ON THE HUGHES-KLEINFELD AND KNUTH'S SEMIFIELDS TWO DIMENSIONAL OVER A WEAK NUCLEUS

SIMEON BALL AND MICHEL LAVRAUW

ABSTRACT. In 1960 Hughes and Kleinfeld [4] constructed a finite semifield which is two dimensional over a weak nucleus given an automorphism σ of a finite field K and elements $\mu, \eta \in \mathbb{K}$ with the property that $x^{\sigma+1} + \mu x - \eta$ has no roots in K. In 1965 Knuth [7] constructed a further three finite semifields which are also two dimensional over a weak nucleus, given the same parameter set ($\mathbb{K}, \sigma, \mu, \eta$). Moreover, in the same article, Knuth describes operations that allow one to obtain up to six semifields from a given semifield. We show how these operations in fact relate these four finite semifields, for a fixed parameter set, and that up to isotopy there are two set of semifields, one which consists of at most two non-isotopic semifields related by Knuth operations and the other which consists of at most three non-isotopic semifields.

1. INTRODUCTION

A finite semifield is a set S with two operations, addition and multiplication (\circ) such that (S, +) is a group with identity element 0, if $a \circ b = 0$ then either a or b is zero, the distributive laws hold and there is an element 1 such that $a \circ 1 = 1 \circ a = a$ for all $a \in S$. In other words S satisfies all the axioms of a field, except (possibly) associativity of multiplication. If the set S satisfies all axioms of a semifield, except that it does not have an identity element for multiplication, then S is called a *pre-semifield*.

For a recent survey on the known finite semifields, see [2], and for an updated version see [6].

A pre-semifield S is a vector space over \mathbb{F}_p for some prime p and can be used to coordinatise a projective plane of prime power order |S|. Two pre-semifields $S = (V, +, \circ)$ and $S' = (V', +, \cdot)$ are said to be *isotopic* if there exists a triple (f_1, f_2, f_3) of \mathbb{F}_p -linear maps from V to V' with the property that

$$f_1(x) \cdot f_2(y) = f_3(x \circ y),$$

for all $x, y \in V$. Albert showed that the projective planes coordinatised by the presemifields S and S' are isomorphic if and only if the pre-semifields S and S' are isotopic. We shall write $S \simeq S'$. For all of this we refer to Knuth [7].

Date: 8 February 2007.

The first author acknowledges the support of the Ramon y Cajal programme and the project MTM2005-08990-C02-01 of the Spanish Ministry of Science and Education and the project 2005SGR00256 of the Catalan Research Council.

During this research the second author was supported by a VENI grant, part of the Innovational Research Incentives Scheme of the Netherlands Organisation for Scientific Research (NWO).

For any pre-semifield S with multiplication \circ we can make another pre-semifield $\tau_1(S)$, whose multiplication \cdot is defined by

$$a \cdot b = b \circ a.$$

The projective plane coordinatised by S can also be constructed from the set of subspaces

$$\{\{(y, y \circ x) \mid y \in V\} \mid x \in V\} \cup \{(0, y) \mid y \in V\},\$$

of $V \times V$ via the André, Bruck-Bose construction, see [3]. These subspaces partition the non-zero vectors of $V \times V$ and such a partition is called a *spread*. The set of subspaces dual to these subspaces also forms a spread which can be used to construct a projective plane coordinatised by a pre-semifield and we shall define this pre-semifield (up to isotopy) to be $\tau_2(\mathbb{S})$. For more details on this, see [1].

We refer to the operations τ_1 and τ_2 as the *Knuth operations*. They were described by Knuth as permutations of the subscripts in a cubical array obtained from a pre-semifield, see [7]. Together they generate a group *G* isomorphic to the symmetric group Sym(3)acting on the set of all pre-semifields. The orbit of the pre-semifield S is the set of six presemifields S, $\tau_1(S)$, $\tau_2(S)$, $\tau_2\tau_1(S)$, $\tau_1\tau_2(S)$ and $\tau_1\tau_2\tau_1(S)$, some of which may be isotopic, depending on S. In [7] Knuth shows that the operations τ_1 and τ_2 preserve isotopy, so $S \simeq S'$ if and only if $\tau_i(S) \simeq \tau_i(S')$. Generally we are only interested in the isotopy classes of pre-semifields, and considering the action of the group *G* on the set of all isotopy classes of pre-semifields, we shall refer to the orbit of the isotopy class containing the pre-semifield S as the *Knuth orbit of* S.

In the very same article [7] Knuth constructs four semifields, given a field \mathbb{K} and an automorphism σ and elements $\mu, \eta \in \mathbb{K}$ with the property that $x^{\sigma+1} + \mu x - \eta$ has no root in \mathbb{K} , one of which is the Hughes-Kleinfeld semifield [4], and all of which are two dimensional over a *weak nucleus* \mathbb{K} , a set of elements of \mathbb{S} with the property that

$$x \circ (y \circ z) = (x \circ y) \circ z,$$

whenever two of x, y or z are in \mathbb{K} .

The purpose of this note is to show that, for a fixed parameter set $(\mathbb{K}, \sigma, \mu, \eta)$, three of these four semifields lie in the same Knuth orbit of size at most three, and the other one has a Knuth orbit of size at most two.

2. Knuth's semifields two dimensional over a weak nucleus

Let \mathbb{K} be a finite field. In [7] Knuth gave four multiplications for $(\mathbb{K}^2, +, \circ)$ all of which give semifields under the condition that $\eta, \mu \in \mathbb{K}$ and σ , an automorphism of \mathbb{K} , are chosen so that $x^{\sigma+1} + \mu x - \eta$ has no root in \mathbb{K} . They are \mathbb{S}_1 defined by

$$(u,v)\circ(x,y) = (ux + \eta y^{\sigma}v^{\sigma^{-2}}, x^{\sigma}v + uy + \mu y^{\sigma}v^{\sigma^{-1}}),$$

 \mathbb{S}_2 defined by

$$(u,v) \circ (x,y) = (ux + \eta y^{\sigma} v, x^{\sigma} v + uy + \mu y^{\sigma} v),$$

 \mathbb{S}_3 defined by

$$(u, v) \circ (x, y) = (ux + \eta y^{\sigma^{-1}} v^{\sigma^{-2}}, x^{\sigma} v + uy + \mu y v^{\sigma^{-1}}),$$

and \mathbb{S}_4 defined by

$$(u,v)\circ(x,y) = (ux + \eta y^{\sigma^{-1}}v, x^{\sigma}v + uy + \mu yv).$$

We have already defined τ_1 as the Knuth operation that changes the order of multiplication. Considering the maps $f_1, f_2, f_3 : \mathbb{K}^2 \to \mathbb{K}^2$ defined by

$$f_1 : (u, v) \mapsto (u^{\sigma^{-1}} + \mu^{\sigma^{-1}} v^{\sigma^{-2}}, -v^{\sigma^{-2}}),$$

$$f_2 : (x, y) \mapsto (y^{\sigma^{-1}}, -x/\eta), \text{ and}$$

$$f_3 : (a, b) \mapsto (b^{\sigma^{-1}}, -a/\eta),$$

it is straightforward to check that $\tau_1(\mathbb{S}_2)$, which has multiplication

$$(u,v)\cdot(x,y) = (ux + \eta v^{\sigma}y, u^{\sigma}y + xv + \mu v^{\sigma}y),$$

is isotopic to S_3 , i.e.

$$f_1(u,v) \cdot f_2(x,y) = f_3((u,v) \circ (x,y))$$

where \circ is multiplication in \mathbb{S}_3 . Thus $\mathbb{S}_3 \simeq \tau_1(\mathbb{S}_2)$, which implies that \mathbb{S}_2 and \mathbb{S}_3 lie in the same Knuth orbit. The semifields of type \mathbb{S}_2 were discovered by Hughes and Kleinfeld [4] and the isotopic relation $\mathbb{S}_3 \simeq \tau_1(\mathbb{S}_2)$ was already known to Knuth as it follows from [7, Theorem 7.4.1] and the fact that τ_1 interchanges the left and right nuclei.

Let us see how τ_2 relates further the semifields \mathbb{S}_i . Let $\alpha, \beta, \gamma, \epsilon$ be automorphisms of \mathbb{K} such that the multiplication

$$(u,v) \circ (x,y) = (ux + \eta y^{\alpha} v^{\beta}, x^{\sigma} v + uy + \mu y^{\gamma} v^{\epsilon})$$

defines a semifield S. The elements of the spread constructed from the semifield S are

$$A_{x,y} := \{ (u, v, ux + \eta y^{\alpha} v^{\beta}, x^{\sigma} v + uy + \mu y^{\gamma} v^{\epsilon}) \mid u, v \in \mathbb{K} \}, \ x, y \in \mathbb{K} \}$$

and $\{(0, 0, u, v) \mid u, v \in \mathbb{K}\}$. As in Kantor [5] we use the alternating form

$$((u, v, w, z), (a, b, c, d)) = Tr(cu + dv - aw - bz),$$

where Tr is the trace function from \mathbb{K} to \mathbb{F}_p , to calculate the dual spread which consists of the subspaces

$$A_{x,y}^{\perp} = \{(a, b, c, d) \mid Tr(cu + dv - a(ux + \eta y^{\alpha}v^{\beta}) - b(x^{\sigma}v + uy + \mu y^{\gamma}v^{\epsilon})) = 0 \text{ for all } u, v \in \mathbb{K}\}, x, y \in \mathbb{K}, \text{ and } \{(0, 0, u, v) \mid u, v \in \mathbb{K}\}. \text{ When } u = 0 \text{ we have the equation}$$

$$Tr(dv - a\eta y^{\alpha}v^{\beta} - bx^{\sigma}v - b\mu y^{\gamma}v^{\epsilon}) = 0, \ \forall v \in \mathbb{K}$$

which is equivalent to

$$Tr(v(d - (a\eta y^{\alpha})^{\beta^{-1}} - bx^{\sigma} - (b\mu y^{\gamma})^{\epsilon^{-1}})) = 0, \ \forall v \in \mathbb{K}$$

When v = 0 we have the equation

$$Tr(cu - uax - buy) = 0, \ \forall u \in \mathbb{K}.$$

Thus the subspace

$$A_{x,y}^{\perp} = \{ (a, b, ax + by, bx^{\sigma} + (\eta a y^{\alpha})^{\beta^{-1}} + (\mu b y^{\gamma})^{\epsilon^{-1}}) \mid a, b \in \mathbb{K} \}$$

This implies that the isotopy class of the semifield $\tau_2(\mathbb{S})$ is represented by the pre-semifield with multiplication

$$(u,v) \bullet (x,y) = (ux + vy, vx^{\sigma} + (\eta uy^{\alpha})^{\beta^{-1}} + (\mu vy^{\gamma})^{\epsilon^{-1}}).$$

Considering the isotopism (f_1, f_2, f_3)

$$f_1 : (u, v) \mapsto (u\eta^{-1}, v^{\epsilon^{-1}}),$$

$$f_2 : (x, y) \mapsto (x, y^{\epsilon \alpha^{-1}}),$$

$$f_3 : (a, b) \mapsto (\eta^{-1}a, b^{\epsilon^{-1}}),$$

we see that the semifield $\tau_2(\mathbb{S})$ is isotopic to a pre-semifield that has multiplication

$$(u,v)\star(x,y) = (ux + \eta v^{\epsilon^{-1}}y^{\epsilon\alpha^{-1}}, vx^{\epsilon\sigma} + u^{\epsilon\beta^{-1}}y^{\epsilon^{2}\beta^{-1}} + \mu v^{\epsilon^{-1}}y^{\gamma\epsilon\alpha^{-1}}),$$

since

$$f_1(u, v) \bullet f_2(x, y) = f_3((u, v) \star (x, y))$$

By substituting the appropriate automorphisms so that $\mathbb{S} = \mathbb{S}_2$ ($\alpha = \sigma, \beta = 1, \gamma = \sigma$ and $\epsilon = 1$) we see that

$$\mathbb{S}_4 \simeq \tau_2(\mathbb{S}_2)$$

which implies that \mathbb{S}_2 and \mathbb{S}_4 have the same Knuth orbit. By substituting the appropriate automorphisms so that $\mathbb{S} = \mathbb{S}_3$ ($\alpha = \sigma^{-1}, \beta = \sigma^{-2}, \gamma = 1$ and $\epsilon = \sigma^{-1}$) we see that

$$au_2(\mathbb{S}_3) \simeq au_1(\mathbb{S}_2)$$

which implies that the Knuth orbit of \mathbb{S}_2 has size at most three. Similarly when $\mathbb{S} = \mathbb{S}_1$ $(\alpha = \sigma, \beta = \sigma^{-2}, \gamma = \sigma \text{ and } \epsilon = \sigma^{-1})$, we get

$$\tau_2(\mathbb{S}_1) \simeq \tau_1(\mathbb{S}_1),$$

which implies that the Knuth orbit of \mathbb{S}_1 has size at most two. Thus we conclude that from the four semifields listed by Knuth, for a fixed parameter set $(\mathbb{K}, \sigma, \mu, \eta)$, together with the Knuth operations one can only generate (at most) five isotopy classes of semifields, contained in at most two Knuth orbits and represented by

$$\mathbb{S}_1 \simeq \tau_1 \tau_2(\mathbb{S}_1) \simeq \tau_2 \tau_1(\mathbb{S}_1)$$
 and $\tau_1 \tau_2 \tau_1(\mathbb{S}_1) \simeq \tau_2(\mathbb{S}_1) \simeq \tau_1(\mathbb{S}_1)$

and

$$\mathbb{S}_2 \simeq \tau_1 \tau_2 \tau_1(\mathbb{S}_2), \ \tau_1(\mathbb{S}_2) \simeq \tau_2 \tau_1(\mathbb{S}_2) \text{ and } \tau_2(\mathbb{S}_2) \simeq \tau_1 \tau_2(\mathbb{S}_2),$$

since $\mathbb{S}_3 \simeq \tau_1(\mathbb{S}_2)$.

It is possible that $\tau_1(\mathbb{S}_2)$ and $\tau_2(\mathbb{S}_2)$ are both isotopic to \mathbb{S}_2 . As proven in [4] this occurs if and only if σ^2 is the identity map and $\mu = 0$. In this case the Knuth orbit of \mathbb{S}_2 has size one.

If σ^2 is the identity map and $\eta^{\sigma} = \eta$ then \mathbb{S}_1 is isotopic to $\tau_1(\mathbb{S}_1)$. Explicitly the isotopism is given by

$$f_{1} : (u, v) \mapsto (u^{\sigma}, v), f_{2} : (x, y) \mapsto (x^{\sigma}, y), f_{3} : (a, b) \mapsto (a^{\sigma}, b),$$

and it is a simple matter to check that

$$f_1(u,v) \diamond f_2(x,y) = f_3((u,v) \circ (x,y)),$$

where \diamond is multiplication in $\tau_1(\mathbb{S}_1)$ and \diamond is multiplication in \mathbb{S}_1 . There doesn't seem to be any simple argument to determine whether these are the only conditions on σ , μ and η that imply that the Knuth orbit of \mathbb{S}_1 has size one.

3. FINAL REMARKS

The fact that $\mathbb{S}_4 \simeq \tau_2(\mathbb{S}_2)$ and hence that \mathbb{S}_2 , \mathbb{S}_3 and \mathbb{S}_4 lie in the same Knuth orbit for a fixed parameter set, follows from [8, Section 6] together with [7, Theorem 7.4.1]. We are grateful to one of the referees for this observation and to both referees for their helpful suggestions.

References

- [1] S. Ball and M. R. Brown, The six semifield planes associated with a semifield flock, *Adv. Math.*, **189** (2004) 68–87.
- [2] M. Cordero and G. P. Wene, A survey of finite semifields, Discrete Math., 208/209, (1999), 125–137.
- [3] P. Dembowski, *Finite Geometries*, Springer, Berlin, 1968.
- [4] D. R. Hughes and E. Kleinfeld, Semi-nuclear extensions of Galois fields, Am. J. Math, 82 (1960), 389–392.
- [5] W. M. Kantor, Commutative semifields and symplectic spreads, J. Algebra, 270 (2003) 96–114.
- [6] W. M. Kantor, Finite semifields, pp. 103–114 in: Finite Geometries, Groups, and Computation (Proc. of Conf. at Pingree Park, CO Sept. 2005), de Gruyter, Berlin-New York, 2006.
- [7] D. E. Knuth, Finite semifields and projective planes, J. Algebra, 2 (1965) 182–217.
- [8] G. Lunardon, On symplectic spreads, preprint.