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Abstract

In [2] a construction of a class of two-intersection sets with respect to
hyperplanes in PG(r − 1, qt), rt even, is given, with the same parameters
as the union of (qt/2

− 1)/(q − 1) disjoint Baer subgeometries if t is even and
the union of (qt

− 1)/(q− 1) elements of an (r/2− 1)-spread in PG(r− 1, qt) if
t is odd. In this paper we prove that although they have the same parameters,
they are different. This was previously proved in [1] in the special case where
r = 3 and t = 4.

1. Introduction and motivation

In [2] the notion of a scattered space with respect to a spread in a projective space
is defined as a subspace intersecting every spread element in at most a point. The
origin of this idea is a paper by P. Polito and O. Polverino [5] on blocking sets, where
they give the first construction of small minimal non-Rédei blocking sets, called
linear blocking sets. They use the correspondence between a normal spread in a
Desarguesian projective space over a finite field and the points of a lower dimensional
projective space over an extension field. In [2] the authors prove upper and lower
bounds for the maximum dimension of a scattered space and it is shown that in the
case of a normal spread, scattered spaces of maximal dimension give rise to two-
intersection sets with respect to hyperplanes in projective spaces. The parameters
of these two-intersection sets are not new. Sets with the same parameters can be
obtained by taking the disjoint union of embedded subgeometries or subspaces. The
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first non-trivial case are two-intersection sets with intersection numbers q + 1 and
q2+q+1 in PG(2, q4). They arise from a 5-dimensional scattered space with respect
to a normal 3-spread in PG(11, q). These sets have so called standard parameters. It
is known that the union of q + 1 disjoint Baer subplanes gives a two-intersection set
with the same parameters. In [1] the existence of such a scattered spread is proved
and it is shown that the corresponding two-intersection set can not contain a Baer
subline, and so it gives a new example of such sets. In this article the authors are
able to prove the general result. Namely that all two-intersection sets arising from
scattered spaces with respect to a normal spread, give new examples. The proof
is given in Section 3. In Section 2 we give some necessary definitions to state the
precise result. We do not explain all the details of the connection between normal
spreads and the points of a lower dimensional projective space over an extension
field, for which we refer to [2],[4]. For more information about two-intersection sets
we refer to [3]

2. Preliminaries

First we give some definitions, which are necessary to state the result. Let t ≥ 2,
r ≥ 3, with rt even, and let PG(rt − 1, q) be the Desarguesian projective space of
dimension rt−1 over the finite field of order q, GF (q), where q = ph, p prime, h ≥ 1.
Let S be a set of (t − 1)-dimensional subspaces of PG(rt − 1, q). Then S is called
a (t − 1)-spread if every point of PG(rt − 1, q) is contained in exactly one element
of S. A subspace of PG(rt − 1, q) is called scattered with respect to a spread S if
it intersects every element of S in at most a point. A spread S is called normal,
(geometric), if every subspace generated by two elements of S is also partitioned by
elements of S. Let S be a normal (t−1)-spread in PG(rt−1, q). We recall the main
result of [2].

Theorem 2.1 If W is scattered with respect to a normal t− 1 spread S in PG(rt−
1, q), then dim(W ) ≤ rt/2 − 1.

So let W be a subspace of dimension rt/2 − 1 which is scattered with respect to S.
Using the one to one correspondence between the elements of the normal spread S
and the points of PG(r − 1, qt), we define a set of points B(W ) in PG(r − 1, qt)
corresponding with the elements of S that intersect W . Moreover, the set B(W ) is
a two-intersection set in PG(r−1, qt) with respect to hyperplanes, with intersection
numbers

m =
q

rt

2
−t − 1

q − 1
and n =

q
rt

2
−t+1 − 1

q − 1
.

If t is even this set has the same parameters as the disjoint union of (qt/2−1)/(q−1)
Baer subgeometries isomorphic to PG(r − 1, qt/2). We say that a two-intersection
set isomorphic to such a union of subgeometries is of type I. If t is odd this set has
the same parameters as the union of (qt − 1)/(q− 1) elements of an (r/2− 1)-spread
in PG(r − 1, qt). We call these two-intersection sets of type II. We will prove that
the sets arising from a scattered space are not of type I neither of type II.
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Theorem 2.2 The two-intersection sets arising from scattered spaces of dimension

rt/2 with respect to a normal (t−1)-spread in PG(rt−1, q) are not isomorphic with

the two-intersection sets of type I or type II.

3. Proof of the Theorem

First suppose that t is odd. An element E of an (r/2 − 1)-spread in PG(r − 1, qt)
induces an (rt/2 − t)-dimensional space in PG(rt − 1, q), partitioned by a subset
of the (t − 1)-spread S. Theorem 2.1 implies that W intersects this subspace in
a subspace of dimension at most rt/4 − 1, since the intersection is scattered with
respect to the restriction of S to this subspace. Hence B(W ) can not contain this
spread element E . Note that using the same argument, it is easy to show that B(W )
can not contain a line of PG(r − 1, qt).
Now suppose that t is even. We will prove that B(W ) can not contain a Baer
hyperplane B, i.e., a subgeometry of PG(r − 1, qt) isomorphic with PG(r − 2, qt/2).
Note that this is again, as in the case where t is odd, a stronger property than needed
to prove the Theorem.
To avoid confusion in what follows P (~α) will denote a point in PG(r − 1, qt), while

〈~λ〉 will denote a point in PG(rt − 1, q).
Suppose B is contained in B(W ) and let H be the hyperplane of PG(r− 1, qt), that
contains B. Without loss of generality we can assume that B and H are generated
by the same points. So

B = {P (α1~u1 + . . . + αr−1~ur−1) ‖ α1, . . . , αr−1 ∈ GF (qt/2)}

and

H = {P (a1~u1 + . . . + ar−1~ur−1) ‖ a1, . . . , ar−1 ∈ GF (qt)}.

Since B is contained in B(W ), the hyperplane H intersects B(W ) in n points, where
n = (qrt/2−t+1 − 1)/(q − 1) is the larger of the two intersection numbers. So the
subspace in PG(rt − 1, q) induced by H intersects W in a subspace of dimension
k − 1 := rt/2 − t. We denote the set of points in PG(r − 1, qt) corresponding with
spreadelements intersecting this subspace with W . Put

W = {P (λ1~v1 + . . . + λk~vk) ‖ λ1, . . . , λk ∈ GF (q)}.

Moreover we can express the vectors ~vi, (i = 1, . . . , k), as a linear combination of
~u1, . . . , ~ur−1 over GF (qt). Let C be the matrix over GF (qt) such that









~v1

~v2

. . .
~vk









= Ct









~u1

~u2

. . .
~ur−1









.

Then B will be contained in B(W ) if

∀α1, . . . , αr−1 ∈ GF (qt/2) : ∃λ1, . . . , λk ∈ GF (q), ∃a ∈ GF (qt)∗
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such that

a









α1

α2

. . .
αr−1









= C









λ1

λ2

. . .
λk









.

Putting ~α := (α1, . . . , αr−1)
T , and ~λ := (λ1, . . . , λk)T this equation becomes

a~α = C~λ.

Let
T = {(a, ~α,~λ) ∈ GF (qt)∗ × GF (qt/2)r−1 × GF (q)k : a~α = C~λ}.

If (a, ~α,~λ), (b, ~α, µ) ∈ T , then C(b~λ − a~µ) = ~0. This implies that

b~λT (~v1, . . . , ~vk)T = a~µT (~v1, . . . , ~vk)T ,

or (~v1, . . . , ~vk)~λ = a/b (~v1, . . . , ~vk)~µ. Since W is scattered with respect to S and

〈~λ〉, 〈~µ〉 ∈ W , we must have that a/b ∈ GF (q) and so 〈~λ〉 = 〈~µ〉. Let

Ta = {〈~λ〉, : ∃~α : (a, ~α,~λ) ∈ T }.

Note that if a/b ∈ GF (qt/2) then Ta = Tb and that Ta is a subspace of PG(rt−1, q).
Now if Ta 6= ∅ and 〈~µ〉 ∈ Tb \ Ta, 〈~ν〉 ∈ Tc \ Ta, 〈~µ〉 6= 〈~ν〉, and 〈Ta, 〈~µ〉〉 = 〈Ta, 〈~ν〉〉,

then the line joining 〈~µ〉 and 〈~ν〉 intersects Ta, so without loss of generality ~λ+~µ+~ν =
~0 and

(a, ~α,~λ), (b, ~β, ~µ), (c,~γ, ~ν) ∈ T,

for certain ~β and ~γ. It follows that

a~α + b~β + c~γ = ~0.

Let ~δ ∈ GF (qt/2)r−1 be such that ~δT ~α = 0 6= ~δT ~β. This is possible since we saw

that if P (~α) = P (~β) then 〈~λ〉 = 〈~µ〉, but 〈~µ〉 6∈ Ta. We get b~δt~β + c~δt~γ = 0, and
b/c ∈ GF (qt/2). This implies that Tb = Tc. Thus

(a, ~α,~λ), (b, ~β, ~µ), (b,~γ, ~ν) ∈ T,

for certain ~β and ~γ. Now we have that

b(~β + ~γ) + a~α = 0.

So b/a ∈ GF (qt/2) or Ta = Tb, which is a contradiction. This shows that if Ta has
dimension d − 1, then there is at most one point in every subspace of dimension d,
containing Ta. So the set

{〈~µ〉 : ∃b, ~β : (b, ~β, ~µ) ∈ T }

contains at most
qd − 1

q − 1
+

qk−d − 1

q − 1
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points. Every P (~α) determines a different 〈~µ〉, so we must have

q(r−1)t/2 − 1

qt/2 − 1
≤

qd − 1

q − 1
+

qk−d − 1

q − 1
.

Recall that k = rt/2 − t + 1. Since we assumed d ≥ 1 this implies that d = k, but
this is clearly impossible, since that would imply that W is completely contained in
the smaller set B.
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