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Abstract

A (g + 1)-fold blocking set of size (g + 1)(¢* 4+ ¢*> + 1) in PG(2,¢*) is constructed,
which is not the union of ¢ 4+ 1 disjoint Baer subplanes.

1. Introduction

Let PG(2,q) (AG(2,q)), where ¢ = p" and p is prime, be the Desarguesian projective
(affine) plane over GF'(q), the finite field of order q. An s-fold blocking set B in PG(2,q)
is a set of points such that every line of PG(2, q) intersects B in at least s points. A 1-fold
blocking set is simply called a blocking set. If a blocking set contains a line of PG(2, q), then
it is called trivial. A blocking set is said to be minimal or irreducible if it contains no proper
subset which also forms a blocking set. For a survey on blocking sets, see Blokhuis [4].
There is less known about s-fold blocking sets, where s > 1. If the s-fold blocking set B in
PG(2, q) contains a line £, then B\ {is a (s—1)-fold blocking set in AG(2,q) = PG(2,q)\¥.
The result from [2] gives the following:

Let B be an s-fold blocking set in PG(2,q) that contains a line and e maximal such that
p¢|(s — 1), then |B| > (s +1)g — p® + 1.

This covers previous results by Bruen [7, 8], who proved the general bound (s+1)(¢g—1)+1
and Blokhuis [5], who proved (s + 1)q in the case (p,s — 1) = 1.

If the s-fold-blocking set does not contain a line then Hirschfeld [10, Theorem 13.31] states
that it has at least sq + \/sq + 1 points. A Baer subplane of a projective plane of order ¢
is a subplane of order ,/g. The strongest result concerning s-fold blocking sets in PG(2, q)
not containing a line is a result of Blokhuis, Storme and Szényi [6]:

Let B be an s-fold blocking set in PG(2,q) of size s(q + 1) + ¢. Let co = c3 = 27'/3 and
cp=1forp>3.
1. If g = p*¥*' and s < q/2 — ¢,q*//2 then ¢ > c,¢*/>.

2. If 4 < q is a square, s < q1/4/2 and ¢ < cpq2/3, then ¢ > s,/q and B contains the
union of s disjoint Baer subplanes.

3. If g=p? and s < ¢"/*/2 and ¢ < p[L + |/2EL], then ¢ > s,/q and B contains the
union of s disjoint Baer subplanes.
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This result is proved using lacunary polynomials. It is clear that the union of s disjoint
Baer subplanes in PG(2, q), where ¢ is a square, is an s-fold blocking set. A line intersects
this set in either s or /g + s points. The result stated above means that an s-fold blocking
set of size s(q + 1) + ¢, where ¢ is a constant, necessarily contains the union of s disjoint
Baer subplanes if s and ¢ are small enough (s < qY/ 6). The result we present here shows
that this bound is quite good. We construct s-fold blocking sets of size s(q 4 /g + 1) in
PG(2,q), with s = ¢'/* + 1, which are not the union of s disjoint Baer subplanes.

2. The representations

In the following we will use representations of projective spaces used in [1] and [3].

The points of PG(2,q) are the 1-dimensional subspaces of GF(¢®), considered as a 3-
dimensional vector space over GF(g). Such a subspace has an equation that is GF(g)-linear
of the form P’ = 0, with

P =27 — qz,

where v € GF(g%). So a point of PG(2,q) is in fact a set {z € GF(¢3) | 27 — vz = 0}.
Since elements of this set are also zeros of

P 4 (27 —x) — 4T P — AP = (yT et )y

and this is an equation of degree < 1, we necessarily have that 7‘12““”1 = 1. So points
of PG(2,q) can be represented by polynomials of the form 2 — vz over GF(¢®), where
v € GF(¢®) and 44 T4+ = 1. Actually this is just a special case of the representation
of PG(n,q) in GF(¢"*!), where, by analogous arguments, points can be represented by
polynomials of the form 29—~z over GF(¢" 1), withy € GF(¢"*!) and AR B e R

Now consider PG(3,q). Points are represented by a polynomial of the form z¢ — vz over
GF(q*), with v € GF(¢*) and A+’ e+l — 1. A line in PG(3,q) is a 2-dimensional linear
subspace of GF(q*) (or GF(q)*), which has a polynomial equation of degree ¢2. Since this
equation has to be GF(g)-linear, it is of the form W’ = 0, with

W' = 2% + az? + Gz,

where o, 8 € GF(g*). So aline of PG(3,q) is in fact a set {z € GF(¢*) | 29 +ax4-8z = 0}.
Since elements of this set are also zeros of

W' — (zq4 —x) — Q@ W' — (6'72 - aq2+q)W’
2 2 2 1 2 2 1
= (—a? B — af? + otz 4 (@07 FI3 — BTH | 1)y

and this is an equation of degree < g, both coefficients on the right-hand side must be
identically zero. Manipulating these coefficients we get the conditions ﬁ’f*’f*q“ =1 and
attl = g1 — B°+a+1 Again this is just a special case of the representation of PG(n, q)
in GF(¢q™*!), where a k-dimensional subspace can be represented by a polynomial of the
form

qk+1 qk qk—l
x + a1t 4+ asx + ...+ o,

for some a1, asz,...,ar € GF(¢"*!). For a survey on the use of polynomials of this type
in finite geometries, see [1].
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3. Construction

We work in the Desarguesian projective plane PG(2,q'). The points of PG(2,q") are
the one-dimensional subspaces of V(3,q?). If we look at GF(q') as being a t-dimensional
vector space over GF(q), then every vector in V(3,¢'), with 3 coordinates, can be seen
as a vector in V(3t,q), with 3t coordinates, just by expanding the coordinates over the
field GF(q). In this way a one-dimensional subspace in V (3, ¢") induces a t-dimensional
subspace in V' (3t,q). So the points of PG(2, ¢*) induce ¢-dimensional subspaces in V(3t, q).
The lines of PG(2, ¢'), which are 2-dimensional subspaces of V (3, ¢*), induce 2¢-dimensional
subspaces in V(3t,q). The points of PG(2,q¢"), seen as (t — 1)-dimensional subspaces in
PG(3t—1,q), form a normal spread S of PG(3t — 1, q), see [11]. A d-spread of PG(n,q) is
a set of d-dimensional pairwise disjoint subspaces which partition the points of the whole
space. Throughout this paper d is always equal to t — 1 and we refer to a (¢t — 1)- spread
as simply a spread. A spread S of PG(n,q) is called normal if and only if the space
generated by two spread elements is also partitioned by the spread elements of S. We
abuse notation and use S for the spread in PG(3t — 1,¢q) as well as in V(3t,q). If W
is a subspace of V(3t,q), then by B(W) we mean the set of points of PG(2,q"), which
correspond to the elements of S which have at least a one-dimensional intersection with W
in V(3t,q). Since lines of PG(2,q") induce 2¢-dimensional subspaces in V (3, q), it is clear
that every (t + 1)-dimensional subspace in V (3t, q) induces a blocking set in PG(2, q*), see
[12]. Every (t+2)-dimensional subspace in V' (3t, q) also induces a blocking set in PG(2, ¢*).
But it induces a (¢ + 1)-fold blocking set in PG(2,¢") if this (¢ + 2)-dimensional subspace
intersects every spread element in at most a one-dimensional subspace. An s-fold blocking
set constructed in this way, is called a linear s-fold blocking set. We will use the following
notation. If W is a subspace of V(3t, q), then we define

W= U (7| ¥ e P}

P:(PeS)A(PNW#{0})

So in fact, W is the union of the vectors of the spread elements corresponding to the points
of B(W).

In the following we will give a construction of a linear (g+1)-fold blocking set in PG(2, ¢*).
Let . ,
W' =27 +ax? + Bz

and

P =z — g,
with a, 8,7 € GF(q'2), v +a'H = 1, g+’ +*+1 = | and o0"+1 = go° — go*+a+1 By
Section 2 it is clear that W = {z € GF(¢'?)||[W’ = 0} is a 6 dimensional subspace of
V(12,q) and the set P = {z € GF(q'?)||P’ = 0} is a 4 dimensional subspace of V (12, q).

Theorem 3.1 The set B(W) is a (q + 1)-fold blocking set of size (¢ + 1)(¢* + ¢*> + 1) in
PG(2,q*) and is not the union of ¢+ 1 disjoint Baer subplanes.

Proof : First we show that the dimension of the intersection of the subspaces W and P
in V(12,q) is less than or equal to one. Solutions of both W/ = 0 and P’ = 0 are also
solutions of ]

a?B7 (Y (W = P') — a((W' = P'")7 — aP"))

A THC (W = P'TY1) — afP )yt — (4 (W' = P') — a(W' — P'7)7 — a4 P))1) = 0.
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This is .
(=B HD glatD) _ (0" +a"+a) o (a7 +) ) g4

(=BT et 4 47 g+ g 7(q4+q3+q2+1>aq)x =0,

which is a equation of degree ¢ in x. If the coefficients are not identically zero, then this
equation will have at most ¢ solutions. This means that the 6 dimensional subspace W
intersects every spread element P in at most one dimension. So we have to prove that
there exist o, 8 € GF(q'?), for which these coefficients are not identically zero.

Suppose

—B@ D glat)) _ @+ ) () — o (1)
and ] ‘

BT R 4 @ R@ ) ga (@ P e ), (2)

Equation (1) implies that NI+ +a = 37 +441=¢"  assuming a # 0. Substitution in (2)
gives us

—adtl 4 CYq(qm—l)(q—l)ﬁqz + aq—qgﬁq‘q' -0
or

_afH qu + a1112—q“-l—qg'—qzﬁq2 —0.
Since a9 1 = g4 — 4 +4°+1 this is equivalent with
6q7+q4*q3+q — 4t a1
. . P41 _ ag® C 4P +1
or again using « =07 - that
6q7+q47q3+q _ 7(6q3+1 _ 6q6+q3+1)q71_ (3)

This results in an equation of degree less than ¢” 4+ ¢*. So there are less than ¢” + ¢*
possibilities for 3 € GF(q'?) such that both coefficients are zero. We can conclude that
there exist a, 3 € GF(q'?), for which these coefficients are not identically zero; namely
where o # 0 and (3 does not satisfy (3).

Let m; denote the number of lines of PG(2,q?), which intersect B(W) in i points. Since
a line induces a 2¢-dimensional subspace in V (12, ¢), it is obvious that m; = 0, for all i ¢
e+, +q+ 1.+ +a+ 1L, "+ P+ +a+ 1L P+ + P+ P g+ 1) I
one of the last two intersection numbers occurs, this means that there is a line, seen in
V(12,q) as a 8-dimensional subspace, having a 5 or 6-dimensional intersection with W.
In both cases this implies that there is an element of the normal spread S intersecting
W in more than one dimension, which is impossible. So we have that m; = 0, for all i ¢
{a+1,¢*+q+1,*+¢*+q+1}. Let us put ly = mgq1, I3 = gz g1 and ly = mygs g2 g41-
Then by counting lines, point-line pairs and point-point-line triples we obtain a set of
equations from which we can solve la, I3 and I4 and these imply lo = p8 — p® — p? —p? — p,
I3 =p°+p*+p>+p?>+p+1andly =0. This implies that the 8-dimensional subspace
corresponding to a line of PG(2,q*), intersects W in a 2 or 3-dimensional subspace of
V(12,q).

Suppose now that the (¢ + 1)-fold blocking set B(W) is the union of ¢ + 1 disjoint Baer
subplanes of PG(2,¢*). Let B(B) be one of the Baer sublines of these Baer subplanes and
let L be the line of PG(2,q*) containing B(B). Then the 8-dimensional subspace induced
by L will intersect W in a 3-dimensional subspace D and B(B) induces a 4-dimensional
subspace B of V (12, ¢) contained in the 8-dimensional subspace corresponding to L, which
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intersect every element of the spread S in a zero or two-dimensional subspace of V (12, q).
(See Bose, Freeman and Glynn [9, Section 3] for a representation of a Baer subplane in
PG(5, q), which is analogous to this.) We will prove that B cannot be contained in D. First
we observe that B is in fact a 2-dimensional subspace over GF(¢?), so B = {«aii+37 || o, 3 €
GF(q*)}; while D is a 3-dimensional subspace over GF(q), so D = {\0+uZ+vy || \, p, v €
GF(q)}. From this it follows that B = {a(ai + 87) || o, 8 € GF(¢?),a € GF(¢*)} and
D = { b(\G + pZ+vf) || A\, p, v € GF(q),b € GF(¢*)}. Now observe that < B(@), B(7) >
over GF(q*) is in fact the line L. So we can write i, & and i as a linear combination of @
and ¥ over GF(q*). Without loss of generality, we can write

w a1
T 6217
v c3tl + ¢4,

with c1,c2,c3,c4 € GF(¢*). But if B is contained in D, then for all a € GF(q*) and
a, 3 € GF(q?) there exist b € GF(q*) and \, u, v € GF(q) such that

ac = b(Aey + ves)
B =b(ucz + vea),

which results in the equation

el +ves @ 9
—— =—-€eGF U .
s tves B (¢7) U{oc}

Let f be the map

[+ GF(q) x GF(q) x GF(q) — GF(q*) U {oo}

_Acy tres

pes +veq

FA w,v)

Then the image of f, 3(f), must contain GF(¢?). We remark that if 3(f) = GF(¢*)U{oo},
then D must be contained in B, which is of course impossible. But if f(\, u,v) € GF(¢?),
then

el +ves  _ el +ves

pes +ves’  pies ey

which gives us the equation

(Ae1 + 1/03)‘12 (pea + veq) — (pea + 1/04)‘12 (A1 +ves) = 0.

Since A, u, v € GF(q), this equation results in an quadratic equation in A\, u and v. Triples
(\, i, v) € GF(q)? can only give different values for f if they do not belong to the same
1-dimensional subspace of GF(q)3, i.e., if they represent different points in PG(2,q). So
the above equation will have at most 2¢q + 1 different solutions, namely the points of a
degenerate quadric in PG(2,q). If ¢ > 2 then 2¢+ 1 < ¢®> + 1 and if ¢ = 2 the final part of
the proof can be quite easily verified by considering the various possibilities for f. O
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