LDPC codes derived from finite geometries

Peter Vandendriessche

Department of Mathematics, Ghent University Krijgslaan 281 - S22, 9000 Ghent

Definition 1 Let \mathbb{F} be a finite field and let H be an $m \times n$ matrix of rank n - kover \mathbb{F} . The linear [n, k]-code defined by H is the k-dimensional subspace of \mathbb{F}^n consisting of all vectors which have a zero inproduct (in \mathbb{F}) with all rows of H. The matrix H is called the parity check matrix of this code. This code is called LDPC if its defining matrix has much more zero than nonzero elements.

Originally introduced by Gallager [1], LDPC ('low density parity check') codes are used frequently these days due to their excellent empirical performance under belief-propagation/sum-product decoding. In some cases, their performance is even near to the Shannon limit [2], but only for very large block lengths. For such large codes, however, even the low-complexity iterative decoding algorithms for LDPC codes are too complex for practical usage.

Definition 2 A finite geometry $(\mathcal{P}, \mathcal{B})$ consists of a finite set \mathcal{P} , the elements of which we call points, and a finite collection \mathcal{B} of subsets of \mathcal{P} , the elements of which we call blocks. The incidence matrix of a finite geometry $(\mathcal{P}, \mathcal{B})$ is the $|\mathcal{P}| \times |\mathcal{B}|$ matrix H, in which we label the rows by the points of \mathcal{P} and the columns by the blocks of \mathcal{B} , and which has the entries 1 or 0 depending on whether the corresponding point is contained in the corresponding block or not. Since 0 and 1 are elements of every field, this technique can be used to define codes over any field \mathbb{F} .

Recently, there has been a growing interest in LDPC codes constructed from finite geometries, since some of these achieve reasonable performance on much shorter block lengths. From a purely theoretical point of view, studying these codes has also proven to be fruitful for understanding the underlying geometry. Hence, for both practical and theoretical reasons, there has been a growing interest in the properties and internal structure of these codes. In this talk, we give an overview of the recent results on these finite geometry LDPC codes.

References

 R.G. Gallager, Low density parity check codes, *IRE Trans. Inform. Theory* 8 (1962), 21–28. [2] D.J.C. MacKay and R.M. Neal, Near Shannon limit performance of low density parity check codes, *Electron. Lett.* **32** (1996), 1645–1646.