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Abstract. This article is about finite commutative semifields that are of rank
2 over their nucleus, the largest subset of elements that is a finite field. These
semifields have a direct correspondence to certain flocks of the quadratic cone in
PG(3, q) and to certain ovoids of the parabolic space Q(4, q). We shall consider
these links, the known examples and non-existence results.

1 Semifields

A finite semifield S is a finite algebraic system that possesses two binary
operations, addition and multiplication, which satisfy the following axioms.

(S1) Addition is a group with identity 0.
(S2) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ S.
(S3) There exists an element 1 6= 0 such that 1a = a = a1 for all a ∈ S.
(S4) If ab = 0 then either a = 0 or b = 0.

Throughout this article the term semifield will refer to a finite semifield. The
additive group of a semifield must be commutative. By (S2),

(ac+ ad) + (bc+ bd) = (a+ b)(c+ d) = (ac+ bc) + (ad+ bd).

Hence, ad + bc = bc+ ad and any elements that can be written as products
commute under addition. By (S4) and finiteness, any element of S can be
written as a product and so it follows that the additive group is abelian.
Moreover it is not difficult to show that the group is elementary abelian.
Let a 6= 0, and let p be the additive order of a. If p is not prime then we
can write p = rs for r and s integers not equal to 1, and by observing that
0 = (pa)a = (rsa)a = (ra)(sa) we get a contradiction from (S4). The fact
that every nonzero element has prime order suffices to show that the group is
elementary abelian, and that all nonzero elements have the same prime order
p. This number p is the characteristic of the semifield. An elementary abelian
group can be viewed as a vector space over a finite field. In particular S has
pn elements where n is the dimension of S over the field GF (p). There are
many examples of semifields known and some standard constructions can be
found in Knuth [17]. If the order is p, the semifield must be GF (p). If the
order is p2, the semifield is GF (p2). This is not difficult to see. Let {1, x}
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be a basis for the semifield. Multiplication is determined by x2 = ax + b
and the polynomial x2 − ax − b has no roots in GF (p) else we would have
x2 − ax − b = (x − r)(x − s) = 0 contradicting (S4). Thus x2 − ax − b
is irreducible and the multiplication is GF (p2). This short argument comes
again from [17] where it is also determined that the only semifield of order
8 is GF (8). And completing the question of existence Albert [1] and Knuth
[17] construct semifields that are not finite fields for every other order q = ph,
that is h ≥ 3 if p is odd and h ≥ 4 if p = 2.

The major motivation to study semifields in the 1960’s was their use in
the construction of projective planes, see Hughes and Piper [14] or Hall [13].
Every semifield determines a projective plane and the projective plane is
Desarguesian if and only if the semifield is a field. The incidence structure
constructed from a semifield S with

Points: (0, 0, 1) Lines: [0, 0, 1]
(0, 1, a) [0, 1, a] a ∈ S
(1, a, b) [1, a, b] a, b ∈ S

such that the point (x1, x2, x3) is incident with the line [y1, y2, y3] if and only
if

y1x3 = x2y2 + x1y3

is a projective plane π(S) of order |S|. It is a simple matter to check that
any two points of π(S) are incident with a unique line and dually that any
two lines of π(S) are incident with a unique point and hence that π(S) is a
projective plane. However it is harder to determine when two semifields S
and S′ determine the same projective plane, i.e. π(S) ∼= π(S′). In [17] Knuth
defines an isotopism from S to S′ and shows that an isotopism is equivalent
to a set of three 1-1 maps (F,G,H) linear over GF (p) from S to S′, such
that

(ab)H = (aF )(bG)

for all a, b, c ∈ S. Two semifields S and S′ are isotopic if there is an isotopism
from S to S′. We have the following theorem due to Albert, a proof of which
can be found in [17].

Theorem 1. Two semifields coordinatize the same projective plane if and
only if they are isotopic.

In his original work on semifields Dickson [10] considered constructing
commutative semifields, that is semifields that satisfy

(S5) ab = ba for all a and b in S.

We define the nucleus of a commutative semifield to be

N := {x | (ax)b = a(xb), ∀a, b ∈ S}.
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It is clear that N contains the field GF (p) where p is the characteristic and
that N is itself a finite field. Moreover, S can be viewed as a vector space
over its nucleus. Dickson [11] gave a construction of a commutative semifield
of rank 2 over its nucleus. It is as follows. Let S := {(x, y) | x, y ∈ GF (q)}
and let σ be an automorphism of GF (q) where q is odd. Addition is defined
component-wise and multiplication by

(x, y)(u, v) = (xv + yu, yv +mxσuσ)

where m is a non-square in GF (q). The only axiom that requires much
thought is (S4) and we shall check this in a more general setting shortly.
In this article we shall only be concerned with commutative semifields that
are of rank 2 over their nucleus which are in direct correspondence with
certain useful geometric objects.

Cohen and Ganley [8] made significant progress in the investigation of
commutative semifields of rank 2 over their nucleus. They put Dickson’s con-
struction in the following more general setting. Let S be a commutative semi-
field of order q2 with nucleus GF (q). Then there is an α ∈ S\GF (q) such that
{1, α} is a basis for S. Addition in S is component-wise and multiplication
is defined as

(xα+ y)(uα+ v) = xuα2 + (xv + yu)α+ yv (1)

where xα2 = g(x)α+ f(x), f and g are functions from GF (q) → GF (q). The
distributive laws are satisfied if and only if both f and g are linear maps, in
other words, f(x + y) = f(x) + f(y) and g(x + y) = g(x) + g(y) for all x, y
in GF (q). Thus we must check (S4). Suppose that

(xα + y)(uα+ v) = 0

and that x, y, u and v are non-zero. It follows that

g(xu) + xv + yu = 0

and
f(xu) + yv = 0

and eliminating y that

xv2 + vg(xu) − uf(xu) = 0.

Writing xu = z and v/u = w

zw2 + g(z)w − f(z) = 0.

If one or more of x, y, u or v is zero it follows immediately that at least one
of (x, y) or (u, v) is (0, 0). Hence we have proved the following theorem which
comes from [8].
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Theorem 2. Let S be a commutative semifield of rank 2 over its nucleus
GF (q). Then there exist linear functions f and g such that multiplication in
S is defined as in (1) and zw2 + g(z)w− f(z) = 0 has no solutions for all w,
z ∈ GF (q) and z 6= 0.

If q is odd then this quadratic in w will have no solutions in GF (q) if and
only if

g(z)2 + 4zf(z)

is a non-square for all z ∈ GF (q)∗. Cohen and Ganley [8] prove the following
theorem for q even.

Theorem 3. For q even the only commutative semifield of rank 2 over its
nucleus GF (q) is the finite field GF (q2).

In light of this theorem we restrict ourselves to the case q is odd.
Let us consider again the example of Dickson. We have g = 0 and f(z) =

mzσ where m is a non-square. We had only to check that (S4) is satisfied and
this is clear since g(z)2+4zf(z) = 4mzσ+1 is a non-square for all z ∈ GF (q)∗.

2 Flocks of the Quadratic Cone

Let q be an odd prime power and let K be a quadratic cone of PG(3, q) with
vertex v and base a conic C. The quadratic cones of PG(3, q) are equivalent
under the action of PGL(4, q) so we can assume that v is the point 〈0, 0, 0, 1〉
and the conic C in the plane π with equation X3 = 0, is the set of zeros of
X0X1 = X2

2 .
A flock F of K is a partition of K \ {v} into q conics. We call the planes

that contain conics of the flock the planes of the flock. A flock F is equivalent
to a flock F ′ if there is an element in the stabiliser group of the quadratic
cone that maps the planes of the flock F to the planes of the flock F ′. If all
the planes of the flock share a line then the flock is called linear.

Let
a0X0 + a1X1 + a2X2 + a3X3 = 0

be a plane of the flock. Since 〈0, 0, 0, 1〉 is disjoint from any plane of the flock
a3 6= 0 and hence we may assume that a3 = 1. The point 〈1, 0, 0,−a0〉 is
incident with the quadratic cone and this plane and hence the coefficients of
X0 in the planes of the flock are distinct. Hence we can parameterise by the
elements of GF (q) so that the planes of the flock are

πt : tX0 − f(t)X1 + g(t)X2 +X3 = 0

where t ∈ GF (q) and f and g are functions from GF (q) → GF (q).
The points that are incident with the line that is the intersection of two

planes of the flock πt and πs are incident with the plane

(t− s)X0 − (f(t) − f(s))X1 + (g(t) − g(s))X2 = 0.



Commutative semifields 5

The points that are incident with the cone K satisfy the equationX0X1 = X2
2 .

If the equation

(t− s)X2
2 − (f(t) − f(s))X2

1 + (g(t) − g(s))X1X2 = 0

has a solution then we can find a line on the cone, by choosing the X0

coordinate appropriately, that would be contained in the plane above, and
hence a point on the cone and incident with both the planes πt and πs. The
flock property implies that no such point exists and hence that this equation
has no solutions. There is no solution with X1 = 0 as this would imply that
X2 = 0 and that t = s. Hence we can put w = X2/X1 and we have the
forward implication of the following theorem which is due to Thas [24].

Theorem 4. Let F be a flock of the quadratic cone with vertex 〈0, 0, 0, 1〉 and
base X0X1 = X2

2 . Then there exists functions f and g from GF (q) → GF (q)
such that the planes of the flock are

tX0 − f(t)X1 + g(t)X2 +X3 = 0

where t ∈ GF (q) and F is a flock if and only if

(t− s)w2 + (g(t) − g(s))w − (f(t) − f(s)) = 0

has no solution for all s and t ∈ GF (q), s 6= t.

If f and g are linear then the condition of the theorem says that F is a flock
if and only if

zw2 + g(z)w − f(z) = 0

has no solutions for w ∈ GF (q) and z ∈ GF (q)∗. A flock with this property
is called a semifield flock as such a flock is in one-to-one correspondence
with a commutative semifield of rank 2 over its nucleus. This is clear from
Theorem 2. The commutative semifield S = {(x, y) | x, y ∈ GF (q)} where
addition is defined component-wise and multiplication is defined by

(x, y)(u, v) = (xv + yu+ g(xu), yv + f(xu))

is the semifield associated to the flock F .

name g(x) f(x) q = ph

linear 0 mx all
Dickson [10] Kantor [16] Knuth [17] 0 mxσ

Cohen-Ganley [8] Thas-Payne [26] x3 m−1x + mx9 3h

Penttila-Williams [22], [3] x9 x27 35

Table 1. The known examples of semifield flocks up to equivalence
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The known examples of semifield flocks up to equivalence are listed in Ta-
ble 2. In all relevant cases m is taken to be a non-square in GF (q) and σ is a
nontrivial automorphism of GF (q). Some of the links between the commuta-
tive semifields, certain ovoids of Q(4, q), semifield flocks of the quadratic cone
and semifield translation planes were not known until recently and hence in
most cases more than one person or persons is accredited with the discovery
of the functions f and g. In fact in the second case Dickson [10] discovered
the semifield, Kantor [16] the ovoid and Knuth [17] the semifield plane. In
the third example Cohen and Ganley [8] discovered the semifield while Thas
and Payne found the ovoid [26]. And in the fourth example Penttila and
Williams discovered the ovoid [22] and details concerning the corresponding
flock were investigated by Bader, Lunardon and Pinneri [3]. We shall discuss
these equivalent objects in the following sections and explain the links be-
tween them and how this can be of use. Firstly however we shall check that
the last two examples in Table 2 do indeed satisfy the condition of Theorem 2
and Theorem 4. In the Cohen-Ganley Thas-Payne example

g(x)2 + 4xf(x) = g(x)2 + xf(x) = x6 +m−1x2 +mx10 = m(x5 −m−1x)2

which is a non-square for all x ∈ GF (3h)∗.
The Penttila-Williams example is somewhat more difficult to prove. The

following comes from [2]. We have that

g(x)2 + 4xf(x) = g(x)2 + xf(x) = x6 + x28 = x6(1 + x22)

and since 35 − 1 = 242 = 2.112 we need to show that 1 + ǫ is a non-square
for all ǫ such that ǫ11 = 1. Now (q − 1)/2 = 121 = 1 + 3 + 32 + 33 + 34 and
in GF (35)

(1 + ǫ)121 = (1 + ǫ)(1 + ǫ3)(1 + ǫ9)(1 + ǫ27)(1 + ǫ81).

The set {1, 3, 9, 27, 81} are the squares modulo 11 and each non-zero inte-
ger modulo 11 can be written exactly 3 times as the sum of elements of
{1, 3, 9, 27, 81} modulo 11. Hence in GF (35)

(1 + ǫ)121 = 2 = −1

and 1 + ǫ is a non-square for all ǫ such that ǫ11 = 1.
The following theorem comes from [12].

Theorem 5. The projective planes obtained from the flocks F and F ′ are
isomorphic if and only if the flocks F and F ′ are equivalent.

The projective planes in Theorem 5 are constructed, via the Bruck Bose
André method, from the spread

{〈(y, x, 1, 0), (f(x), y + g(x), 0, 1)〉 | x, y ∈ GF (q)} ∪ {〈(1, 0, 0, 0), (0, 1, 0, 0)〉}.
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This plane is a semifield plane. Following [9, (5.1.2)] the spread comes from
the spread set

D =

{(

y + g(x) x
f(x) y

)

| x, y ∈ GF (q)

}

which has the property that the determinant of M − N is non-zero for all
distinct M , N ∈ D. The plane is coordinatised by the semifield whose multi-
plication is defined by

(

x
y

)

.

(

u
v

)

=

(

v + g(u) u
f(u) v

)(

x
y

)

=

(

xv + yu+ xg(u)
yv + xf(u)

)

.

We can check that this multiplication defines a semifield. It is only condition
(S4) that requires some work. If

xg(u) + xv + yu = 0

and
xf(u) + yv = 0

then
xv2 + xg(u)v − xuf(u) = 0.

If x = 0 one can check that then one of either (x, y) or (u, v) is equal to (0, 0).
If x 6= 0 then, since g(u)2 + 4uf(u) is a non-square for all u ∈ GF (q)∗, u = 0
and it follows that (u, v) = (0, 0). Hence this is a semifield. Note that this
means we can construct a not necessarily commutative semifield from the
functions f and g. Now semifields that we get from the above multiplication
will be isotopic if there corresponding flocks are equivalent by Theorem 1 and
Theorem 5. However we have not proved that the commutative semifields that
we get from the functions f and g are isotopic if and only if their associated
flocks are equivalent.

The following theorem which we prove in Section 6 shows that there is an
isotopism between two commutative semifields if their associated flocks are
equivalent.

Theorem 6. F and F̂ are equivalent semifield flocks if and only if there
exists a linear one-to-one map F from S to Ŝ and a GF (p) linear map H
from S to Ŝ such that

(ab)H = (aF ).(bF )

for all a, b ∈ S where . is multiplication in Ŝ and F and F̂ are the semifield
flocks associated to the commutative semifields S and Ŝ of rank 2 over their
nucleus GF (q), q = pn, respectively.

Let us consider for the moment a flock that is linear, i.e. with the property
that all the planes of the flock contain a common line. The points that are
dual to the planes of the flock

{〈t,−f(t), g(t), 1〉 | t ∈ GF (q)}
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are collinear and so (f(t)−f(s))/(t−s) and (g(t)−g(s))/(t−s) are constant
for all s 6= t. Hence f and g have polynomial degree 1. The following theorem
is from Thas [24].

Theorem 7. A flock whose planes are all incident with a common point is
either linear (in which case the planes of the flock share a common line) or
equivalent to a semifield flock of Dickson, Kantor, Knuth type.

Remark 1. It follows from this theorem that the semifield flocks we obtain
directly from the Cohen-Ganley so-called sporadic example of a semifield
and the semifields from [23] are equivalent to a semifield flock of Dickson,
Kantor, Knuth type. In [23, Theorem 1] g(t) = t

√
q and f(t) = ct and it is

a simple matter to check that the planes of the flock are all incident with
the point 〈c, 1, 0, 0〉 and in [23, Theorem 2] g(t) = at + bt

√
q and f(t) = t

and the planes of the flock are all incident with the point 〈1, 1, 0, 0〉. As
mentioned in [12] the sporadic example of Cohen and Ganley over GF (52)
with g(t) = t5 and f(t) = 2

√
2t5 + t the planes of the flock are all incident

with the point 〈1, 1, 2
√

2, 0〉. By Theorem 6 their associated commutative
semifields are isotopic to a Dickson, Kantor, Knuth semifield. All known
examples of commutative semifields are isotopic to one of the commutative
semifields constructed from the pairs of functions in Table 1.

In the following argument we are going to use the so-called linear repre-
sentation of PG(2, q) so let us recall what we mean by this (for more details
see [20]). Let GF (q0) be a subfield of GF (q), q = qn

0 . Let V be the vector
space of rank 3 over GF (q). The projective plane PG(2, q) is the incidence
geometry whose points are the subspaces of rank 1 of V and whose lines are
the subspaces of rank 2 of V . However V is a vector space of rank 3n over
GF (q0) and the points of PG(2, q) are subspaces of rank n which are mutu-
ally disjoint and cover V \0, i.e. they form a spread Λ. The spread Λ induces
a spread in the subspace generated by any two elements of Λ (since this
subspace is a line of PG(2, q)). We call a spread with this property normal.

Let us consider a semifield flock F . The points

{〈t,−f(t), g(t), 1〉 | t ∈ GF (q)}

that are dual to the planes of the flock project on to the plane X3 = 0 the
set of points

W := {〈t,−f(t), g(t), 0〉 | t ∈ GF (q)}.
The functions f and g are linear over some subfield GF (q0) of GF (q). Hence
if we look at the linear representation of the plane X3 = 0 this set W is a
subspace of rank n.

The vertex of the quadratic cone is the point 〈0, 0, 0, 1〉 and this point is
dual to the plane X3 = 0 and the q + 1 lines on the quadratic cone are dual
to a set of q+ 1 lines in the plane X3 = 0 that are tangents to some conic C′.
The definition of a flock implies that the points in W are not incident with
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a tangent to this conic C′, i.e. the set W is contained in the internal points
of the conic C′. If the flock is linear then the set W is a point of the plane
X3 = 0. Theorem 7 implies that the flock is of Dickson, Kantor, Knuth type
if and only if the set W is contained in a line of the plane X3 = 0. In all other
cases the set W in the linear representation contains a subplane PG(2, q0)
that is contained in the internal points of a conic in PG(2, q). However this
cannot always occur. The following is from [4].

Theorem 8. If there is a subplane of order q0 contained in the internal
points of a conic in PG(2, q) where q = qn

0 then q0 < 4n2 − 8n+ 2.

The above argument leads immediately to the following corollaries.

Corollary 1. A semifield flock of the quadratic cone of PG(3, q) whose defin-
ing functions f and g are linear over the subfield GF (q0) where q = qn

0 and
q0 ≥ 4n2−8n+2 is either a linear flock or a Dickson, Kantor, Knuth semifield
flock.

Corollary 2. A commutative semifield of rank 2 over its nucleus GF (q) that
has defining functions f and g which are linear over the subfield GF (q0) where
q = qn

0 and q0 ≥ 4n2 − 8n+ 2 is either the finite field GF (q2) or isotopic to
a Dickson, Kantor, Knuth semifield.

Remark 2. We may expect something much stronger than this bound to hold.
Indeed we can see that the theorem hypothesis requires that their is a sub-
plane in the internal points of the conic. However in fact the set W is con-
tained in the internal points of a conic and in the linear representation of
PG(2, q) it is a subspace of rank n over GF (q0).

The bound in the theorem for n = 3 gives q0 < 14 and by computer
Bloemen, Thas and van Maldeghem [5] have checked that there are no other
semifield flocks other than the linear flock and the Dickson, Kantor, Knuth
flocks. Note also that the only other known examples have q0 = 3.

3 The generalized quadrangle T (E)

A generalized quadrangle is a set of points and a set of lines with an incidence
relation that satisfies the following axioms.

(Q1) Every two points are incident with at most one line;
(Q2) For all anti-flags (p, L) (the point p is not incident with the line L)

there is exactly one point incident with L and collinear with p.
(Q3) There is no point collinear with all others.

Let G be a generalized quadrangle in which there is a line incident with
at least three points and a point incident with at least three lines. It is
not difficult to prove that the number of points incident with a line, and the
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number of lines incident with a point, are constants. We sayG is a generalized
quadrangle of order s, t if every line is incident with s+ 1 points and every
point is incident with t+ 1 lines.

An egg Em,n of PG(2n + m − 1, q) is a set of qm + 1 (n − 1)-subspaces
with the properties that any three elements of Em,n span a (3n − 1)-space
and every element of Em,n is contained in a (n + m − 1)-subspace called a
tangent space that is skew from all other elements of Em,n. We write E for
Em,n when no confusion is possible.

The following construction of the generalized quadrangle T (Em,n) from
an egg is based on a construction due to Tits and comes from Payne and
Thas [21]. Let Em,n be an egg of π = PG(2n+m−1, q) and embed the space
π in PG(2n+m, q). Points are defined as

(i) the points of PG(2n+m, q) \ π,
(ii) the (n + m)-spaces of PG(2n + m, q) that contain a tangent space of

Em,n but are not contained in π,
(iii) a symbol (∞).

Lines are defined as

(a) the n-spaces of PG(2n+m, q) which contain an element of Em,n but are
not contained in π,

(b) the elements of Em,n.

Incidence is as follows. A point of type (i) is incident with a line of type (a)
if they are incident in PG(2n + m, q). A point of type (ii) is incident with
the lines of type (a) which it contains and the unique line of type (b) which
it contains. The point of type (iii) is incident with all lines of type (b).

T (Em,n) is a generalized quadrangle of order (qn, qm), [21, Theorem 8.7.1]
or [18, Theorem 3.3.1]. Let C be a non-singular conic in PG(2, qn

0 ). In the
linear representation described in the previous section the qn

0 + 1 points of C
become qn

0 +1 (n−1)-subspaces of PG(3n−1, q0) which form an egg EC whose
tangent spaces correspond to the set of tangent lines of C. The generalized
quadrangle T (EC) is the Tits generalized quadrangle T2(C) of order (qn

0 , q
n
0 ).

An ovoid O of a generalised quadrangle is a set of points with the prop-
erty that every line is incident with exactly one point of O. An ovoid of a
generalised quadrangle of order (s, t) contains st+ 1 points.

Let us consider an ovoid O of T2(C) that contains the point (∞). The set
O \ {(∞)} is a set of q2n points of type (a) with the property that the line
of PG(3n, q0) spanned by any two of them meets π in a point not contained
in an element of the egg EC .

Let us consider again the set W from the previous section which is con-
tained in the internal points of a conic C′. In the linear representation W is
a (n − 1)-subspace of a (3n − 1)-space π′ disjoint from all elements and all
tangent spaces of the egg EC′ . In the dual space the space W∗ dual to W is a
(2n − 1)-subspace of a (3n − 1)-space π disjoint from the (n − 1)-subspaces
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dual to the tangent spaces. In the dual setting we have an egg EC where C is
the dual of the conic C′. Embed π in a (3n)-space and let P be any point of
PG(3n, q) \ π. The (2n)-subspace 〈W∗, P 〉 has the property that any two of
its points span a line that meets π in point not in the egg EC . Hence

(〈W∗, P 〉 \ π) ∪ {(∞)}

is an ovoid of the generalised quadrangle T2(C).
The above argument was first explained by Thas [25].

4 Ovoids of Q(4, q)

In this section we shall see that T2(C) is isomorphic to the classical generalised
quadrangleQ(4, q) and hence that commutative semifields of rank 2 over their
nucleus imply certain ovoids of Q(4, q).

A quadratic form Q(x) on a vector space V over a field F satisfies the
axioms

Q(λx) = λ2Q(x) for all x ∈ V

Q(x + y) = Q(x) +Q(y) + b(x,y)

where b(x,y) is a bilinear form. A totally singular subspace S is a subspace
with the property that Q(x) = 0, Q(y) = 0 and b(x,y) = 0 for all x, y ∈ S.

We restrict ourselves to the case where the field F = GF (q) and the max-
imum rank of a totally singular subspace is 2. The classification of quadratic
forms over a finite field says that there are three such inequivalent non-
singular quadratic forms (for more details on the equivalence and singular-
ity of quadratic forms see [6]). Let G denote the geometry whose points
are the totally singular subspaces of rank 1 and whose lines are the to-
tally singular subspaces of rank 2 for one of these quadratic forms. Let 〈x〉
and S be totally singular subspaces of rank 1 and 2 respectively such that
x 6∈ S, i.e. a non-incident point and line of G. The rank of S ∩ x⊥ where
x⊥ := {z ∈ V | b(x, z) = 0} is 1 since x⊥ is a hyperplane not containing
S. In terms of the geometry this implies that for a non-incident point P and
line l of G there is a unique point P ′ incident with l and collinear with P .
Hence from the three quadratic forms we obtain three generalised quadran-
gles which are called the classical orthogonal generalised quadrangles. These
are listed in Table 2 in which g is an irreducible homogeneous quadratic form.

An ovoid O of a classical orthogonal generalised quadrangle of order (s, t)
is a set of st+ 1 totally singular subspaces of rank 1 with the property that
for all distinct 〈x〉, 〈y〉 ∈ O the bilinear form b(x,y) 6= 0.

Let the generalised quadrangle Q(4, q) of order (q, q) be defined by the
quadratic form

Q(x) = x0x1 + x3x4 − x2
2.
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name label n Canonical form

Hyperbolic Q+(3, q) 4 Q(x) = x0x1 + x2x3

Parabolic Q(4, q) 5 Q(x) = x0x1 + x3x4 − x2
2

Elliptic Q−(5, q) 6 Q(x) = x0x1 + x2x3 + g(x4, x5)

Table 2. The classical orthogonal generalised quadrangles

An ovoid O ofQ(4, q) has q2+1 points. We may assume that 〈0, 0, 0, 0, 1〉 ∈ O.
The associated bilinear form to Q is

b(x,y) = x0y1 + y0x1 + x3y4 + x4y3 − 2x2y2.

For any 〈x〉 ∈ O
0 6= b(x, 〈0, 0, 0, 0, 1〉) = x3

and hence we can assume that x3 = 1. Moreover if x = (x0, x1, x2, 1, x4) and
y = (x0, y1, x2, 1, y4) where 〈x〉 and 〈y〉 ∈ O then

b(x,y) = x0y1 + x0x1 + y4 + x4 − 2x2
2 = Q(x) +Q(y) = 0

and so the first and third coordinate pair are distinct pairs for distinct points
of the ovoid. Hence there is a polynomial F (x, y) such that the ovoid

O = {〈x, F (x, y), y, 1, y2 − xF (x, y)〉 | x, y ∈ GF (q)} ∪ {〈0, 0, 0, 0, 1〉}.

name F (x, y) q restrictions

elliptic quadrics mx all
Kantor [16] mxα odd α ∈ Aut(GF (q))

Thas-Payne [26] m−1x + (mx)1/9 − y1/3 3h

Penttila-Williams [22] x9 − y81 35

Ree-Tits slice [16] x2α+3 − yα 32h+1 α =
√

3q

Tits [27] xα+1 + yα 22h+1 α =
√

2q

Table 3. The known examples of ovoids of Q(4, q)

In the article of Penttila and Williams [22] the stabiliser group of each
of the known ovoids is calculated. Note that in four examples of Table 3
F (x, y) = f(x) + g(y) where f and g are linear over some subfield of GF (q).
In the previous section we constructed an ovoid of T2(C) from a semifield
flock. However the generalised quadrangle T2(C) is isomorphic to Q(4, q). Let
φ : Q(4, q) → T2(C), where C is the conic X0X1 = X2

2 , be the map

〈0, 0, 0, 0, 1〉 7→ (∞)
〈a, b, c, 1, c2 − ab〉 7→ 〈−a, b,−c, 1〉
〈a2, 1, a, 0, b〉 7→ 〈(a2, 1, a, 0), (−b, 0, 0, 1)〉
〈1, 0, 0, 0, a〉 7→ 〈(1, 0, 0, 0), (0,−a, 0, 1)〉.
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This is indeed an isomorphism since collinearity is preserved. The points
〈x〉 = 〈a, b, c, 1, c2 − ab〉 and 〈x′〉 = 〈a′, b′, c′, 1, c′2 − a′b′〉 are collinear in
Q(4, q) if and only if b(x,x′) = ab′ + ba′ − ab − a′b′ + c2 − 2cc′ + c2 =
(c − c′)2 − (a − a′)(b − b′) = 0 if and only if the point 〈a − a′, b− b′, c − c′〉
lies on the conic X0X1 = X2

2 . One can check that the other incidences are
preserved.

Hence from the ovoid of T2(C) that was constructed in the previous section
we get an ovoid ofQ(4, q). In the next section we shall use explicit coordinates
to calculate F (x, y) from the functions f and g that determine the semifield
flock. The following theorem is from Lunardon [20].

Theorem 9. If F and F ′ are semifield flocks of the quadratic cone then the
ovoids that come from the flocks are equivalent if and only if the flocks F and
F ′ are equivalent.

5 Correspondence between the ovoid and the flock
using coordinates

As in [18] we follow the argument of Thas [25] using coordinates. Let us see
how this works. It may help to refer back to end of Section 3.

The lines on the quadratic cone with vertex 〈0, 0, 0, 1〉 and base defined by
the equation X0X1 = X2

2 dualise with respect to the standard inner product
to lines in the plane X3 = 0 with equation

X0 + a2X1 + aX2 = 0.

These lines are tangents to the conic whose points are the zeros of the
quadratic form Q′ = 4X0X1 −X2

2 . The associated bilinear form is

b′(x,y) = 4x0y1 + 4y0x1 − 2x2y2.

We wish to view the vector space of rank 3 over GF (q) as a vector space of
rank 3n over GF (q0) and the bilinear form b′ over this vector space is

b̂(x,y) = Trq→q0
(4x0y1 + 4y0x1 − 2x2y2).

In Section 3 the set W is contained in the hyperplane X3 = 0 and is the set
of points {〈t,−f(t), g(t)〉 | t ∈ GF (q)}. The functions f and g are linear over
some subfield GF (q0) and so we can write

f(t) =
n−1
∑

i=0

cit
qi
0 and g(t) =

n−1
∑

i=0

bit
qi
0 .

We follow the argument at the end of Section 3 and dualise with respect to
the bilinear form b̂. A point 〈x0, x1, x2〉 ∈ W∗ if and only if

Trq→q0
(−4x0f(t) + 4x1t− 2x2g(t)) = 0
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for all t ∈ GF (q) if and only if

Trq→q0
((−4c0x0 + 4x1 − 2b0x2)t+

n−1
∑

i=1

(−4cix0 − 2bix2)t
qi
0) = 0

if and only if

Trq→q0
((−4c0x0 + 4x1 − 2b0x2 +

n−1
∑

i=1

(−4cix0 − 2bix2)
q

n−i

0 )t) = 0

for all t ∈ GF (q). Hence

4x1 =

n−1
∑

i=0

(4cix0 + 2bix2)
q

n−i

0 .

The set

W∗ = {〈x0,

n−1
∑

i=0

(cix0 +
1

2
bix2)

q
n−i

0 , x2〉 | x0, x2 ∈ GF (q)}.

Now if we were to cone W∗ to the set 〈W ∗, P 〉 where P is a point not on
the hyperplane X3 = 0 we would have q2 points of an ovoid of the T2(C)
defined with conic 4X0X1 − X2

2 . However we wish to have an ovoid of the
T2(C) defined by the conic X0X1 −X2

2 and so we use the map ψ that takes

X0 7→ −X0

X1 7→ X1

X2 7→ 1

2
X2

and maps the subspace W∗ to the subspace

{〈x, F̃ (x, y), y〉 | x, y ∈ GF (q)}
where

F̃ (x, y) =

n−1
∑

i=0

(−cix+ biy)
q

n−i

0 .

We take the point P to be the point 〈0, 0, 0, 1〉 so that the set

{〈x, F̃ (x, y), y, 1〉 | x, y ∈ GF (q)}
is a set of q2 points of an ovoid of T2(C). We apply the isomorphism φ−1

from the previous section to give the explicit points of an ovoid of Q(4, q)
that comes from the semifield flock defined by the functions f and g,

O = {〈x, F (x, y), y, 1, y2 − xF (x, y) | x, y ∈ GF (q)} ∪ {〈0, 0, 0, 0, 1〉}
where

F (x, y) =

n−1
∑

i=0

(cix− biy)
q

n−i

0 .
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6 Correspondence between the commutative semifield
and the flock

In this section we look at the correspondence between the commuative semi-
fields of rank 2 over their nucleus and the associated semifield flocks. This is
a proof of Theorem 6.

Let S and Ŝ be commutative semifields of rank 2 over their nucleusGF (q),

q = pn, constructed from the pairs of functions (f, g) and (f̂ , ĝ) respectively.

The functions f , g, f̂ , ĝ are linear over GF (p) so we can write them as

f(x) =
n−1
∑

i=0

fix
pi

, g(x) =
n−1
∑

i=0

gix
pi

,

f̂(x) =

n−1
∑

i=0

f̂ix
pi

, ĝ(x) =

n−1
∑

i=0

ĝix
pi

.

Let us assume that there exists a one-to-one GF (p) linear map H from S to
Ŝ and a one-to-one linear maps F from S to Ŝ such that

((x, y)(u, v))H = ((x, y)F ).((u, v)F )

for all (x, y) and (u, v) ∈ S. Expanding the left-hand side we get

((x, y)(u, v))H = ((xv + yu+ ĝ(ux), yv + f̂(ux))H

=

(

n−1
∑

i=0

hi(xv + yu+ ĝ(ux))pi

+

n−1
∑

i=0

mi(yv + f̂(ux))pi

,

n−1
∑

i=0

ki(xv + yu+ ĝ(ux))pi

+

n−1
∑

i=0

li(yv + f̂(ux))pi

)

.

Expanding the right-hand side we get

((x, y)F ) . ((u, v)F ) = (α0x+ α1y, β0x+ β1y) . (α0u+ α1v, β0u+ β1v) =

(2α0β0xu+ 2α1β1yv + (α0β1 + α1β0)(xv + yu)+

g((α0x+ α1y)(α0u+ α1v)),

β2
0xu + β2

1yv + β0β1(xv + yu) + f((α0x+ α1y)(α0u+ α1v))
)

.

Equate the coefficient of (yv)pi

to get

(i > 0) mi = α2pi

1 gi (i = 0) m0 = 2α1β1 + α2
1g0,

(i > 0) li = α2pi

1 fi (i = 0) l0 = β2
1 + α2

1f0.
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Equate the coefficient of (yu)pi

to get

(i > 0) hi = (α0α1)
pi

gi (i = 0) h0 = α0β1 + α1β0 + α0α1g0,

(i > 0) ki = (α0α1)
pi

fi (i = 0) k0 = β0β1 + α0α1f0.

Equate the coefficient of (xu)pj

to get

(j > 0)

n−1
∑

i=0

hiĝj−i +

n−1
∑

i=0

mif̂j−i = α2pj

0 gj ,

(j = 0)

n−1
∑

i=0

hiĝn−i +

n−1
∑

i=0

mif̂n−i = 2α0β0 + α2
0g0,

(j > 0)

n−1
∑

i=0

kiĝj−i +

n−1
∑

i=0

lif̂j−i = α2pj

0 fj ,

(j = 0)

n−1
∑

i=0

kiĝn−i +

n−1
∑

i=0

lif̂n−i = β2
0 + α2

0f0,

where all indices are taken modulo n. Substitute the expressions for the hi,
mi, ki and li in the previous four equations and get the equations Aj for
j = 1, . . . , n− 1

n−1
∑

i=0

(α0α1)
pi

giĝj−i + (α0β1 + α1β0)ĝj +

n−1
∑

i=0

α2pi

1 gif̂j−i + 2α1β1f̂j = α2pj

0 gj,

the equation A0

n−1
∑

i=0

(α0α1)
pi

giĝn−i + (α0β1 + α1β0)ĝ0 +
n−1
∑

i=0

α2pi

1 gif̂n−i + 2α1β1f̂0 =

2α0β0 + α2
0g0,

the equations Bj for j = 1, . . . , n− 1

n−1
∑

i=0

(α0α1)
pi

fiĝj−i + β0β1ĝj +

n−1
∑

i=0

α2pi

1 fif̂j−i + β2
1 f̂j = α2pj

0 fj ,

and the equation B0

n−1
∑

i=0

(α0α1)
pi

fiĝn−i + β0β1ĝ0 +

n−1
∑

i=0

α2pi

1 fif̂n−i + β2
1 f̂0 = β2

0 + α2
0f0.
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Now the sums
∑n−1

j=0
Ajt

pj

and
∑n−1

j=0
Bjt

pj

give

g(α0α1ĝ(t)) + (α0β1 + β0α1)ĝ(t) + g(α2
1f̂(t)) + 2α1β1f̂(t) = 2α0β0t+ g(α2

0t)

and

f(α0α1ĝ(t)) + β0β1ĝ(t) + f(α2
1f̂(t)) + β2

1 f̂(t) = β2
0t+ f(α2

0t).

The functions f and g are additive and so these equations can be written as

g(−α2
0t+ α2

1f̂(t) + α1α0ĝ(t)) = 2α0β0t− 2α1β1f̂(t) − (α0β1 + β0α1)ĝ(t)

and
f(−α2

0t+ α2
1f̂(t) + α1α0ĝ(t)) = β2

0t− β2
1 f̂(t) − β0β1ĝ(t).

Put u = −α2
0t+α2

1f̂(t)+α0α1ĝ(t) and rewrite the above equations in matrix
form as









−α2
0 −α2

1 α0α1 0
−β2

0 −β2
1 β0β1 0

2α0β0 2α1β1 −(α0β1 + β0α1) 0
0 0 0 1

















t

−f̂(t)
ĝ(t)
1









=









u
−f(u)
g(u)

1









.

The matrix is an element of the stabiliser group of the quadratic cone defined
by the equation 4X0X1 = X2

2 with vertex 〈0, 0, 0, 1〉. Dualising as in the
previous section this implies that there is an element of the stabiliser group of
the quadratic cone defined by the equationX0X1 = X2

2 with vertex 〈0, 0, 0, 1〉
that maps the set of planes

{tX0 − f̂(t)X1 + ĝ(t)X2 +X3 = 0 | t ∈ GF (q)}

to the planes

{uX0 − f(u)X1 + g(u)X2 +X3 = 0 | u ∈ GF (q)}.

The converse argument works following the above argument in reverse.
Note that the determinant of the matrix is −(α0β1 − α1β0)

3 and the deter-
minant of map F is α0β1 − α1β0. Therefore F will be a non-singular map
and hence H will be non-singular too.

7 q-clans and translation generalised quadrangles

A q-clan is a set {At | t ∈ GF (q)} of q two by two matrices with entries from
GF (q) with the property that the difference of any two distinct matrices is
anisotropic, i.e.

α(At −As)α
T = 0

s 6= t implies α = (0, 0). A q-clan is additive if At +As = At+s.
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Consider the set of matrices
{(

t g(t)
0 −f(t)

)

| t ∈ GF (q)

}

where f and g are linear over some subfield GF (q0). Let (v, u) be such that
(v, u)(At − As)(v, u)

T = 0, s 6= t. It follows that

(v, u)

(

z g(z)
0 −f(z)

)

(v, u)T = 0

where z = t − s. This implies that zv2 + vug(z) − u2f(z) = 0 and z 6= 0.
If either u = 0 or v = 0 then (u, v) = (0, 0). If u 6= 0 then making the
substitution z = v/u

zw2 + wg(z) − f(z) = 0.

If this quadratic has no solutions for w, z ∈ GF (q) and z 6= 0 this set of
matrices is a q-clan. However this is the same condition as in Theorem 2
and so to a commutative semifield of rank 2 over its nucleus GF (q) there
is an associated additive q-clan. The following theorem is from [19]. For the
definition of an egg see Section 3.

Theorem 10. The set {At | t ∈ GF (q)} of 2 × 2 matrices over GF (q) is an
additive q-clan if and only if the set E = {Eγ | γ ∈ GF (q)2 ∪ {∞}}, with

Eγ = {〈t,−γAtγ
T ,−γ(At +AT

t )〉 | t ∈ GF (q)},
E∞ = {〈0, t, 0, 0〉 | t ∈ GF (q)},

and tangent spaces TE = {TEγ
| γ ∈ GF (q)2 ∪ {∞}},

TEγ
= {〈t, βγT + γAT

t γ
T , β〉 | t ∈ GF (q), β ∈ GF (q)2},

TE∞
= {〈0, t, β〉 | t ∈ GF (q), β ∈ GF (q)2}

is an egg of PG(4n− 1, q0) where q = qn
0 .

The construction of a generalized quadrangle T (E) in Section 3 from an egg
E implies that from a commutative semifields of rank 2 over its nucleus one
can construct a generalized quadrangle of order (q, q2). This is a special case
of a more general construction of generalized quadrangles due to Kantor [15].
If a generalized quadrangle G has an abelian collineation group that acts
regularly on the points not collinear with a base point P while fixing every
line incident with P then G is called a translation generalized quadrangle. The
following theorem is from [21, (8.7.1)].

Theorem 11. The incidence structure T (E) is a translation generalized
quadrangle of order (qn, qm) with base point (∞) and conversely every trans-
lation generalized quadrangle is isomorphic to a T (E) for some egg E of
PG(2n+m− 1, q).

For more details and other results concerning eggs and translation generalized
quadrangles refer to [18] or [19].
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8 Concluding remarks

It was the intention of this article to show how useful pairs of functions f
and g from GF (q) → GF (q) linear over a subfield with the property that
g2(x) + 4xf(x) is a non-square for all x ∈ GF (q)∗ are. Of course it would be
of great interest to have more examples. The recent geometrical construction
of the Penttila-Williams ovoid by Cardinali [7] from a Cohen-Ganley Thas-
Payne flock and a Dickson Kantor Knuth flock gives hope that there may be
a geometrical way to construct new examples.

The fact that the set W is a subspace of rank n contained in the internal
points of a conic is not necessarily required in the hypothesis of Theorem 8.
The theorem only requires that W contains a subplane. One might expect
that a much stronger bound should hold in Corollary 1 and Corollary 2 if
one could utilise the fact that W is a much larger subspace for n ≥ 4.
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