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Nonlinear Functions

To be secure, cryptographic algorithms need a nonlinear part.

E.g. the ”S-boxes” are such nonlinear functions.

There are different concepts of nonlinearity
We focus on the concept that provides optimal security against
differential cryptanalysis, i.e. on (almost) perfect nonlinear
functions.
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Nonlinear Functions

F : Fm
p 7→ Fm

p

m(F ) := max
a∈Fm

p −{0}
|{F (x + a)− F (x)|x ∈ Fm

p }|

If F is linear, then m(F ) = 1.

If m(F ) = pm (hence if F (x + a)− F (x) is a permutation) we call
F perfect nonlinear (PN).

PN functions exist only for p odd, as for p = 2, we have that x
and x + a yield the same value of F (x + a)− F (x).

For p = 2, if m(F ) = 2m/2 (hence if F (x + a)− F (x) is “2 to 1”)
we call F almost perfect nonlinear (APN).
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APN Functions known before 2006

The known APN functions F : F2m 7→ F2m were the power
functions F (x) = xd with:

Exponents d Conditions

Gold functions 2i + 1 gcd(i , m) = 1, 1 ≤ i ≤ m−1
2

Kasami functions 22i − 2i + 1 gcd(i , m) = 1, 1 ≤ i ≤ m−1
2

Welch function 2t + 3 m = 2t + 1

Niho function 2t + 2
t
2 − 1, t even m = 2t + 1

2t + 2
3t+1

2 − 1, t odd

Inverse function 22t − 1 m = 2t + 1

Dobbertin function 24i + 23i + 22i + 2i − 1 m = 5i
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Extended Affine Equivalence

We call two APN functions F ,F ′ : Fm
2 7→ Fm

2 extended affine (EA)
equivalent if there exist invertible linear maps L, L′ : Fm

2 7→ Fm
2 and

an affine map A : Fm
2 7→ Fm

2 such that

F ′(x) = L′(F (L(x))) + A(x)

If F is a permutation, also its inverse “F−1” is APN.
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Error Correcting Codes

A binary linear code [n, k , d ] is a k-dimensional subspace of the
vectorspace Fn

2, such that any two different c , c ′ ∈ [n, k , d ] differ in
at least d coordinates.

A matrix who’s rows generate the code [n, k, d ] is called a
generator matrix of the code.
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APN Functions as (Error Correcting) Codes

MF :=

 1 . . . 1 . . .
0 . . . x . . .

F (0) . . . F (x) . . .


MF is the generator matrix of a linear binary code CF of length 2m.

Carlet, Charpin and Zinoviev (1998)

F is APN if and only if CF has strength 5 (C⊥F has distance 6).
CF has dimension 2m + 1.

An APN function is equivalent to a binary linear of length 2m C
which
• has strength 5 (i.e. C⊥ has distance 6) and
• contains the first order Reed-Muller Code.
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CCZ Equivalence (Code Equivalence)

We call two APN functions F ,F ′ : Fm
2 7→ Fm

2 CCZ equivalent if
there exists a invertible linear map L : F2m+1

2 7→ F2m+1
2 such that

 1
x

F ′(x)

 =

L

 1
x

F (x)


EA equivalent functions are also CCZ equivalent.

For APN functions, CCZ equivalence is stronger than EA
equivalence.

For PN functions, CCZ equivalent functions are also EA equivalent
(Kyureghyan, Pott 2008).
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Bijective APN

Problem
Is there an APN F : Fm

2 7→ Fm
2 , m even, that is a permutation?

Dillon Wolfe (2009)

There is an APN permutation for m = 6.

Dillon Wolfe (2009)

An APN permutation is equivalent to a binary linear code of
strength 5, ..., containing a complementary pair of simplex codes.

There exists no APN permutation, different from the Dillon-Wolfe
example, equivalent to any APN (I know) for m ≤ 12, even!
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Bijective APN

The new APN-Permutation Problem

Is there an APN F : Fm
2 7→ Fm

2 , m even, that is a permutation,
different from the Dillon-Wolfe example?



university-logo

Switching

Problem

Let F : F2m → F2m be a quadratic APN and f : F2m → F2 be a
boolean function.
When is F + f again a quadratic APN?

Dillon (2006) found many new quadratic APN for m = 6, 7, 8.

The series: x3 + tr(x9) (Budaghyan, Carlet, Leander 2007/2009)
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Switching

Problem

Let F : Fm
2 → Fm

2 be an APN function, and
f : Fm

2 → U, U a l-dimensional subspace of Fm
2 .

When is F + f again an APN function?

Theorem (1-dimensional) E., Pott (2009)

Let F : Fm
2 → Fm

2 be APN, u ∈ Fm
2 \ 0, and let f : Fm

2 → F2 be a
boolean function. Then F (v) + f (v) · u is APN if and only if

f (x) + f (x + a) + f (y) + f (y + a) = 0

for all x , y , a ∈ Fm
2 with

F (x) + F (x + a) + F (y) + F (y + a) = u. (1)
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Switching

Let S ⊂ F2m

2 be the vector space generated by the indicator
functions of the 4-tuples x , y , x + a, y + a satisfying condition (??).

Theorem: F (x) + f (x) · u is APN if and only if f ∈ S⊥

Write Fm
2 = uF2 ⊕ V

Let D ⊂ CF the 2m-dimensional vector space spanned by the
matrix (

(1, x ,F (x)|V )t : x ∈ Fm
2

)
If f , g ∈ S⊥ are in the same coset of D, then F (x) + f (x)u and
F (x) + g(x)u are EA equivalent.

In particular: If S⊥ has dimension 2m, then there is no candidate
for a non trivial “switching function” f (x) · u.
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Switching

Theorem E., Pott (2009)

The function F : F26 → F26 with

F (x) = x3 + u17(x17 + x18 + x20 + x24) +
u14(tr(u52x3 + u6x5 + u19x7 + u28x11 + u2x13) +
tr8/2((u2x)9) + tr4/2(x21))

is an APN function.
The function cannot be CCZ equivalent to any crooked function.
Moreover, it is CCZ inequivalent to any power mapping.
(tr8/2 and tr4/2 denote the relative trace F8 → F2 and F4 → F2)

Switching produces several further new APN functions for
m = 7, 8, 9.
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Incidence Structures

An incidence structure is an triple (B,P, I).

The elements of the set B are called the blocks (or lines).

The elements of the set P are called the points.

I ⊆ B × P. A block B an a point P are called incident if
(B,P) ∈ I.

Often we give a block by B := {P ∈ P|(B,P) ∈ I}.

(B,P, I) and (B′,P ′, I ′) are called isomorpic if there is a bijection
B × P → B′ × P ′, such that (B,P) ∈ I ⇔ π(B,P) ∈ I ′
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PN Functions and Projective Planes

The graph of F is:

GF := {(x ,F (x))|x ∈ Fm
p } ⊂ Fm

p × Fm
p

The incidence structure ΓF with point set Fm
p × Fm

p and the p2m

blocks {Ba,b|a, b ∈ Fm
p } where

Ba,b := {(x + a,F (x) + b)|x ∈ Fm
p },Ba,∞ := {(a, y)|y ∈ Fm

p }.

If F is a PN-function then

|Ba,b ∩ Ba′,b′ | =

{
0 if a = a′, b 6= b′

1 if a 6= a′

In ΓF ∪ {Ba,∞|a ∈ Fm
p } every pair of disjoint points is on a unique

block. This is an affine plane of order pm.
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APN Functions and Semibiplanes

An incidence structure with v points, v blocks in which each block
contains k points, is called a (v , k)-semibiplane if

• any pair of points is joined by 0 or 2 blocks and

• any pair of blocks meet in 0 or 2 points.

Coulter, Henderson (1999)

If F is APN then ΓF is a (22m, 2m)-semibiplane.
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APN Functions and Semibiplanes

We call a semibiplane divisible if there is a partition of the points
in k classes Pi with |Pi | = n, such that

#blocks through p, q =

{
0 if p, q are in the same Pi

0 or 2 if p, q are in different Pi

A incidence structure admits a Singergroup if there is a group of
automorphisms acting regular on both, blocks and points.

Pott (2007)

There exists an APN function F : H → N if and only if there exists
a divisible semibiplane with a Singergroup G = N × H where
|N| = |H| and where N acts regularly on the point classes Pi .
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Yet Another Equivalence

PN-functions are said to be isotopic if the corresponding planes are
isomorphic.

Definition E., Pott

We say that two APN functions are isomorphic if the
corresponding semibiplanes are isomorphic.

CCZ equivalent APN functions are isomorphic.
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DO-PN Functions, Semifields, Spreads

F ∈ Fpm [X ] is called a Dembowski-Ostrom (DO) polynomial if

F (X ) =
∑
i ,j

ai ,jX
pi+pj

x ◦ y := F (x + y)− F (x)− F (y) + F (0)

Let F be a DO-PN then (Fm
p ,+, ◦) is a commutative pre-semifield.

V := {Va|a ∈ Fm
p } ∪ V∞, with

Va := {(x , x ◦ a)|x ∈ Fm
p },V∞ := {(0, y)|y ∈ Fm

p }

V is a partition of the space F2m
p in subspaces, so V is a spread.

The cosets a spread form the blocks of a translation plane.

Any DO-PN function gives rise to a translation plane.
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Quadratic APN-Functions, Dual Hyperovals

Let F be a APN function.

x ◦ y := F (x + y)− F (x)− F (y) + F (0)

VF := {Va|a ∈ Fm
2 } with Va := {(x , x ◦ a)|x ∈ Fm

2 }

For any V 6= V ′ ∈ VF is V ∩ V ′ is 1-dimensional.
Any three mutually different Vi ∈ VF intersect only in zero.

The blocks
Ba,b := {(x , y + b)|(x , y) ∈ Va} = {(x , x ◦ a + b)|x ∈ Fm

2 }
form an semibiplane.

F is quadratic iff

F (X ) =
∑
i ,j

ai ,jX
2i+2j

If F is an quadratic APN VF then is a dual hyperoval.
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Quadratic APN Functions, Dual Hyperovals

Pott 2007

The semibiplane defined via the graph of F and the semibiplane
defined via the “dual hyperoval” of F are isomorphic.

Yoshiara 2008

One of the new quadratic APN functions lead to a unknown
example of dual hyperovals.
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Quadratic APN Functions, Dual Hyperovals

For disj. V ,V ′,V ′′ ∈ V let l ′′ = V ∩V ′, l = V ′ ∩V ′′, l ′ = V ′′ ∩V .

Define p(V ,V ′,V ′′) := 〈l , l ′, l ′′〉 \ (〈l , l ′〉 ∪ 〈l ′, l ′′〉 ∪ 〈l ′′, l〉).

E. 2009

Let V be a dual hyperoval. There exists a quadratic APN
function F such that VF ∼ V if and only if the space
〈p(V ,V ′,V ′′)|V ,V ′,V ′′ ∈ V〉 is disjoint from any V ∈ V.

There is a 1-to-1 correspondence between the EA-equivalence
classes of quadratic APN functions and the isomorphy classes
of such dual hyperovals.

Given an dual hyperoval V fulfilling the above property, we
can effectively construct an F such that VF is isomorphic to
the dual hyperoval V.
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of such dual hyperovals.

Given an dual hyperoval V fulfilling the above property, we
can effectively construct an F such that VF is isomorphic to
the dual hyperoval V.
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Quadratic APN Functions, Dual Hyperovals

Problem: If there are two quadratic APN functions which are
CCZ-equivalent, but not EA-equivalent, how does this translate in
the geometric approach?

Observation: For all quadratic APN, m ≤ 9 (I know), this does
not happen.

Conjecture: There is only one EA class of quadratic APN in the
CCZ-equivalence class of any quadratic APN.
And the CCZ-automorphism group of an quadratic APN equals the
EA-automorphism group .

McGuire et al. (2009)

This conjecture is true for the Gold APN-functions.
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Knuth’s Operation

If the PN (APN) function F is DO (quadratic) then
◦ : Fm

p × Fm
p → Fm

p x ◦ y := F (x + y)− F (x)− F (y)− F (0)

is a bilinear function, hence determined by its values on a basis.

ei ◦ ej :=
∑
k

Ki ,j ,kek

Knuth (1965)

Let F be DO. F is PN if and only if any nontrivial linear
combination of the m matrices Ki ,j ,k , j = 1..m, has full rank.

If Ki ,j ,k has this property, then any cube arising from it by
permuting the indices has also this rank property.

A cube with this rank property yields a spread. The
corresponding planes are in general not isomorphic.
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Knuth’s Operation

E.

F is a quadratic APN iff

any nontrivial linear combination of the m matrices Ki ,j ,k ,
j = 1..m, has rank m − 1, and

the m matrices Ki ,j ,k , k = 1..m, are symplectic.

A cube with this rank property yields a dual hyperoval.
If the permuted cube fulfills the rank condition, then the
corresponding semibiplanes are in general not isomorphic.

Corollary: For even m no permutation of the indices of Ki ,j ,k ,
moving k , eads to a cube of a quadratic APN .

Remark 1: For odd m ≤ 9 all cubes of a quadratic APN (I know)
fulfill the rank condition in every direction.

Remark 2: For odd m = 5, 7 all permuted cubes of a quadratic
APN, can not be again “quadratic APN cubes”.
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Designs and Invariants

The semibiplane ΓF of an APN function F can also be considered
as a design.

An invariant of a design is a property that is in common to all
isomorphic designs.

Two APN functions F ,F ′ which disagree in one invariant of their
designs ΓF , ΓF ′ are not isomorphic (CZZ-equivalent, ...)

Invariants can give information about the APN, of the type:
“There is no F ′ isomorphic to F having the property...”

Example: There is no quadratic APN F ′ which is isomorphic to F .
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The Design ∆F

Let F be an APN function and M be the incidence matrix of ΓF .

M ·Mt = 2mI + 2N

Define ∆F as the design with incidence matrix N.

Invariants of ∆F are also invariants of ΓF .

∆F is orbit of the block {(a,F (x + a)− F (x))|x , a ∈ Fm
2 , a 6= 0}

under the action of Fm
2 × Fm

2 .
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The Design ∆F

E. P.

For all CCZ inequivalent APN functions with m ≤ 9 (known to us),
the designs ∆F not isomorphic

Hence the CCZ equivalence classes of these APN functions are also
their isomorphy classes.

Question: is the APN function already determined by its design
∆F ?
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Invariants

Some Design Invariants:

The rank of the incidence matrix of of the design ΓF (∆F )
over various fields.

The Smith normal form of the Incidence matrix of ΓF (∆F )

The automorphism group of the design ΓF (∆F )

Some CCZ Invariants:

The Walsh spectrum.

The automorphism group of the Code CF .

An EA Invariant:

The algebraic degree of F
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Relations of the Automorphism Groups

EA-Aut

⊆

code group Aut(CF )

=

multiplier group(ΓF ) ⊆ multiplier group(∆F )

⊂ ⊂

design group Aut(ΓF ) ⊆ design group Aut(∆F ))
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Properties and Invariants

If the CCZ-equivalence class of F contains
• a monomial APN function, then C2m−1 ⊆ Aut(CF )
• a quadratic APN function, then E2m ⊆ Aut(CF )
• an APN function ∈ F2[X ], then Cm ⊆ Aut(CF )

If the isomorphy class of F contains
• a monomial APN function, then E22m × C2m−1 ⊆ Aut(ΓF )
• a quadratic APN function, then E23m ⊆ Aut(ΓF )
• an APN function ∈ F2[X ], then E22m × Cm ⊆ Aut(ΓF )
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Properties and Invariants

An APN function F is called crooked if

Va = {x ◦ a|x ∈ F2m} = {F (x + a)− F (x)− F (a)− F (0)|x ∈ F2m}

is a subspace for all a.

Any quadratic APN is crooked.

E.P.

If the isomorphy class of F contains a crooked APN function then
the F2-rank of the incidence matrix of ∆F is at most 2m+1.
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Conclusion

There are different points of view on APN functions.

Not only cryprography profits from progress in APN functions.
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