Covering codes arising from small saturating sets in a projective space of arbitrary dimension

Lins Denaux

Ghent University

Let \mathcal{C} be a q-ary linear [n, k, d]-code. We call \mathcal{C} a covering code with covering radius R > 0 if every vector of \mathbb{F}_q^n lies within Hamming distance Rof a codeword in \mathcal{C} . On the other hand, a ρ -saturating set \mathcal{S} of the projective space $\operatorname{PG}(m, q)$ is a point set such that every point of $\operatorname{PG}(m, q)$ is contained in a subspace spanned by at most $\rho + 1$ points of \mathcal{S} .

These two objects are closely related to each other, as every ρ -saturating set in PG(n - k - 1, q) gives rise to a parity check matrix of a q-ary linear [n, k, d]-covering code with covering radius $R = \rho + 1$. It is naturally interesting to construct small ρ -saturating sets of PG(n, q).

Let $\mathbf{\kappa}(n, q, \varrho)$ be the cardinality of a *smallest possible* ϱ -saturating set of $\mathrm{PG}(n,q)$. One can rather easily prove that there exists a lower bound for $\mathbf{\kappa}(n,q,\varrho)$ of size roughly $\sim \varrho \cdot q^{\frac{n-\varrho}{\varrho+1}}$. A lot of research has been done in finding upper bounds for $\mathbf{\kappa}(n,q,\varrho)$, mainly when n = 2 and $\varrho = 1$; a nice survey on this can be found in [2]. However, there is not a lot known if n and ϱ are arbitrary. Bartoli et al. [1] proved that $\mathbf{\kappa}(n,q,1) \leq 2q^{\frac{n-1}{2}}\sqrt{\ln(q)}$ if q is large and n is even and either equal to 2 or relatively large.

Our main result is that, if q is a $(\varrho + 1)^{\text{th}}$ power, there exists an upper bound on $\kappa(n, q, \varrho)$ of size roughly $\sim \varrho^2 \cdot q^{\frac{n-\varrho}{\varrho+1}}$. Moreover, for general $q \ge 4$, we find an upper bound of size roughly $(\varrho + 1)\theta_k - \varrho$ if $\frac{n-\varrho}{\varrho+1} = k \in \mathbb{N}$, slightly improving the known, naive bound of $(\varrho + 1)\theta_k$.

Keywords: Covering code, Saturating set, General construction, Baer subgeometry

MSC: 05B25, 51E20, 51E22

References

 D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, "New upper bounds on the smallest size of a saturating set in a projective plane", XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY), St. Petersburg, pp. 18–22 (2016). [2] A. A. Davydov and P. Östergård, "On saturating sets in small projective geometries", *European J. Combin.* 21(5) (2000), pp. 563–570.

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Krijgslaan 281-Building S8, 9000 Ghent, Belgium Lins.Denaux@UGent.be