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Why code-based crypto ?

• Secure public-key cryptographic primitives

• Resistant to quantum computers

Features:

Good Bad

• Fast and simple (often)

• Tight security reduction

• Large keys

• Unused (yet)
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Today’s point

Lately, several proposal have been made to reduce the key size

• AfricaCrypt 2009. Berger, Cayrel, Gaborit and Otmani

Using quasi-cyclic alternant codes

• SAC 2009. Barreto and Misoczki

Using dyadic Goppa codes

- We can easily measure the impact on key size.

- Can we measure the impact on security ?
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Outline

Introduction

Security reduction

Practical attacks

→ how can we improve the systems?

Using structured codes

→ how does this affect security?

Conclusions
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Introduction



Code-based one-way encryption in one slide

C ⊂ {0,1}n a binary (linear) code E ⊂ {0,1}n a set of errors

f : C × E → {0,1}n
(x, e) 7→ x + e

C has minimum Hamming distance ≥ 2t + 1

E formed with words of Hamming weight ≤ t



 ⇒ f is injective

In general f is one-way (deciding y ∈ f(C × E) is NP-complete)

Any (fast) t-bounded decoder for C provides a trapdoor
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Code-based crypto - Main issues

• message security: decoding attacks

→ decoding is hard in average (conjecture)

→ finding a weakness is unlikely

→ studying decoding attacks needed for maintenance

• key security: structural attacks

→ which code family for which security ?

→ can we harmlessly reduce the key size ?

→ need for research

• what if we do not need a trap ?

→ authentification, PRNG, hash function

→ no structural attacks

→ allows larger t

5/25



Syndrome mapping

C a binary linear (n, k) code

H ∈ {0,1}r×n a parity check matrix of C, r = n− k

Wn,t the words of length n and Hamming weight t

Code-based cryptosystems rely on the “one-wayness” of the H-syndrome

SH : Wn,t → {0,1}r
e 7→ eHT

Decoding in a binary linear code is equivalent to invert SH, no more,

no less
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Syndrome decoding

C(n, k) a binary linear code

H ∈ {0,1}r×n a parity check matrix, r = n− k

H-syndrome decoder

ΨH : {0,1}r → {0,1}n
s 7→ e such that s = eHT

If 2t < dmin(C), ΨH is t-bounded if for all e ∈ {0,1}n

wt(e) ≤ t ⇒ ΨH(eHT ) = e

More generally, ΨH is t-bounded if for all e ∈ {0,1}n

wt(e) ≤ t ⇒ wt(ΨH(eHT )) ≤ t

(if there are words of weight ≤ t in a coset, the decoder finds one)
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Two instantiations of the code-based one-way function

n the code length C(n, k) a binary linear code

k the dimension G ∈ {0,1}k×n a generator matrix

r = n− k the codimension H ∈ {0,1}r×n a parity check matrix

t the error weight Wn,t the words of length n and weight t

encoding + noise syndrome

fG : {0,1}k ×Wn,t → {0,1}n SH : Wn,t → {0,1}r
(x, e) 7→ xG + e e 7→ eHT

Both are equally hard to invert and can be inverted using a t-bounded

(syndrome) decoder

Conversely, from f−1
G or S−1

H , we easily define a t-bounded decoder

8/25



An example: McEliece PKC (1978)

C a t-error correcting irreducible binary Goppa code of length 2m

Parameters: (m, t) → length n = 2m and dimension k = n−mt

Public key: G ∈ {0,1}k×n a generator matrix of C

Secret key: ΨH, a t-bounded H-syndrome decoder for any parity

check matrix H of C

Plaintext: x ∈ {0,1}k
Encryption: x 7→ xG + e with e a random error of weight t

Ciphertext: y ∈ {0,1}n
Decryption: y 7→ (y −ΨH(yHT ))G∗ where GG∗ = 1 ∈ {0,1}k×k

Original parameters: n = 1024, k = 524 and t = 50

[McEliece, 1978]

“A public-key cryptosystem based on algebraic coding theory”
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Another example: Niederreiter PKC (1986)

C is a t-error correcting binary linear (n, k) code

Parameters: length n, codimension r = n− k and error weight t

Public key: H ∈ {0,1}r×n a parity check matrix of C

Secret key: ΨH, a t-bounded H-syndrome decoder

Plaintext: e ∈ Wn,t

Encryption: e 7→ SH(e) = eHT

Ciphertext: s ∈ {0,1}r
Decryption: s 7→ ΨH(s)

[Niederreiter, 1986]

“Knapsack-type cryptosystems and algebraic coding theory”
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Main code-based cryptosystem

Public key encryption: McEliece (1978); Niederreiter (1986)

Digital signature: Courtois, Finiasz, S. (2001)

PRNG: Fischer, Stern (1996)

Stream cipher: Gaborit, Laudaroux, S. (2007)

Hash function: FSB (2005); SHA3-FSB (2008)

Zero-knowledge: Stern (1993); Véron (1995); Gaborit, Girault (2007)

And also

• Rank metric (Gabidulin codes), weakened by Overbeck

• HB and its variants (low cost identification), also weakened

• . . .
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Security reduction



Hard decoding problems

Syndrome Decoding NP-complete

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r, w integer

Question: Is there e ∈ {0,1}n such that wt(e) ≤ w and eHT = s?

Computational Syndrome Decoding NP-hard

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r, w integer

Output: e ∈ {0,1}n such that wt(e) ≤ w and eHT = s

Goppa Bounded Decoding NP-hard

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r
Output: e ∈ {0,1}n such that wt(e) ≤ r

log2 n
and eHT = s

Open problem: average case complexity (Conjectured difficult)
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Decoding adversary

For given parameters n, r and t

For any program A : {0,1}r × {0,1}r×n → Wn,t, we define the event

SA = {(e, H) ∈ Ω | A(eHT , H)HT = eHT}
in the sample space Ω = Wn,t × {0,1}r×n uniformly distributed

A is a (T, ε)-decoder if

• running time: |A| ≤ T

• success probability: Succ(A) = PrΩ(SA) ≥ ε
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Irreducible binary Goppa codes

Parameters: m, t and n ≤ 2m

Let





L = (α1, . . . , αn) distinct in F2m

g(z) ∈ F2m[z] monic irreducible of degree t

The binary irreducible Goppa code Γ(L, g) of support L and generator

g(z) is defined as the following subspace of {0,1}n

a = (a1, . . . , an) ∈ Γ(L, g) ⇔ Ra(z) =
n∑

j=1

ai

z − αj
= 0 mod g(z)

• the dimension of Γ(L, g) is k ≥ n− tm

• the minimum distance of Γ(L, g) is d ≥ 2t + 1

• there exists a t-bounded polynomial time decoder for Γ(L, g)
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Hard structural problems

Goppa code Distinguishing NP

Instance: H ∈ {0,1}r×n

Question: Is
{
x ∈ {0,1}n | xHT = 0

}
a binary Goppa code?

Goppa code Reconstruction

Instance: H ∈ {0,1}r×n

Output: (L, g) such that Γ(L, g) =
{
x ∈ {0,1}n | xHT = 0

}

• NP: the property is easy to check given (L, g)

• Completeness status is unknown

• Tightness: gap between decisional and computational problems
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Goppa code distinguisher

For given parameters n, r

For any program D : {0,1}r×n → {true, false}, we define the events∗

TD = {H ∈ Ω | D(H) = true}
G = {H ∈ Ω | H ∈ Hgoppa}

in the sample space Ω = {0,1}r×n uniformly distributed

D is a (T, ε)-distinguisher if

• running time: |D| ≤ T

• advantage: Adv(D) =
∣∣∣ PrΩ(TD)− PrΩ(TD | G)

∣∣∣ ≥ ε

∗Hgoppa the set of all parity check matrices of a Goppa code
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Adversary for McEliece

For given parameters n, r and t

For any program A : {0,1}r × {0,1}r×n → Wn,t, we define the events

SA = {(e, H) ∈ Ω | A(eHT , H)HT = eHT}
G = {(e, H) ∈ Ω | H ∈ Hgoppa)

in the sample space Ω = Wn,t × {0,1}r×n uniformly distributed

A is a (T, ε)-adversary (for McEliece) if

• running time: |A| ≤ T

• success probability: SuccMcE(A) = PrΩ(SA | G) ≥ ε

If there exists a (T, ε)-adversary then there exists either

• a (T, ε/2)-decoder,

• or a (T + O(n2), ε/2)-distinguisher,
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Security reduction

Assuming

• decoding in a random linear code is hard

• Goppa codes are pseudorandom

McEliece cryptosystem is a One Way Encryption (OWE) scheme.

Using the proper semantically secure conversion any deterministic

OWE scheme can become IND-CCA2

[Biswas, S. 2008] Without loss of security:

• McEliece’s scheme can be made deterministic (by encoding infor-

mation in the error)

• the public key can be in systematic form

[Kobara, Imai 2001] First IND-CCA2 conversion for McEliece
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Practical security



Best known attacks

Decoding attacks: variants of information set decoding [Stern 1989]

Stern 1989; Canteaut, Chabaud 1998; Bernstein, Lange, Peters 2008

bounds: Bernstein, Lange, Peters, van Tilborg 2009; Finiasz, S. 2009

also (for large t): Wagner’s Generalized Birthday Attack (2002)

Structural attacks: support splitting algorithm [S. 2000]

→ find the permutation between equivalent codes in polynomial time
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McEliece/Niederreiter cryptosystem - Parameters

Using binary irreducible Goppa codes

sizes security

(m, t) McEliece Niederreiter public key (in bits)

block info block info (syst.) dec. struct.

(10,50) 1024 524 500 284 32 kB 60 491

(11,32) 2048 1696 352 233 73 kB 86 344

(12,40) 4096 3616 480 320 212 kB 127 471

Can we trade some of the extra key security for a smaller key size?
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Which family of codes for McEliece/Niederreiter systems

Should not be used

• Generalized Reed-Solomon codes (Sidelnikov, Shestakov 1992)

• Concatenated codes (S. 1998)

• Reed-Muller codes (Minder, Shokrollahi 2007)

• Algebraic geometry codes of low genus (Faure, Minder 2008)

• Turbo-codes, LDPC codes

Unbroken so far

• Goppa codes

New trend: structured codes (Gaborit 2005)

• Allow smaller key size

• Security reduction has to be revised
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Structured codes



Using structured codes without trapdoor

Idea: the parity check matrix H is randomly chosen circulant by block.

The whole matrix is defined by only a single or a few rows.

For such matrices, syndrome decoding remains NP-complete.

(Well chosen) quasi-cyclic codes meet the Gilbert-Varshamov bound.

→ It is likely that PRNG, hash functions or zero-knowledge scheme will

be as secure with random quasi-cyclic codes as with random codes.

Used in:

• Gaborit and Girault zero-knowledge protocol (2007)

• SYND stream cipher (2007)

• SHA3-FSB hash function (2008)
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Structured codes for PKC

Idea: the secret code is cyclic or quasi-cyclic and the code positions

are shuffled using a structured permutation. The resulting public key

is structured and is defined by only a single or a few rows.

Security reduction now requires:

• decoding in a random quasi-cyclic code is hard (NP-complete)

• the public code is indistinguishable from a random quasi-cyclic

code
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The story

• First proposition with quasi-cyclic codes by Gaborit in 2005

• Broken by Otmani and Tillich in 2008

• Second quasi-cyclic proposal by Berger, Cayrel, Gaborit and Ot-

mani in 2009

• Broken by Faugère, Otmani and Perret, last week

• Another similar idea using dyadic Goppa codes by Barreto and

Misoczki in 2009

• . . .
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Conclusions

• Random structured codes are probably an excellent alternative to

random codes

• Structured codes for PKC are another matter

• Anything else than binary Goppa codes seems to have flaws

• We need more research on structural attacks

→ new families of codes

→ new key reduction techniques

Can we trade some of the extra key security for a smaller key size?

I don’t know!
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Thank you


