=	0	1	0	1	1	1	0

The codewords are:

A GAP IN THE WEIGHT ENUMERATOR

Incidence vector of a line: codeword of weight q + 1.

Difference of the incidence vectors of two lines: codeword of weight 2q.

A GAP IN THE WEIGHT ENUMERATOR

Incidence vector of a line: codeword of weight q + 1.

Difference of the incidence vectors of two lines: codeword of weight 2q.

We exclude all codewords with weight in

$$]q+1,2q[$$

in the code $C_1(2, q)$ of points and lines of PG(2, q), using blocking sets in PG(2, q).

BLOCKING SETS IN PG(2, q)

DEFINITION

A blocking set of PG(2, q) is a set B of points such that every line contains at least one of the points of B. (The set B 'blocks' all lines of the projective plane.)

BLOCKING SETS IN PG(2, q)

DEFINITION

A blocking set of PG(2, q) is a set B of points such that every line contains at least one of the points of B. (The set B 'blocks' all lines of the projective plane.)

DEFINITIONS

Minimal blocking set *B*: *B* has no proper subset that is still a blocking set.

BLOCKING SETS IN PG(2, q)

DEFINITION

A blocking set of PG(2, q) is a set B of points such that every line contains at least one of the points of B. (The set B 'blocks' all lines of the projective plane.)

DEFINITIONS

Minimal blocking set *B*: *B* has no proper subset that is still a blocking set.

Small blocking set B: |B| < 3(q+1)/2.

THE LINK WITH BLOCKING SETS

THEOREM [LAVRAUW, STORME, VDV (2008)] A codeword $c \in C_1(2,q)$ with weight < 2q defines a small minimal blocking set.

THE LINK WITH BLOCKING SETS

THEOREM [LAVRAUW, STORME, VDV (2008)]

A codeword $c \in C_1(2, q)$ with weight < 2q defines a small minimal blocking set.

i.e: the set of non-zero positions in the codeword c corresponds to a set of points in PG(2, q) forming a blocking set.

THEOREM [BOSE, BURTON (1966)]

If *B* is a blocking set in PG(2, q), then $|B| \ge q + 1$ and |B| = q + 1 iff *B* is a line.

THEOREM [BOSE, BURTON (1966)]

If *B* is a blocking set in PG(2, q), then $|B| \ge q + 1$ and |B| = q + 1 iff *B* is a line.

COROLLARY

The minimum weight of $C_1(2, q)$ is q + 1 and the minimum weight vectors correspond to the incidence vectors of lines.

THEOREM [BOSE, BURTON (1966)]

If *B* is a blocking set in PG(2, q), then $|B| \ge q + 1$ and |B| = q + 1 iff *B* is a line.

COROLLARY

The minimum weight of $C_1(2, q)$ is q + 1 and the minimum weight vectors correspond to the incidence vectors of lines.

This result was first obtained by Assmus and Key.

THEOREM [A. BLOKHUIS (1994)]

A small minimal blocking set in PG(2, p), p prime, is a line.

THEOREM [A. BLOKHUIS (1994)]

A small minimal blocking set in PG(2, p), p prime, is a line.

COROLLARY

There are no codewords in $C_1(2, p)$, p prime, with weight in]p+1, 2p[.

This result was already obtained by Chouinard and by McGuire and Ward for]p + 1, 3(p + 1)/2[.

THE LINK WITH BLOCKING SETS CONTINUED

We can prove more:

THEOREM [LAVRAUW, STORME, SZIKLAI, VDV (2009)]
A codeword $c \in C_1(2, \alpha)$ with weight $< 2\alpha$ defines a small

A codeword $c \in C_1(2, q)$ with weight < 2q defines a small minimal blocking set, intersecting every other small minimal blocking set in 1 mod p points.

RESULTS FOR $C_1(2, q)$, q A PRIME POWER

THEOREM [LAVRAUW, STORME, SZIKLAI, VDV (2009)] A small minimal blocking set, intersecting every other small minimal blocking set in 1 mod p points, is a line.

RESULTS FOR $C_1(2, q)$, q A PRIME POWER

THEOREM [LAVRAUW, STORME, SZIKLAI, VDV (2009)]

A small minimal blocking set, intersecting every other small minimal blocking set in 1 mod *p* points, is a line.

As a corollary:

THEOREM [LAVRAUW, STORME, SZIKLAI, VDV(2009)]

There are no codewords in $C_1(2, q)$, with weight in]q + 1, 2q[.

EXTENSIONS TO LARGER DIMENSIONS

 $C_k(n, q)$: Generated by the incidence matrix of points and k-spaces in PG(n, q).

EXTENSIONS TO LARGER DIMENSIONS

 $C_k(n, q)$: Generated by the incidence matrix of points and k-spaces in PG(n, q).

Similar results:

- ▶ M. Lavrauw, L. Storme, G. VdV: On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual.
 - Finite Fields Appl. 20 (2008), 1020-1038.
- M. Lavrauw, L. Storme, P. Sziklai, G. VdV: An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of PG(n, q).
 Combin. Theory Ser. A 116 (2000), 206, 1001.
 - J. Combin. Theory Ser. A 116 (2009), 996–1001.

RECENT IMPROVEMENT

THEOREM [A. GÁCS, T. SZŐNYI, ZS. WEINER (20??)]

A codeword c in $C_1(2, q)$, $q = p^h$, with weight smaller than $q\sqrt{q} + 1$ is a linear combination of at most $\lceil \frac{wt(c)}{q+1} \rceil$ lines, when q is large and h > 2.

BACK TO THE AXIOMATIC PROJECTIVE PLANES

The incidence matrix *A* of a projective plane of order *n* satisfies:

$$A.A^T = n.I + J = A^T.A$$

with J the all-one matrix.

THE BRUCK-CHOWLA-RYSER THEOREM

They proved that: if an $(n^2 + n + 1) \times (n^2 + n + 1)$ -matrix A satisfies this condition and if $n \equiv 1$ or $2 \mod 4$, then n is the sum of two squares.

METHOD

▶ Lam, Swierz and Thiel studied the binary code generated by the incidence matrix of a putative plane of order 10.

METHOD

- ▶ Lam, Swierz and Thiel studied the binary code generated by the incidence matrix of a putative plane of order 10.
- ▶ Weight enumerator is determined by the number A_i of codewords with weight i, for i = 12, 15, 16.

METHOD

- ▶ Lam, Swierz and Thiel studied the binary code generated by the incidence matrix of a putative plane of order 10.
- ▶ Weight enumerator is determined by the number A_i of codewords with weight i, for i = 12, 15, 16.
- A (lengthy!) computer calculation shows that $A_{12} = A_{15} = A_{16} = 0$.

METHOD

- ▶ Lam, Swierz and Thiel studied the binary code generated by the incidence matrix of a putative plane of order 10.
- ▶ Weight enumerator is determined by the number A_i of codewords with weight i, for i = 12, 15, 16.
- A (lengthy!) computer calculation shows that $A_{12} = A_{15} = A_{16} = 0$.
- There is no projective plane of order 10.

OUTLINE

Introduction

Projective spaces

Codes from projective spaces

CODES AND OVOIDS OF QUADRICS

Functional codes

QUADRICS: DEFINITION

Every homogeneous quadratic polynomial $f(X_0, ..., X_N)$ in N+1 variables defines a quadric Q(N, q) of PG(N, q).

QUADRICS: DEFINITION

Every homogeneous quadratic polynomial $f(X_0, ..., X_N)$ in N+1 variables defines a quadric Q(N,q) of PG(N,q).

There are 3 kinds of non-singular quadrics:

- ▶ Elliptic quadrics $Q^-(2n+1,q)$: equivalent to $X_0X_1 + \cdots + X_{2n-2}X_{2n-1} + f(X_{2n}, X_{2n+1}) = 0$ where f is an irreducible homogeneous polynomial of degree 2.
- ► Hyperbolic quadrics $Q^+(2n+1,q)$: equivalent to $X_0X_1 + \cdots + X_{2n-2}X_{2n-1} + X_{2n}X_{2n+1} = 0$.
- ▶ Parabolic quadrics Q(2n, q): equivalent to $X_0X_1 + \cdots + X_{2n-2}X_{2n-1} + X_{2n}^2 = 0$.

GENERATORS

We denote the largest dimensional spaces contained in a quadric by the *generators*.

Quadric	dimension generator
$Q^-(2n+1,q)$	<i>n</i> − 1
Q(2n,q)	<i>n</i> − 1
$Q^+(2n+1,q)$	n

BLOCKING SETS AND OVOIDS OF QUADRICS

Blocking set of Q: set of points meeting every generator. Ovoid of Q: set of points meeting every generator in exactly one point.

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

DO OVOIDS OF A HYPERBOLIC QUADRIC EXIST?

Q⁺(3, q): ✓

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

- ▶ $Q^+(3,q)$: ✓
- ▶ $Q^+(5,q)$: ✓

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

- ▶ Q⁺(3, q): ✓
- ▶ $Q^+(5,q)$: ✓
- ▶ $Q^+(7, q)$, q even or q = 0 or 2 mod 3: ✓

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

- ▶ $Q^+(3,q)$: ✓
- ▶ $Q^+(5,q)$: ✓
- ▶ $Q^+(7,q)$, q even or q = 0 or 2 mod 3: ✓
- ▶ $Q^+(2n+1,2)$, $n \ge 4$: **X**

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

- ▶ $Q^+(3,q)$: ✓
- ▶ $Q^+(5,q)$: ✓
- ▶ $Q^+(7,q)$, q even or q = 0 or 2 mod 3: ✓
- ▶ $Q^+(2n+1,2)$, $n \ge 4$: **X**
- ▶ $Q^+(2n+1,3), n \ge 4$: **X**
- What about the other cases?

- ► The number of points on a hyperbolic quadric is $(q^n + 1)(q^{n+1} 1)/(q 1)$.
- ▶ The size of an ovoid of $Q^+(2n+1,q)$ is q^n+1 .

DO OVOIDS OF A HYPERBOLIC QUADRIC EXIST?

- ▶ Q⁺(3, q): ✓
- ▶ $Q^+(5,q)$: ✓
- ▶ $Q^+(7,q)$, q even or q = 0 or 2 mod 3: ✓
- ▶ $Q^+(2n+1,2)$, $n \ge 4$: **X**
- ▶ $Q^+(2n+1,3), n \ge 4$: **X**
- What about the other cases?

The non-existence of ovoids in some particular hyperbolic quadrics was shown using ideas from coding theory.

A PARTITION OF THE INCIDENCE MATRIX OF POINTS AND HYPERPLANES

```
Points of Q^+(2n+1,q): P_1, \ldots, P_s.
Other points of PG(2n+1,q): P_{s+1}, \ldots, P_m.
```

A PARTITION OF THE INCIDENCE MATRIX OF POINTS AND HYPERPLANES

```
Points of Q^+(2n+1,q): P_1, \ldots, P_s.
Other points of PG(2n+1,q): P_{s+1}, \ldots, P_m.
Tangent hyperplane at P_i: H_i.
Other hyperplanes: H_{s+1}, \ldots, H_n.
```

A PARTITION OF THE INCIDENCE MATRIX OF POINTS AND HYPERPLANES

Points of $Q^+(2n+1,q)$: P_1,\ldots,P_s . Other points of PG(2n+1,q): P_{s+1},\ldots,P_m . Tangent hyperplane at P_i : H_i . Other hyperplanes: H_{s+1},\ldots,H_n . Incidence matrix: $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$

A PARTITION OF THE INCIDENCE MATRIX OF POINTS AND HYPERPLANES

Points of $\mathcal{Q}^+(2n+1,q)$: P_1,\ldots,P_s . Other points of $\operatorname{PG}(2n+1,q)$: P_{s+1},\ldots,P_m . Tangent hyperplane at P_i : H_i . Other hyperplanes: H_{s+1},\ldots,H_n . Incidence matrix: $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$

Condition for the existence of an ovoid of $\mathcal{Q}^+(2n+1,q)$ p-rank $A_{11} \geq q^n+1$.

The existence of an ovoid of $Q^+(2n+1,q)$

p-rank A= dimension of the code of points and hyperplanes in PG(n, q) (known).

The existence of an ovoid of $Q^+(2n+1,q)$

p-rank A= dimension of the code of points and hyperplanes in PG(n, q) (known).

p-rank A₁₁ can be calculated in a similar way

The existence of an ovoid of $Q^+(2n+1,q)$

p-rank A= dimension of the code of points and hyperplanes in PG(n, q) (known).

p-rank A_{11} can be calculated in a similar way

p-rank $A_{11} \ge q^n + 1$ gives a contradiction in some cases.

Theorem [A. Blokhuis, E. Moorhouse (1995)]

There are no ovoids in

$$\mathcal{Q}^{+}(9,2^{e}), \mathcal{Q}^{+}(9,3^{e}), \mathcal{Q}^{+}(11,5^{e}), \mathcal{Q}^{+}(11,7^{e}).$$

The code of points and lines of $\mathcal{Q}(4,q)$

C(Q(4,q)): code generated by incidence matrix of points and lines of Q(4,q).

The code of points and lines of Q(4,q)

C(Q(4,q)): code generated by incidence matrix of points and lines of Q(4,q).

 $C(\mathcal{Q}(4,q))$: subcode of $C_1(4,q) \to e.g.$ no codewords with weight in]q+1,2q[if q is prime.

THE DUAL CODE $C(\mathcal{Q}(4,q))^{\perp}$

Codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, corresponds to a set S of points such that every line contains an even number of points of S.

The dual code $C(\mathcal{Q}(4,q))^{\perp}$

Codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, corresponds to a set S of points such that every line contains an even number of points of S.

CODEWORDS OF MINIMUM WEIGHT

Trivial lower bound: $d \ge q + 2$.

THEOREM [J.L. KIM, K. MELLINGER, L. STORME (2007)] Let $c \in C(\mathcal{Q}(4,q))^{\perp}$:

- $wt(c) \ge 2q + 2$ if q is even (sharp)
- $wt(c) \ge \frac{(q+1)\sqrt{q}}{2}$ if q is odd.

Codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, corresponds to a set S of points such that every line contains an even number of points of S.

A line of Q(4, q), q even, contains an odd number of points of Q(4, q).

Codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, corresponds to a set S of points such that every line contains an even number of points of S.

A line of Q(4, q), q even, contains an odd number of points of Q(4, q).

OBSERVATION

The complement of a codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, determines a set S of points such that every line of $\mathcal{Q}(4,q)$ contains an odd number of points of S.

Codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, corresponds to a set S of points such that every line contains an even number of points of S.

A line of Q(4, q), q even, contains an odd number of points of Q(4, q).

OBSERVATION

The complement of a codeword c of $C(\mathcal{Q}(4,q))^{\perp}$, q even, determines a set S of points such that every line of $\mathcal{Q}(4,q)$ contains an odd number of points of S.

COROLLARY

The complement of a codeword of $C(\mathcal{Q}(4,q))^{\perp}$, q even, is a blocking set of $\mathcal{Q}(4,q)$.

NOTATION: B = COMPLEMENT OF A CODEWORD c

If every line contains exactly one point of B: B is an ovoid of $\mathcal{Q}(4,q)$. Ovoids of $\mathcal{Q}(4,q)$ have q^2+1 points.

NOTATION: B = COMPLEMENT OF A CODEWORD c

If every line contains exactly one point of B: B is an ovoid of $\mathcal{Q}(4,q)$. Ovoids of $\mathcal{Q}(4,q)$ have q^2+1 points.

LEMMA [V. PEPE, L. STORME, G. VDV (20??)] Let c be a codeword of $C(\mathcal{Q}(4,q))^{\perp}$, q even. Then $wt(c) \leq q^3 + q$ and $wt(c) = q^3 + q$ iff B is an ovoid.

NOTATION: B = COMPLEMENT OF A CODEWORD c

If every line contains exactly one point of B: B is an ovoid of $\mathcal{Q}(4,q)$. Ovoids of $\mathcal{Q}(4,q)$ have q^2+1 points.

Lemma [V. Pepe, L. Storme, G. VdV (20??)]

Let c be a codeword of $C(\mathcal{Q}(4,q))^{\perp}$, q even. Then $wt(c) \leq q^3 + q$ and $wt(c) = q^3 + q$ iff B is an ovoid.

Theorem [V. Pepe, L. Storme, G. VdV (20??)]

A blocking set *B* of Q(4, q), *q* even, with $|B| \le q^2 + q/6$, always contains an ovoid.

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)] There are no codewords in $C(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3 + 5q/6, q^3 + q[$.

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)] There are no codewords in $C(Q(4,q))^{\perp}$ with weight in $[q^3 + 5q/6, q^3 + q]$.

PROOF.

• c: codeword with weight $\geq q^3 + 5q/6$.

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ *B*: blocking set of size $\leq q^2 + q/6$

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ B: blocking set of size $\leq q^2 + q/6$
- ▶ B': ovoid contained in B

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ *B*: blocking set of size $\leq q^2 + q/6$
- ▶ B': ovoid contained in B
- c': vector such that complement of c' is B'

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ *B*: blocking set of size $\leq q^2 + q/6$
- ▶ B': ovoid contained in B
- c': vector such that complement of c' is B'
- c'= codeword!

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ *B*: blocking set of size $\leq q^2 + q/6$
- ▶ B': ovoid contained in B
- c': vector such that complement of c' is B'
- ightharpoonup c' = codeword!
- ▶ c c' codeword with weight $\leq q/6 < 2q + 2$

COROLLARY [V. PEPE, L. STORME, G. VDV (20??)]

There are no codewords in $\mathrm{C}(\mathcal{Q}(4,q))^{\perp}$ with weight in $[q^3+5q/6,q^3+q[$.

- c: codeword with weight $\geq q^3 + 5q/6$.
- ▶ *B*: blocking set of size $\leq q^2 + q/6$
- ▶ B': ovoid contained in B
- c': vector such that complement of c' is B'
- ightharpoonup c' = codeword!
- ▶ c c' codeword with weight $\leq q/6 < 2q + 2$
- $c = c' \Rightarrow wt(c) = q^3 + q.$

Similar results:

- ▶ J.L. Kim, K. Mellinger, L. Storme: Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des. Codes Cryptogr. 42 (2007), 73–92.
- V. Pepe, L. Storme, G. Van de Voorde: Small weight codewords in the LDPC codes arising from linear representations of geometries. *J. Combin. Des.* 17 (2009), 1–24.
- V. Pepe, L. Storme, G. Van de Voorde: On codewords in the dual code of classical generalised quadrangles and classical polar spaces. *Discrete Math.*, to appear.

OUTLINE

Introduction

Projective spaces

Codes from projective spaces

Codes and ovoids of quadrics

FUNCTIONAL CODES

DEFINITION

DEFINITION

Consider a non-singular quadric \mathcal{Q} of $\operatorname{PG}(N,q)$. Let $\mathcal{Q} = \{P_1, \dots, P_n\}$. Let \mathcal{F} be the set of all homogeneous quadratic polynomials $f(X_0, \dots, X_N)$ defined by N+1 variables. The functional code $\operatorname{C}_2(\mathcal{Q})$ is the linear code

$$C_2(Q) = \{(f(P_1), \dots, f(P_n)) | | f \in \mathcal{F} \cup \{0\}\}.$$

DEFINITION

DEFINITION

Consider a non-singular quadric \mathcal{Q} of $\operatorname{PG}(N,q)$. Let $\mathcal{Q}=\{P_1,\ldots,P_n\}$. Let \mathcal{F} be the set of all homogeneous quadratic polynomials $f(X_0,\ldots,X_N)$ defined by N+1 variables. The functional code $\operatorname{C}_2(\mathcal{Q})$ is the linear code

$$\mathrm{C}_2(\mathcal{Q}) = \{ (f(P_1), \dots, f(P_n)) | | f \in \mathcal{F} \cup \{0\} \}.$$

$$n = |\mathcal{Q}|,$$
 $k = {N+2 \choose 2} - 1,$
 $d = ?$

THE MINIMUM WEIGHT

A codeword of small weight:

- codeword with many zeros
- quadric having a large intersection with Q.

RESULTS

THEOREM [F. EDOUKOU (2007)]

Minimum weight codewords for $C_2(\mathcal{Q})$ in PG(3, q) and PG(4, q) correspond to singular quadrics consisting of two hyperplanes.

RESULTS

THEOREM [F. EDOUKOU (2007)]

Minimum weight codewords for $C_2(\mathcal{Q})$ in PG(3, q) and PG(4, q) correspond to singular quadrics consisting of two hyperplanes.

THEOREM [F. EDOUKOU, A. HALLEZ, F. RODIER, L. STORME (20??)]

- ▶ Minimum weight codewords for $C_2(Q)$ in PG(N, q) correspond to a singular quadric consisting of two hyperplanes.
- Codewords of small weight: determination of the possibilities for the intersection of quadrics with a set of two hyperplanes.

Small weight codewords in $C_2(Q)$, Q a hyperbolic quadric $Q^+(2l+1,q)$

Weight	Number of codewords
$w_1 = q^{2l} - q^{2l-1} - q^l + q^{l-1}$	$\frac{(q^{3l}+q^{2l})(q^{l+1}-1)}{2}$
$w_1 + q^l - q^{l-1}$	$\frac{(q^{2l+1}-q)(q^{l+1}-1)(q^{l-1}+1)}{2(q-1)}+$
	$(q^{3l-1} - q^{l-1})(q^{l+2} - q)$
$w_1 + q^l$	$(q^{3l}+q^{2l})(q^{l+1}-1)(q-1)$
$w_1 + 2q^l - 2q^{l-1}$	$\frac{q^{2l+1}(q^{l+1}-1)(q^l-1)(q-1)}{4}$
$w_1 + 2q^l - q^{l-1}$	$\frac{(q^{3l-1}-q^{l-1})(q^{l+1}-1)(q^2-q)}{2}$
$w_1 + 2q^l$	$\frac{(q^{3l}+q^{2l})(q^{l+1}-1)(q^2-3q+2)}{4}$

Similar results:

- ▶ F.A.B. Edoukou, A. Hallez, F. Rodier, L. Storme: On the small weight codewords of the functional codes C₂(Q), Q a non-singular quadric.
 - J. Pure Appl. Algebra, submitted.
- ▶ F.A.B. Edoukou, A. Hallez, F. Rodier, L. Storme: On the small weight codewords of the functional codes $C_h(X)$, X a non-singular hermitian variety.
 - Des. Codes Cryptogr., submitted.
- A. Hallez, L. Storme: Functional codes arising from quadric intersections with hermitian varieties.
 Finite Fields Appl., submitted.