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Why code-based crypto ?

e Secure public-key cryptographic primitives

e Resistant to quantum computers

Features:
Good Bad
e Fast and simple (often) e Large keys
e Tight security reduction e Unused (yet)
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Today’s point

Lately, several proposal have been made to reduce the key size

e AfricaCrypt 2009. Berger, Cayrel, Gaborit and Otmani
Using quasi-cyclic alternant codes

e SAC 2009. Barreto and MisoczKi
Using dyadic Goppa codes

- We can easily measure the impact on key size.
- Can we measure the impact on security ?
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Outline

Introduction

Security reduction

Practical attacks

— how can we improve the systems?

Using structured codes

— how does this affect security?

Conclusions
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Introduction



Code-based one-way encryption in one slide

C C {0,1}"™ a binary (linear) code E C {0,1}™ a set of errors

f: Cx& — {0,1}"
(r,e) — x+4e

C has minimum Hamming distance > 2t + 1

_ _ _ = f is injective
E formed with words of Hamming weight <t¢

In general f is one-way (deciding y € f(C x £) is NP-complete)

Any (fast) ¢t-bounded decoder for C provides a trapdoor
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Code-based crypto - Main issues

e Mmessage security: decoding attacks
— decoding is hard in average (conjecture)
— finding a weakness is unlikely
— studying decoding attacks needed for maintenance

e Key security: structural attacks
— which code family for which security 7
— can we harmlessly reduce the key size 7
— need for research

e what if we do not need a trap 7
— authentification, PRNG, hash function
— Nno structural attacks
— allows larger ¢
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Syndrome mapping

C a binary linear (n, k) code
H € {0,1}"*™ a parity check matrix of C, r=n —k
Wiyt the words of length n and Hamming weight ¢

Code-based cryptosystems rely on the “one-wayness’” of the H-syndrome

SHI Wn,t — {071}7’
e — eHT

Decoding in a binary linear code is equivalent to invert Sy, no more,
no less
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Svyndrome decoding

C(n, k) a binary linear code
H € {0,1}"*™ a parity check matrix, r =n —k

H-syndrome decoder

Vg {0,1}" — {0,1}"
S — e such that s = eH !

If 2t <dmin(C), Wy is t-bounded if for all e € {0,1}"

wt(e) <t= Wy(eH!) =¢
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Svyndrome decoding

C(n, k) a binary linear code
H € {0,1}"*™ a parity check matrix, r =n —k

H-syndrome decoder

Vg {0,1}" — {0,1}"
S — e such that s = eH !

If 2t < dmin(C), Wy is t-bounded if for all e € {0, 1}"

wt(e) <t= Wy(eH!) =¢

More generally, Wy is t-bounded if for all e € {0, 1}"

wt(e) <t = wt(Wg(eH)) <t

(if there are words of weight <t in a coset, the decoder finds one)
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Two instantiations of the code-based one-way function

n the code length C(n, k) a binary linear code
k the dimension G € {0,1}X" a generator matrix
r =n — k the codimension | H € {0,1}"*™ a parity check matrix
t the error weight Wyt the words of length n and weight ¢
encoding 4+ noise syndrome
fa: {0,1Y* xW,; — {0,1}" S Wpe — {0,1}"
(z,e) — G+ e e +— eHT

Both are equally hard to invert and can be inverted using a t-bounded
(syndrome) decoder

Conversely, from f(_;1 or S_l, we easily define a t-bounded decoder
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An example: McEliece PKC (1978)

C a t-error correcting irreducible binary Goppa code of length 2™
Parameters: (m,t) — length n = 2™ and dimension £k =n — mt
Public key: G € {0,1}¥*™ 3 generator matrix of C

Secret key: Wy, a t-bounded H-syndrome decoder for any parity
check matrix H of C

Plaintext: = € {0,1}*
Encryption: z — G + e with e a random error of weight ¢

Ciphertext: y € {0,1}"
Decryption: y — (y — \UH(yHT))G* where GG* = 1 € {0, 1}k><k

Original parameters: n = 1024, k = 524 and t = 50

[McEliece, 1978]
“A public-key cryptosystem based on algebraic coding theory”
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Another example: Niederreiter PKC (1986)

C is a t-error correcting binary linear (n, k) code

Parameters: length n, codimension »r = n — k and error weight ¢
Public key: H € {0,1}"*™ a parity check matrix of C

Secret key: Wy, a t-bounded H-syndrome decoder

Plaintext: e € Wi, ¢
Encryption: e — Sg(e) = eHT

Ciphertext: s € {0,1}"
Decryption: s +— Wg(s)

[Niederreiter, 1986]
“Knapsack-type cryptosystems and algebraic coding theory”
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Main code-based cryptosystem

Public key encryption: McEliece (1978); Niederreiter (1986)

Digital signature: Courtois, Finiasz, S. (2001)

PRNG: Fischer, Stern (1996)

Stream cipher: Gaborit, Laudaroux, S. (2007)

Hash function: FSB (2005); SHA3-FSB (2008)

Zero-knowledge: Stern (1993); Véron (1995); Gaborit, Girault (2007)

And also
e Rank metric (Gabidulin codes), weakened by Overbeck
e HB and its variants (low cost identification), also weakened
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Security reduction



Hard decoding problems

Svyndrome Decoding NP-complete
Instance: H € {0,1}"*" s € {0,1}", w integer
Question: Is there e € {0,1}" such that wt(e) < w and eH! = 57

Computational Syndrome Decoding NP-hard
Instance: H € {0,1}"*"™, s € {0,1}", w integer
Output: e € {0,1}" such that wt(e) < w and eH! =5

Goppa Bounded Decoding NP-hard
Instance: H € {0,1}"*" se€ {0,1}"

Output: e € {0,1}" such that wt(e) < —

logon

and eH! = s

Open problem: average case complexity (Conjectured difficult)
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Decoding adversary

For given parameters n, r and t

For any program A :{0,1}" x {0,1}"*" — W, ;, we define the event
Sy={(e,H) e Q2| AleH! , H)H! = eH"}

in the sample space Q = W, ; x {0, 1}"*" uniformly distributed

A is a (T,e)-decoder if
e running time: [A| <T
e success probability: Succ(A) = Prqo(Sy) > ¢

13/25



Irreducible binary Goppa codes

Parameters: m, t and n < 2™

L et L= (a1,...,an) distinct in Fom
g(z) € Fom[z] monic irreducible of degree t

The binary irreducible Goppa code IN'(L, g) of support L and generator
g(z) is defined as the following subspace of {0, 1}"

n

a=(a1,...,an) €M(L,g9) & Ra(z) = Z

Y% —0 mod g(2)

e the dimension of N'(L,gqg) is k> n —tm
e the minimum distance of N'(L,g) isd>2t+1
e there exists a t-bounded polynomial time decoder for (L, g)
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Hard structural problems

Goppa code Distinguishing NP
Instance: H € {0,1}"<"
Question: 1Is {:1: € {0,1}" | zH' = O} a binary Goppa code?

Goppa code Reconstruction
Instance: H € {0,1}"*™
Output: (L,g) such that [(L,g) = {z € {0,1}" | zHT = 0}

e NP: the property is easy to check given (L, g)
e Completeness status is unknown
e Tightness: gap between decisional and computational problems

15/25




Goppa code distinguisher

For given parameters n, r
For any program D : {0,1}"*"™ — {true, false}, we define the events*

D {H € Q| D(H) = true}
g {H € Q| H € Hgoppa}

in the sample space 2 = {0, 1}"*™ uniformly distributed

D is a (T,¢e)-distinguisher if
e running time: | D| < T
e advantage: Adv(D) = ( Pro(7p) — Pro(7p | Q)‘ > €

*Hgoppa the set of all parity check matrices of a Goppa code
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Adversary for McEliece

For given parameters n, r and ¢
For any program A:{0,1}" x {0,1}"*" — W, +, we define the events

Sq = {(e,H) e Q| AleH!, HYH! = eHT}
g = {(B,H) c Q2 | H € Hgoppa)

in the sample space Q2 = W, ; x {0, 1}"*" uniformly distributed
A is a (T,e)-adversary (for McEliece) if

e running time: |A| < T
e success probability: Succyg(A) =Prqo(S4|G) > ¢

If there exists a (T,e)-adversary then there exists either
e a (T,e/2)-decoder,
e or a (T + O(n?),e/2)-distinguisher,
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Security reduction

Assuming
e decoding in a random linear code is hard
e Goppa codes are pseudorandom

McEliece cryptosystem is a One Way Encryption (OWE) scheme.

Using the proper semantically secure conversion any deterministic
OWE scheme can become IND-CCA2

[Biswas, S. 2008] Without loss of security:

e McEliece's scheme can be made deterministic (by encoding infor-
mation in the error)
e the public key can be in systematic form

[Kobara, Imai 2001] First IND-CCA2 conversion for McEliece
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Practical security



Best known attacks

Decoding attacks: variants of information set decoding [Stern 1989]
Stern 1989; Canteaut, Chabaud 1998; Bernstein, Lange, Peters 2008
bounds: Bernstein, Lange, Peters, van Tilborg 2009; Finiasz, S. 2009

also (for large t): Wagner's Generalized Birthday Attack (2002)

Structural attacks: support splitting algorithm [S. 2000]

— find the permutation between equivalent codes in polynomial time
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McEliece/Niederreiter cryptosystem - Parameters

Using binary irreducible Goppa codes

sizes security
(m,t) McEliece Niederreiter | public key (in bits)
block | info | block | info (syst.) dec. | struct.
(10,50) | 1024 | 524 | 500 | 284 | 32 kB 60 | 491
(11,32) | 2048 | 1696 | 352 | 233 | 73 kB 86 | 344
(12,40) | 4096 | 3616 | 480 | 320 | 212 kB | 127 | 471

Can we trade some of the extra key security for a smaller key size?
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Which family of codes for McEliece/Niederreiter systems

Should not be used
e Generalized Reed-Solomon codes (Sidelnikov, Shestakov 1992)
e Concatenated codes (S. 1998)
e Reed-Muller codes (Minder, Shokrollahi 2007)
e Algebraic geometry codes of low genus (Faure, Minder 2008)
e Turbo-codes, LDPC codes

Unbroken so far
e Goppa codes

New trend: structured codes (Gaborit 2005)
e Allow smaller key size
e Security reduction has to be revised
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Structured codes



Using structured codes without trapdoor

Idea: the parity check matrix H is randomly chosen circulant by block.
The whole matrix is defined by only a single or a few rows.

For such matrices, syndrome decoding remains NP-complete.
(Well chosen) quasi-cyclic codes meet the Gilbert-VVarshamov bound.

— It is likely that PRNG, hash functions or zero-knowledge scheme will
be as secure with random quasi-cyclic codes as with random codes.

Used in:

e Gaborit and Girault zero-knowledge protocol (2007)
e SYND stream cipher (2007)
e SHA3-FSB hash function (2008)
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Structured codes for PKC

Idea: the secret code is cyclic or quasi-cyclic and the code positions
are shuffled using a structured permutation. The resulting public key
IS structured and is defined by only a single or a few rows.

Security reduction now requires:

e decoding in a random quasi-cyclic code is hard (NP-complete)

e the public code is indistinguishable from a random quasi-cyclic
code
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The story

First proposition with quasi-cyclic codes by Gaborit in 2005
Broken by Otmani and Tillich in 2008

Second quasi-cyclic proposal by Berger, Cayrel, Gaborit and Ot-
mani in 2009

Broken by Faugére, Otmani and Perret, last week

Another similar idea using dyadic Goppa codes by Barreto and
Misoczki in 2009
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Conclusions

e Random structured codes are probably an excellent alternative to
random codes

e Structured codes for PKC are another matter
e Anything else than binary Goppa codes seems to have flaws

e \\We need more research on structural attacks
— new families of codes
— new key reduction techniques

Can we trade some of the extra key security for a smaller key size?

I don't know!
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Thank you



