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The generalized Hamming weights of a linear code are, for each given di-
mension, the minimum size of the support of the linear subspaces of that
dimension. They were first used by [12] to analyze the performance of the
wire-tap channel of type II introduced in [9] and in connection to t-resilient
functions. See also [7]. The connections with the wire-tap channel have been
updated recently in [10], this time using network coding. The notion itself
has also been generalized for network coding in [8]. The generalized Ham-
ming weights have also been used in the context of list decoding [4, 3] and
for bounding the covering radius of linear codes [6].

In this contribution we deal with generalized Hamming weights of one-
point AG codes from the perspective of the associated Weierstrass semigroup,
that is, the set of pole orders at the defining one-point of the rational func-
tions having only poles in that point. One first result on the maximum gap
of an ideal of a numerical semigroup will then give a lower bound on the
generalized Hamming weights via the so-called Feng-Rao numbers.

A numerical semigroup is a subset of N0 that contains 0, is closed under
addition, and has a finite complement in N0. The elements in this comple-
ment are called the gaps of the semigroup and the number of gaps is the
genus. The maximum gap is usually referred to as the Frobenius number of
the semigroup and the conductor is the Frobenius number plus one. By the
pigeonhole principle it is easy to prove that the Frobenius number is at most
twice the genus minus one, and there are semigroups attaining this bound
(called symmetric semigroups).

An ideal of a numerical semigroup is a subset of the semigroup such that
any element in the subset plus any element of the semigroup add up to an
element of the subset. Again the ideal will be a subset of N0 with finite
complement in it. The elements in this complement are called gaps of the
ideal. Our first result is an analogous of the upper bound on the Frobenius
number for the largest gap of an ideal. Indeed, we prove that the largest gap
of an ideal is at most the size of the complement of the ideal in the semigroup
plus twice the genus minus one. This generalizes the bound on the Frobenius
number since that bound can be derived from this bound by taking the ideal
to be the whole semigroup.



A nice tool for takling the generalized Hamming weights for AG codes
are the generalized order bounds introduced in [5], involving Weierstrass
semigroups. In [1], a constant depending only on the semigroup and the
dimension of the Hamming weights was introduced, from which the order
bounds could be completely determined for codes of rate low enough. This
constant was called Feng–Rao number in the same reference. In the present
contribution, using the upper bound on the maximum gap of an ideal, we
derive a lower bound on the so-called Feng-Rao numbers and so a new bound
on the Hamming weights. The main tool is analyzing the intervals of consec-
utive gaps of the Weierstrass semigroup. Consecutive gaps were already used
in [2] for bounding the minimum distance of codes and in [11] for bounding
the generalized Hamming weights.

In the last section we study the intervals of consecutive gaps for Hermitian
codes and for codes in one of the Garcia-Stichtenoth towers of codes attaining
the Drinfeld-Vlăduţ bound.
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