(Structured codes in) Code based cryptology

Nicolas Sendrier

CRI Paris-Rocquencourt, équipe-projet SECRET

September 25, 2009

Academy contact forum, Brussels

Why code-based crypto?

- Secure public-key cryptographic primitives
- Resistant to quantum computers

Features:

Good Bad

- Fast and simple (often)Large keys
- Tight security reduction
- Unused (yet)

Today's point

Lately, several proposal have been made to reduce the key size

- AfricaCrypt 2009. Berger, Cayrel, Gaborit and Otmani Using quasi-cyclic alternant codes
- SAC 2009. Barreto and Misoczki Using dyadic Goppa codes
- We can easily measure the impact on key size.
- Can we measure the impact on security ?

Outline

Introduction

Security reduction

Practical attacks

→ how can we improve the systems?

Using structured codes

 \rightarrow how does this affect security?

Conclusions

Introduction

Code-based one-way encryption in one slide

$$\mathcal{C} \subset \{0,1\}^n$$
 a binary (linear) code

$$\mathcal{E} \subset \{0,1\}^n$$
 a set of errors

$$f: \mathcal{C} \times \mathcal{E} \rightarrow \{0,1\}^n$$

 $(x,e) \mapsto x+e$

$$\mathcal C$$
 has minimum Hamming distance $\geq 2t+1$ $\mathcal E$ formed with words of Hamming weight $\leq t$ $\Rightarrow f$ is injective

In general f is one-way (deciding $y \in f(\mathcal{C} \times \mathcal{E})$ is NP-complete) Any (fast) t-bounded decoder for \mathcal{C} provides a trapdoor

Code-based crypto - Main issues

- message security: decoding attacks
 - → decoding is hard in average (conjecture)
 - → finding a weakness is unlikely
 - → studying decoding attacks needed for maintenance
- key security: structural attacks
 - → which code family for which security ?
 - \rightarrow can we harmlessly reduce the key size ?
 - → need for research
- what if we do not need a trap?
 - → authentification, PRNG, hash function
 - → no structural attacks
 - \rightarrow allows larger t

Syndrome mapping

 \mathcal{C} a binary linear (n,k) code $H \in \{0,1\}^{r \times n}$ a parity check matrix of \mathcal{C} , r=n-k $W_{n,t}$ the words of length n and Hamming weight t

Code-based cryptosystems rely on the "one-wayness" of the H-syndrome

$$S_H: W_{n,t} \rightarrow \{0,1\}^r$$
 $e \mapsto eH^T$

Decoding in a binary linear code is equivalent to invert S_H , no more, no less

Syndrome decoding

 $\mathcal{C}(n,k)$ a binary linear code $H \in \{0,1\}^{r \times n} \text{ a parity check matrix, } r = n-k$

H-syndrome decoder

If $2t < \text{dmin}(\mathcal{C})$, Ψ_H is t-bounded if for all $e \in \{0,1\}^n$

$$\operatorname{wt}(e) \le t \Rightarrow \Psi_H(eH^T) = e$$

More generally, Ψ_H is t-bounded if for all $e \in \{0,1\}^n$

$$\operatorname{wt}(e) \le t \Rightarrow \operatorname{wt}(\Psi_H(eH^T)) \le t$$

(if there are words of weight $\leq t$ in a coset, the decoder finds one)

Syndrome decoding

 $\mathcal{C}(n,k)$ a binary linear code $H \in \{0,1\}^{r \times n}$ a parity check matrix, r=n-k

H-syndrome decoder

If $2t < \text{dmin}(\mathcal{C})$, Ψ_H is t-bounded if for all $e \in \{0,1\}^n$

$$\operatorname{wt}(e) \le t \Rightarrow \Psi_H(eH^T) = e$$

More generally, Ψ_H is t-bounded if for all $e \in \{0,1\}^n$

$$\mathsf{wt}(e) \leq t \Rightarrow \mathsf{wt}(\Psi_H(eH^T)) \leq t$$

(if there are words of weight $\leq t$ in a coset, the decoder finds one)

Two instantiations of the code-based one-way function

n the code length k the dimension t the error weight

|C(n,k)| a binary linear code $G \in \{0,1\}^{k \times n}$ a generator matrix r=n-k the codimension $\mid H \in \{0,1\}^{r \times n}$ a parity check matrix $\mid W_{n,t}$ the words of length n and weight t

encoding + noise syndrome
$$f_G: \ \{0,1\}^k \times W_{n,t} \to \{0,1\}^n \\ (x,e) \mapsto xG+e$$
 $S_H: W_{n,t} \to \{0,1\}^r \\ e \mapsto eH^T$

Both are equally hard to invert and can be inverted using a t-bounded (syndrome) decoder

Conversely, from f_G^{-1} or S_H^{-1} , we easily define a t-bounded decoder

An example: McEliece PKC (1978)

 ${\cal C}$ a t-error correcting irreducible binary Goppa code of length 2^m

Parameters: $(m,t) \rightarrow \text{length } n = 2^m \text{ and dimension } k = n - mt$

Public key: $G \in \{0,1\}^{k \times n}$ a generator matrix of $\mathcal C$

Secret key: Ψ_H , a t-bounded H-syndrome decoder for any parity check matrix H of $\mathcal C$

Plaintext: $x \in \{0, 1\}^k$

Encryption: $x \mapsto xG + e$ with e a random error of weight t

Ciphertext: $y \in \{0, 1\}^n$

Decryption: $y \mapsto (y - \Psi_H(yH^T))G^*$ where $GG^* = 1 \in \{0, 1\}^{k \times k}$

Original parameters: n = 1024, k = 524 and t = 50

[McEliece, 1978]

"A public-key cryptosystem based on algebraic coding theory"

Another example: Niederreiter PKC (1986)

 $\mathcal C$ is a t-error correcting binary linear (n,k) code

Parameters: length n, codimension r = n - k and error weight t

Public key: $H \in \{0,1\}^{r \times n}$ a parity check matrix of C

Secret key: Ψ_H , a t-bounded H-syndrome decoder

Plaintext: $e \in W_{n,t}$

Encryption: $e \mapsto S_H(e) = eH^T$

Ciphertext: $s \in \{0, 1\}^r$

Decryption: $s \mapsto \Psi_H(s)$

[Niederreiter, 1986]

"Knapsack-type cryptosystems and algebraic coding theory"

Main code-based cryptosystem

Public key encryption: McEliece (1978); Niederreiter (1986)

Digital signature: Courtois, Finiasz, S. (2001)

PRNG: Fischer, Stern (1996)

Stream cipher: Gaborit, Laudaroux, S. (2007)

Hash function: FSB (2005); SHA3-FSB (2008)

Zero-knowledge: Stern (1993); Véron (1995); Gaborit, Girault (2007)

And also

- Rank metric (Gabidulin codes), weakened by Overbeck
- HB and its variants (low cost identification), also weakened

• . . .

Security reduction

Hard decoding problems

Syndrome Decoding

NP-complete

Instance: $H \in \{0,1\}^{r \times n}$, $s \in \{0,1\}^r$, w integer

Question: Is there $e \in \{0,1\}^n$ such that $wt(e) \leq w$ and $eH^T = s$?

Computational Syndrome Decoding

NP-hard

Instance: $H \in \{0,1\}^{r \times n}$, $s \in \{0,1\}^r$, w integer

Output: $e \in \{0,1\}^n$ such that $wt(e) \leq w$ and $eH^T = s$

Goppa Bounded Decoding

NP-hard

Instance: $H \in \{0, 1\}^{r \times n}$, $s \in \{0, 1\}^r$

Output: $e \in \{0,1\}^n$ such that $\operatorname{wt}(e) \leq \frac{r}{\log_2 n}$ and $eH^T = s$

Open problem: average case complexity (Conjectured difficult)

Decoding adversary

For given parameters n, r and t

For any program $\mathcal{A}: \{0,1\}^r \times \{0,1\}^{r \times n} \to W_{n,t}$, we define the event

$$\mathcal{S}_{\mathcal{A}} = \{ (e, H) \in \Omega \mid \mathcal{A}(eH^T, H)H^T = eH^T \}$$

in the sample space $\Omega = W_{n,t} \times \{0,1\}^{r \times n}$ uniformly distributed

 \mathcal{A} is a (T,ε) -decoder if

- running time: $|A| \leq T$
- success probability: $Succ(A) = Pr_{\Omega}(S_A) \ge \varepsilon$

Irreducible binary Goppa codes

Parameters: m, t and $n \leq 2^m$

Let
$$\left\{ egin{aligned} L = (lpha_1, \ldots, lpha_n) & \text{distinct in } \mathbf{F}_{2^m} \\ g(z) \in \mathbf{F}_{2^m}[z] & \text{monic irreducible of degree } t \end{array} \right.$$

The binary irreducible Goppa code $\Gamma(L,g)$ of support L and generator g(z) is defined as the following subspace of $\{0,1\}^n$

$$a = (a_1, \dots, a_n) \in \Gamma(L, g) \Leftrightarrow R_a(z) = \sum_{j=1}^n \frac{a_i}{z - \alpha_j} = 0 \mod g(z)$$

- the dimension of $\Gamma(L,g)$ is $k \geq n tm$
- the minimum distance of $\Gamma(L,g)$ is $d \geq 2t+1$
- there exists a t-bounded polynomial time decoder for $\Gamma(L,g)$

Hard structural problems

Goppa code Distinguishing

NP

Instance: $H \in \{0,1\}^{r \times n}$

Question: Is $\{x \in \{0,1\}^n \mid xH^T = 0\}$ a binary Goppa code?

Goppa code Reconstruction

Instance: $H \in \{0,1\}^{r \times n}$

Output: (L,g) such that $\Gamma(L,g) = \{x \in \{0,1\}^n \mid xH^T = 0\}$

- ullet NP: the property is easy to check given (L,g)
- Completeness status is unknown
- Tightness: gap between decisional and computational problems

Goppa code distinguisher

For given parameters n, r

For any program $\mathcal{D}: \{0,1\}^{r \times n} \to \{\text{true}, \text{false}\}, \text{ we define the events}^*$

$$\mathcal{T}_{\mathcal{D}} = \{ H \in \Omega \mid \mathcal{D}(H) = \text{true} \}$$

 $\mathcal{G} = \{ H \in \Omega \mid H \in \mathcal{H}_{goppa} \}$

in the sample space $\Omega = \{0,1\}^{r \times n}$ uniformly distributed

 \mathcal{D} is a (T,ε) -distinguisher if

- running time: $|\mathcal{D}| \leq T$
- advantage: $Adv(\mathcal{D}) = \left| Pr_{\Omega}(\mathcal{T}_{\mathcal{D}}) Pr_{\Omega}(\mathcal{T}_{\mathcal{D}} \mid \mathcal{G}) \right| \geq \varepsilon$

 $^{^*\}mathcal{H}_{goppa}$ the set of all parity check matrices of a Goppa code

Adversary for McEliece

For given parameters n, r and t

For any program $\mathcal{A}: \{0,1\}^r \times \{0,1\}^{r \times n} \to W_{n,t}$, we define the events

$$\mathcal{S}_{\mathcal{A}} = \{(e, H) \in \Omega \mid \mathcal{A}(eH^T, H)H^T = eH^T\}$$

 $\mathcal{G} = \{(e, H) \in \Omega \mid H \in \mathcal{H}_{qoppa}\}$

in the sample space $\Omega = W_{n,t} \times \{0,1\}^{r \times n}$ uniformly distributed

 \mathcal{A} is a (T,ε) -adversary (for McEliece) if

- running time: $|A| \leq T$
- success probability: $Succ_{McE}(A) = Pr_{\Omega}(S_A \mid G) \ge \varepsilon$

If there exists a (T, ε) -adversary then there exists either

- a $(T, \varepsilon/2)$ -decoder,
- or a $(T + O(n^2), \varepsilon/2)$ -distinguisher,

Security reduction

Assuming

- decoding in a random linear code is hard
- Goppa codes are pseudorandom

McEliece cryptosystem is a One Way Encryption (OWE) scheme.

Using the proper semantically secure conversion any deterministic OWE scheme can become IND-CCA2

[Biswas, S. 2008] Without loss of security:

- McEliece's scheme can be made deterministic (by encoding information in the error)
- the public key can be in systematic form

[Kobara, Imai 2001] First IND-CCA2 conversion for McEliece

Practical security

Best known attacks

Decoding attacks: variants of information set decoding [Stern 1989] Stern 1989; Canteaut, Chabaud 1998; Bernstein, Lange, Peters 2008 bounds: Bernstein, Lange, Peters, van Tilborg 2009; Finiasz, S. 2009 also (for large t): Wagner's Generalized Birthday Attack (2002)

Structural attacks: support splitting algorithm [S. 2000]

→ find the permutation between equivalent codes in polynomial time

McEliece/Niederreiter cryptosystem - Parameters

Using binary irreducible Goppa codes

	sizes					security	
(m,t)	McEliece		Niederreiter		public key	(in bits)	
	block	info	block	info	(syst.)	dec.	struct.
(10, 50)	1024	524	500	284	32 kB	60	491
(11, 32)	2048	1696	352	233	73 kB	86	344
(12,40)	4096	3616	480	320	212 kB	127	471

Can we trade some of the extra key security for a smaller key size?

Which family of codes for McEliece/Niederreiter systems

Should not be used

- Generalized Reed-Solomon codes (Sidelnikov, Shestakov 1992)
- Concatenated codes (S. 1998)
- Reed-Muller codes (Minder, Shokrollahi 2007)
- Algebraic geometry codes of low genus (Faure, Minder 2008)
- Turbo-codes, LDPC codes

Unbroken so far

Goppa codes

New trend: structured codes (Gaborit 2005)

- Allow smaller key size
- Security reduction has to be revised

Structured codes

Using structured codes without trapdoor

Idea: the parity check matrix H is randomly chosen circulant by block. The whole matrix is defined by only a single or a few rows.

For such matrices, syndrome decoding remains NP-complete.

(Well chosen) quasi-cyclic codes meet the Gilbert-Varshamov bound.

 \rightarrow It is likely that PRNG, hash functions or zero-knowledge scheme will be as secure with random quasi-cyclic codes as with random codes.

Used in:

- Gaborit and Girault zero-knowledge protocol (2007)
- SYND stream cipher (2007)
- SHA3-FSB hash function (2008)

Structured codes for PKC

Idea: the secret code is cyclic or quasi-cyclic and the code positions are shuffled using a structured permutation. The resulting public key is structured and is defined by only a single or a few rows.

Security reduction now requires:

- decoding in a random quasi-cyclic code is hard (NP-complete)
- the public code is indistinguishable from a random quasi-cyclic code

The story

- First proposition with quasi-cyclic codes by Gaborit in 2005
- Broken by Otmani and Tillich in 2008
- Second quasi-cyclic proposal by Berger, Cayrel, Gaborit and Otmani in 2009
- Broken by Faugère, Otmani and Perret, last week
- Another similar idea using dyadic Goppa codes by Barreto and Misoczki in 2009

• . . .

Conclusions

- Random structured codes are probably an excellent alternative to random codes
- Structured codes for PKC are another matter
- Anything else than binary Goppa codes seems to have flaws
- We need more research on structural attacks
 - → new families of codes
 - → new key reduction techniques

Can we trade some of the extra key security for a smaller key size?

I don't know!

Thank you