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Abstract

A (q + 1)-fold blocking set of size (q + 1)(q4 + q2 + 1) in PG(2, q4) is constructed,
which is not the union of q + 1 disjoint Baer subplanes.

1. Introduction

Let PG(2, q) (AG(2, q)), where q = ph and p is prime, be the Desarguesian projective
(affine) plane over GF (q), the finite field of order q. An s-fold blocking set B in PG(2, q)
is a set of points such that every line of PG(2, q) intersects B in at least s points. A 1-fold
blocking set is simply called a blocking set. If a blocking set contains a line of PG(2, q), then
it is called trivial. A blocking set is said to be minimal or irreducible if it contains no proper
subset which also forms a blocking set. For a survey on blocking sets, see Blokhuis [4].
There is less known about s-fold blocking sets, where s > 1. If the s-fold blocking set B in
PG(2, q) contains a line ℓ, then B\ℓ is a (s−1)-fold blocking set in AG(2, q) = PG(2, q)\ℓ.
The result from [2] gives the following:

Let B be an s-fold blocking set in PG(2, q) that contains a line and e maximal such that

pe|(s − 1), then |B| ≥ (s + 1)q − pe + 1.

This covers previous results by Bruen [7, 8], who proved the general bound (s+1)(q−1)+1
and Blokhuis [5], who proved (s + 1)q in the case (p, s − 1) = 1.

If the s-fold-blocking set does not contain a line then Hirschfeld [10, Theorem 13.31] states
that it has at least sq +

√
sq + 1 points. A Baer subplane of a projective plane of order q

is a subplane of order
√

q. The strongest result concerning s-fold blocking sets in PG(2, q)
not containing a line is a result of Blokhuis, Storme and Szőnyi [6]:

Let B be an s-fold blocking set in PG(2, q) of size s(q + 1) + c. Let c2 = c3 = 2−1/3 and

cp = 1 for p > 3.

1. If q = p2d+1 and s < q/2 − cpq
2/3/2 then c ≥ cpq

2/3.

2. If 4 < q is a square, s ≤ q1/4/2 and c < cpq
2/3, then c ≥ s

√
q and B contains the

union of s disjoint Baer subplanes.

3. If q = p2 and s < q1/4/2 and c < p⌈ 1
4 +

√

p+1
2 ⌉, then c ≥ s

√
q and B contains the

union of s disjoint Baer subplanes.

1



(q + 1)-FOLD BLOCKING SETS

This result is proved using lacunary polynomials. It is clear that the union of s disjoint
Baer subplanes in PG(2, q), where q is a square, is an s-fold blocking set. A line intersects
this set in either s or

√
q + s points. The result stated above means that an s-fold blocking

set of size s(q + 1) + c, where c is a constant, necessarily contains the union of s disjoint
Baer subplanes if s and c are small enough (s ≤ q1/6). The result we present here shows
that this bound is quite good. We construct s-fold blocking sets of size s(q +

√
q + 1) in

PG(2, q), with s = q1/4 + 1, which are not the union of s disjoint Baer subplanes.

2. The representations

In the following we will use representations of projective spaces used in [1] and [3].

The points of PG(2, q) are the 1-dimensional subspaces of GF (q3), considered as a 3-
dimensional vector space over GF (q). Such a subspace has an equation that is GF (q)-linear
of the form P ′ = 0, with

P ′ := xq − γx,

where γ ∈ GF (q3). So a point of PG(2, q) is in fact a set {x ∈ GF (q3) | xq − γx = 0}.
Since elements of this set are also zeros of

−P ′q2

+ (xq3 − x) − γq2

P ′q − γq2+qP ′ = (γq2+q+1 − 1)x

and this is an equation of degree ≤ 1, we necessarily have that γq2+q+1 = 1. So points
of PG(2, q) can be represented by polynomials of the form xq − γx over GF (q3), where

γ ∈ GF (q3) and γq2+q+1 = 1. Actually this is just a special case of the representation
of PG(n, q) in GF (qn+1), where, by analogous arguments, points can be represented by

polynomials of the form xq−γx over GF (qn+1), with γ ∈ GF (qn+1) and γqn+qn−1+...+1 = 1.

Now consider PG(3, q). Points are represented by a polynomial of the form xq − γx over

GF (q4), with γ ∈ GF (q4) and γq3+q2+q+1 = 1. A line in PG(3, q) is a 2-dimensional linear
subspace of GF (q4) (or GF (q)4), which has a polynomial equation of degree q2. Since this
equation has to be GF (q)-linear, it is of the form W ′ = 0, with

W ′ := xq2

+ αxq + βx,

where α, β ∈ GF (q4). So a line of PG(3, q) is in fact a set {x ∈ GF (q4) | xq2

+αxq+βx = 0}.
Since elements of this set are also zeros of

W ′q2 − (xq4 − x) − αq2

W ′q − (βq2 − αq2+q)W ′

= (−αq2

βq − αβq2

+ αq2+q+1)xq + (αq2+qβ − βq2+1 + 1)x

and this is an equation of degree ≤ q, both coefficients on the right-hand side must be
identically zero. Manipulating these coefficients we get the conditions βq3+q2+q+1 = 1 and
αq+1 = βq − βq2+q+1. Again this is just a special case of the representation of PG(n, q)
in GF (qn+1), where a k-dimensional subspace can be represented by a polynomial of the
form

xqk+1

+ α1x
qk

+ α2x
qk−1

+ . . . + αkx,

for some α1, α2, . . . , αk ∈ GF (qn+1). For a survey on the use of polynomials of this type
in finite geometries, see [1].
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3. Construction

We work in the Desarguesian projective plane PG(2, qt). The points of PG(2, qt) are
the one-dimensional subspaces of V (3, qt). If we look at GF (qt) as being a t-dimensional
vector space over GF (q), then every vector in V (3, qt), with 3 coordinates, can be seen
as a vector in V (3t, q), with 3t coordinates, just by expanding the coordinates over the
field GF (q). In this way a one-dimensional subspace in V (3, qt) induces a t-dimensional
subspace in V (3t, q). So the points of PG(2, qt) induce t-dimensional subspaces in V (3t, q).
The lines of PG(2, qt), which are 2-dimensional subspaces of V (3, qt), induce 2t-dimensional
subspaces in V (3t, q). The points of PG(2, qt), seen as (t − 1)-dimensional subspaces in
PG(3t− 1, q), form a normal spread S of PG(3t− 1, q), see [11]. A d-spread of PG(n, q) is
a set of d-dimensional pairwise disjoint subspaces which partition the points of the whole
space. Throughout this paper d is always equal to t − 1 and we refer to a (t − 1)- spread
as simply a spread. A spread S of PG(n, q) is called normal if and only if the space
generated by two spread elements is also partitioned by the spread elements of S. We
abuse notation and use S for the spread in PG(3t − 1, q) as well as in V (3t, q). If W
is a subspace of V (3t, q), then by B(W ) we mean the set of points of PG(2, qt), which
correspond to the elements of S which have at least a one-dimensional intersection with W
in V (3t, q). Since lines of PG(2, qt) induce 2t-dimensional subspaces in V (3t, q), it is clear
that every (t + 1)-dimensional subspace in V (3t, q) induces a blocking set in PG(2, qt), see
[12]. Every (t+2)-dimensional subspace in V (3t, q) also induces a blocking set in PG(2, qt).
But it induces a (q + 1)-fold blocking set in PG(2, qt) if this (t + 2)-dimensional subspace
intersects every spread element in at most a one-dimensional subspace. An s-fold blocking
set constructed in this way, is called a linear s-fold blocking set. We will use the following
notation. If W is a subspace of V (3t, q), then we define

W̃ =
⋃

P :(P∈S)∧(P∩W 6={~0})

{~v | ~v ∈ P}.

So in fact, W̃ is the union of the vectors of the spread elements corresponding to the points
of B(W ).

In the following we will give a construction of a linear (q+1)-fold blocking set in PG(2, q4).
Let

W ′ := xq6

+ αxq3

+ βx

and
P ′ := xq4 − γx,

with α, β, γ ∈ GF (q12), γq8+q4+1 = 1, βq9+q6+q3+1 = 1 and αq3+1 = βq3 − βq6+q3+1. By
Section 2 it is clear that W = {x ∈ GF (q12)‖W ′ = 0} is a 6 dimensional subspace of
V (12, q) and the set P = {x ∈ GF (q12)‖P ′ = 0} is a 4 dimensional subspace of V (12, q).

Theorem 3.1 The set B(W ) is a (q + 1)-fold blocking set of size (q + 1)(q4 + q2 + 1) in

PG(2, q4) and is not the union of q + 1 disjoint Baer subplanes.

Proof : First we show that the dimension of the intersection of the subspaces W and P
in V (12, q) is less than or equal to one. Solutions of both W ′ = 0 and P ′ = 0 are also
solutions of

αqβq2

(γq3

(W ′ − P ′q2

) − α((W ′ − P ′q2

)q − αqP ′))

−γq3+q2

(((W ′ − P ′q2

)q) − αqP ′)γq4 − (γq3

(W ′ − P ′q2

) − α((W ′ − P ′q2

)q − αqP ′))q) = 0.
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This is
(−β(q2+q)α(q+1) − γ(q3+q2+q)α(q2+q))xq

+(−γβq2

α(2q+1) + γq3

β(q2+1)αq − γ(q4+q3+q2+1)αq)x = 0,

which is a equation of degree q in x. If the coefficients are not identically zero, then this
equation will have at most q solutions. This means that the 6 dimensional subspace W
intersects every spread element P in at most one dimension. So we have to prove that
there exist α, β ∈ GF (q12), for which these coefficients are not identically zero.

Suppose

−β(q2+q)α(q+1) − γ(q3+q2+q)α(q2+q) = 0 (1)

and
−γβq2

α(2q+1) + γq3

β(q2+1)αq − γ(q4+q3+q2+1)αq = 0. (2)

Equation (1) implies that γq3+q2+q = −βq2+qα1−q2

, assuming α 6= 0. Substitution in (2)
gives us

−αq+1 + αq(q10−1)(q−1)βq2

+ αq−q3

βq3

= 0

or
−αq3+1 + βq3

+ αq12−q11+q3−q2

βq2

= 0.

Since αq3+1 = βq3 − βq6+q3+1, this is equivalent with

βq7+q4−q3+q = −αq4−q3+q−1

or again using αq3+1 = βq3 − βq6+q3+1 that

βq7+q4−q3+q = −(βq3+1 − βq6+q3+1)q−1. (3)

This results in an equation of degree less than q7 + q4. So there are less than q7 + q4

possibilities for β ∈ GF (q12) such that both coefficients are zero. We can conclude that
there exist α, β ∈ GF (q12), for which these coefficients are not identically zero; namely
where α 6= 0 and β does not satisfy (3).

Let mi denote the number of lines of PG(2, q4), which intersect B(W ) in i points. Since
a line induces a 2t-dimensional subspace in V (12, q), it is obvious that mi = 0, for all i /∈
{q + 1, q2 + q + 1, q3 + q2 + q + 1, q4 + q3 + q2 + q + 1, q5 + q4 + q3 + q2 + q + 1}. If
one of the last two intersection numbers occurs, this means that there is a line, seen in
V (12, q) as a 8-dimensional subspace, having a 5 or 6-dimensional intersection with W .
In both cases this implies that there is an element of the normal spread S intersecting
W in more than one dimension, which is impossible. So we have that mi = 0, for all i /∈
{q+1, q2+q+1, q3+q2+q+1}. Let us put l2 = mq+1, l3 = mq2+q+1 and l4 = mq3+q2+q+1.
Then by counting lines, point-line pairs and point-point-line triples we obtain a set of
equations from which we can solve l2, l3 and l4 and these imply l2 = p8 − p5 − p3 − p2 − p,
l3 = p5 + p4 + p3 + p2 + p + 1 and l4 = 0. This implies that the 8-dimensional subspace
corresponding to a line of PG(2, q4), intersects W in a 2 or 3-dimensional subspace of
V (12, q).

Suppose now that the (q + 1)-fold blocking set B(W ) is the union of q + 1 disjoint Baer
subplanes of PG(2, q4). Let B(B) be one of the Baer sublines of these Baer subplanes and
let L be the line of PG(2, q4) containing B(B). Then the 8-dimensional subspace induced
by L will intersect W in a 3-dimensional subspace D and B(B) induces a 4-dimensional
subspace B of V (12, q) contained in the 8-dimensional subspace corresponding to L, which
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intersect every element of the spread S in a zero or two-dimensional subspace of V (12, q).
(See Bose, Freeman and Glynn [9, Section 3] for a representation of a Baer subplane in
PG(5, q), which is analogous to this.) We will prove that B̃ cannot be contained in D̃. First
we observe that B is in fact a 2-dimensional subspace over GF (q2), so B = {α~u+β~v ‖ α, β ∈
GF (q2)}; while D is a 3-dimensional subspace over GF (q), so D = {λ~w+µ~x+ν~y ‖ λ, µ, ν ∈
GF (q)}. From this it follows that B̃ = {a(α~u + β~v) ‖ α, β ∈ GF (q2), a ∈ GF (q4)} and
D̃ = { b(λ~w + µ~x + ν~y) ‖ λ, µ, ν ∈ GF (q), b ∈ GF (q4)}. Now observe that < B(~u), B(~v) >
over GF (q4) is in fact the line L. So we can write ~w, ~x and ~y as a linear combination of ~u
and ~v over GF (q4). Without loss of generality, we can write

~w = c1~u
~x = c2~v
~y = c3~u + c4~v,

with c1, c2, c3, c4 ∈ GF (q4). But if B̃ is contained in D̃, then for all a ∈ GF (q4) and
α, β ∈ GF (q2) there exist b ∈ GF (q4) and λ, µ, ν ∈ GF (q) such that

{

aα = b(λc1 + νc3)
aβ = b(µc2 + νc4),

which results in the equation

λc1 + νc3

µc2 + νc4
=

α

β
∈ GF (q2) ∪ {∞}.

Let f be the map

f : GF (q) × GF (q) × GF (q) → GF (q4) ∪ {∞}

f(λ, µ, ν) =
λc1 + νc3

µc2 + νc4
.

Then the image of f , ℑ(f), must contain GF (q2). We remark that if ℑ(f) = GF (q2)∪{∞},
then D̃ must be contained in B̃, which is of course impossible. But if f(λ, µ, ν) ∈ GF (q2),
then

(
λc1 + νc3

µc2 + νc4
)q2

=
λc1 + νc3

µc2 + νc4
,

which gives us the equation

(λc1 + νc3)
q2

(µc2 + νc4) − (µc2 + νc4)
q2

(λc1 + νc3) = 0.

Since λ, µ, ν ∈ GF (q), this equation results in an quadratic equation in λ, µ and ν. Triples
(λ, µ, ν) ∈ GF (q)3 can only give different values for f if they do not belong to the same
1-dimensional subspace of GF (q)3, i.e., if they represent different points in PG(2, q). So
the above equation will have at most 2q + 1 different solutions, namely the points of a
degenerate quadric in PG(2, q). If q > 2 then 2q + 1 < q2 + 1 and if q = 2 the final part of
the proof can be quite easily verified by considering the various possibilities for f . 2
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