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Abstract

An ovoid of PG(3, q) can be defined as a set of q2 + 1 points with the property that every three
points span a plane and at every point there is a unique tangent plane. In 2000 M. R. Brown ([5])
proved that if an ovoid of PG(3, q), q even, contains a pointed conic, then either q = 4 and the ovoid
is an elliptic quadric, or q = 8 and the ovoid is a Tits ovoid. Generalising the definition of an ovoid
to a set of (n− 1)-spaces of PG(4n− 1, q) J. A. Thas [24] introduced the notion of pseudo-ovoids or
eggs: a set of q2n + 1 (n− 1)-spaces in PG(4n− 1, q), with the property that any three egg elements
span a (3n− 1)-space and at every egg element there is a unique tangent (3n− 1)-space. We prove
that an egg in PG(4n− 1, q), q even, contains a pseudo pointed conic, that is, a pseudo-oval arising
from a pointed conic of PG(2, qn), q even, if and only if the egg is elementary and the ovoid is either
an elliptic quadric in PG(3, 4) or a Tits ovoid in PG(3, 8).
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eggs containing a pseudo pointed conic

1. Introduction and preliminaries

An oval O of PG(2, q) is a set of q + 1 points no three collinear. In 1954 it was shown by B. Segre
[23] that if q is odd then an oval in PG(2, q) is a conic. For q even, many ovals are known which are
not conics (see [6] for a recent survey). If q is even, then the tangents to O are coincident in a fixed
point called the nucleus of O (see [13, Lemma 8.6]). A pointed conic of PG(2, q), q even, is any oval
constructed by taking a conic, removing any point and then including the nucleus of the conic. As the
group of the conic is transitive on the points of the conic, all pointed conics are projectively equivalent
to the oval {(1, t,

√
t) : t ∈ GF(q)} ∪ {(0, 0, 1)}. We note that a pointed conic of PG(2, q) is a conic if

and only if q = 4.

An ovoid of PG(3, q) is a set of q2 + 1 points such that every three points span a plane. If we exclude
PG(3, 2), that is, assuming q > 2, then q2 + 1 is the maximal cardinality of a set of points satisfying
this property. Moreover all the tangent lines to an ovoid at a certain point lie in a plane ([2], [20]); the
tangent plane at that point. In 1955 A. Barlotti [2] and G. Panella [20] independently proved that an
ovoid in PG(3, q), q odd, is an elliptic quadric. For q even, one other example of an ovoid is known;
called the Tits ovoid, which exists for q = 22e+1, e ≥ 1. For results characterising the elliptic quadric
and the Tits ovoid we refer to the survey [6].

A result fundamental to the proof of the main result of this paper is the following characterisation of
an ovoid containing a pointed conic.

Theorem 1.1 (M. R. Brown [5]). Let O be an ovoid of PG(3, q), q even, and π a plane of PG(3, q)
such that π ∩ O is a pointed conic. Then either q = 4 and O is an elliptic quadric or q = 8 and O is a
Tits ovoid.

An (n−1)-spread (partial (n−1)-spread) S of PG(rn−1, q) is a set of (n−1)-spaces such that any point
of PG(rn−1, q) is contained in exactly (at most) one element of S (also called a spread if the dimension
of the elements of S is understood). A spread S is called Desarguesian if the incidence geometry defined
by taking the elements of S as points, the subspaces spanned by two different elements of S as lines,
and the natural incidence relation (symmetric containment), is isomorphic to a Desarguesian projective
space.

An egg E in PG(4n− 1, q) (or pseudo-ovoid) is a partial (n− 1)-spread of size q2n + 1, such that every
three egg elements span a (3n − 1)-space and for every egg element E there exists a (3n − 1)-space
TE (called the tangent space of E at E) which contains E and is skew from the other egg elements. A
pseudo-oval (or an egg in PG(3n− 1, q)) is a partial (n− 1)-spread of size qn + 1, such that every three
elements of the pseudo-oval span PG(3n−1, q). The notion of eggs was introduced by J. A. Thas in 1971
([24]). An egg E in PG(4n− 1, q) is called a good egg if there is exists an egg element E such that every
(3n− 1)-space containing E and two other egg elements contains exactly qn + 1 egg elements. In that
case E is called a good element of E . If the elements of a pseudo-ovoid, respectively pseudo-oval, belong
to a Desarguesian (n − 1)-spread of PG(4n − 1, q), respectively PG(3n − 1, q), then the pseudo-ovoid,
respectively pseudo-oval, is called elementary. It follows that an elementary pseudo-oval arises from an
oval of PG(2, qn) and an elementary pseudo-ovoid arises from an ovoid of PG(3, qn). If the oval is a
conic, then we say that the elementary pseudo-oval is a pseudo-conic or a classical pseudo-oval, while
if the oval is a pointed conic we say that the elementary pseudo-oval is a pseudo pointed conic. If the
ovoid is an elliptic quadric, then we call the pseudo-ovoid a classical pseudo-ovoid. In 1974 J. A. Thas
proved that if every four egg elements span PG(4n − 1, q) or are contained in a (3n − 1)-dimensional
space, then the egg is elementary ([25]).
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The only known examples of pseudo-ovals are elementary and pseudo-ovals have been classified by
computer for qn ≤ 16 ([22]). More examples are known for pseudo-ovoids, all of them over a field of
odd characteristic and they are connected to certain semifields (see Chapter 3 of [15] for a survey and
[16] for recent results for the case when q is odd).

In this article we are concerned about pseudo-ovoids in the case when q is even. All known examples
of eggs in PG(4n − 1, q), q even, are elementary. Pseudo-ovoids have been classified by computer for
qn ≤ 4 ([17]). In [10] M. R. Brown and M. Lavrauw prove the following theorem.

Theorem 1.2. An egg E in PG(4n − 1, q), q even, contains a pseudo-conic if an only if the egg is
classical, that is arising from an elliptic quadric in PG(3, qn).

In this article we prove that if an egg in PG(4n − 1, q), q even, contains a pseudo pointed conic, then
the egg is elementary and either q = 4 and the egg comes from an elliptic quadric, or q = 8 and the egg
comes from a Tits ovoid.

2. Eggs and translation generalized quadrangles

A (finite) generalized quadrangle (GQ) (see [21] for a comprehensive introduction) is an incidence struc-
ture S = (P,B, I) in which P and B are disjoint (non-empty) sets of objects called points and lines,
respectively, and for which I⊆ (P × B) ∪ (B × P) is a symmetric point-line incidence relation satisfying
the following axioms:

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are incident with at most
one line;

(ii) Each line is incident with 1 + s points (s ≥ 1) and two distinct lines are incident with at most one
point;

(iii) If X is a point and ` is a line not incident with X, then there is a unique pair (Y,m) ∈ P ×B for
which X I m I Y I `.

The integers s and t are the parameters of the GQ and S is said to have order (s, t). If s = t, then S is
said to have order s. If S has order (s, t), then it follows that |P| = (s+1)(st+1) and |B| = (t+1)(st+1)
([21, 1.2.1]). A subquadrangle S ′ = (P ′,B′, I′) of S is a GQ such that P ′ ⊆ P, B′ ⊆ B and I′ is the
restriction of I to (P ′ × B′) ∪ (B′ × P ′). Let S = (P,B, I) be a GQ of order (s, t), s 6= 1, t 6= 1. A
collineation θ of S is an elation about the point P if θ = id or if θ fixes all lines incident with P and
fixes no point of P \ P⊥. If there is a group G of elations about P acting regularly on P \ P⊥, then we
say that S is an elation generalized quadrangle (EGQ) with elation group G and base point P . Briefly
we say that (S(P ), G) or S(P ) is an EGQ. If the group G is abelian, then we say that the EGQ (S(P ), G)
is a translation generalized quadrangle (TGQ) and G is the translation group.

In PG(2n+m− 1, q) consider a set E(n,m, q) of qm + 1 (n− 1)-dimensional subspaces, every three of
which generate a PG(3n−1, q) and such that each element E of E(n,m, q) is contained in an (n+m−1)-
dimensional subspace TE having no point in common with any element of E(n,m, q) \ {E}. It is easy
to check that TE is uniquely determined for any element E of E(n,m, q). The space TE is called the
tangent space of E(n,m, q) at E. For n = m = 1 such a set E(1, 1, q) is an oval in PG(2, q) and more
generally for n = m such a set E(n, n, q) is a pseudo-oval of PG(3n− 1, q). For m = 2n = 2 such a set
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E(1, 2, q) is an ovoid of PG(3, q) and more generally for m = 2n such a set E(n, 2n, q) is a pseudo-ovoid.
In general we call the sets E(n,m, q) eggs.

Now embed PG(2n + m − 1, q) in a PG(2n + m, q), and construct a point-line geometry T (n,m, q) as
follows.

Points are of three types:

(i) the points of PG(2n+m, q) \ PG(2n+m− 1, q), called the affine points;

(ii) the (n+m)-dimensional subspaces of PG(2n+m, q) which intersect PG(2n+m−1, q) in a tangent
space of E(n,m, q);

(iii) the symbol (∞).

Lines are of two types:

(a) the n-dimensional subspaces of PG(2n+m, q) which intersect PG(2n+m− 1, q) in an element of
E(n,m, q);

(b) the elements of E(n,m, q).

Incidence in T (n,m, q) is defined as follows. A point of type (i) is incident only with lines of type (a);
here the incidence is that of PG(2n + m, q). A point of type (ii) is incident with all lines of type (a)
contained in it and with the unique element of E(n,m, q) contained in it. The point (∞) is incident
with no line of type (a) and with all lines of type (b).

Theorem 2.1 (8.7.1 of Payne and Thas [21]). The incidence geometry T (n,m, q) is a TGQ of
order (qn, qm) with base point (∞). Conversely, every TGQ is isomorphic to a T (n,m, q). It follows
that the theory of TGQ is equivalent to the theory of the sets E(n,m, q).

In the case where n = m = 1 and E(1, 1, q) is the oval O the GQ T (1, 1, q) is the Tits GQ T2(O).
When m = 2n = 2 and E(1, 2, q) is the ovoid Ω, the GQ T (1, 2, q) is the Tits GQ T3(Ω). Note that
T2(O) ∼= Q(4, q), if and only if O is a conic and non-classical otherwise, while T3(Ω) ∼= Q(5, q) if and
only if Ω is an elliptic quadric (see [21, Chapter 3]).

The kernel of S = T (n,m, q) is the field GF(q′) for which there exists an O(n′,m′, q′) representing S
and S may be represented by an E(n′′,m′′, q′′) if and only if GF(q′′) ⊆ GF(q′) (see [21, Chapter 8]).

Let E be an egg in PG(4n−1, q) and T (E) the corresponding TGQ. If O is a pseudo-oval of E contained
in PG(3n− 1, q) and PG(3n, q) any subspace containing PG(3n− 1, q) not contained in PG(4n− 1, q),
then PG(3n, q) induces a subquadrangle T (O) of T (E).

3. Ovoids of GQs and subquadrangles

Let S = (P,B, I) be a GQ of order (s, t). An ovoid Ω of S is a set of points of S such that each line of
S is incident with precisely one point of Ω. It follows that |Ω| = st+ 1.

Now suppose that S = (P,B, I) is a GQ of order (s, t) and S ′ = (P ′,B′, I′) a subquadrangle of S of
order (s, t′). If P ∈ P \ P ′ is incident with no line of S ′, then it is called an external point of S ′. Each
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external point of S ′ is collinear with the st′ + 1 points of an ovoid of S ′ (see [21, 2.2.1]). Such an ovoid
is said to be subtended by the external point.

In the particular case where S has order (s, s2) and S ′ is a subquadrangle of order s, each point of P \P ′
is an external point of S ′. By a result of Bose and Shrikhande ([3]) any three points of S pairwise non-
collinear (a triad) have exactly s+ 1 common collinear points. Hence an ovoid of S ′ may be subtended
by at most two points of P \ P ′. In this case the ovoid is said to be doubly subtended.

Now suppose that Ω is an ovoid of PG(3, q) containing an oval O. If we construct the Tits GQ T2(O),
then the set of points

Ω = (Ω \ O) ∪ {πP : πP is the tangent plane to Ω at the point P ∈ O},

is an ovoid of T2(O) (see [7]). Such an ovoid of T2(O) is called a projective ovoid. If π∞ is the plane of
O and π is another plane of PG(3, q) skew from O, then the set of points

{(∞)} ∪ π \ (π ∩ π∞),

is also an ovoid of T2(O) called a planar ovoid.

4. Eggs in PG(4n− 1, q), q even, containing a pseudo pointed conic

In this section we study the structure of TGQs whose corresponding egg contains a pseudo pointed
conic.

We begin with a statement and sketch proof of an important lemma. The proof is a combination of
results of [11], [26], [14], [27] and [18].

Lemma 4.1. Every (2n − 1)-dimensional space in PG(3n − 1, q), q even, skew from a pseudo pointed
conic is the span of two elements of the Desarguesian spread induced by the pseudo pointed conic.

Proof : Let U be a (2n− 1)-space skew from a pseudo pointed conic O in PG(3n− 1, q). The qn + 1
tangent spaces of the pseudo pointed conic meet pairwise in a fixed (n − 1)-dimensional space N in
PG(3n − 1, q), which is also an element of the Desareguesian spread induced by the pseudo pointed
conic (since it corresponds to the nucleus of the pointed conic). An elementary count shows that U and
N are skew. Since O∪{N} contains a pseudo-conic, it follows that U is also skew from a pseudo-conic.
Note that this pseudo-conic induces the same Desareguesian spread as the pseudo pointed conic. Dual-
ising in PG(3n − 1, q) we obtain an (n − 1)-space U ′ disjoint from a dual pseudo-conic, i.e. the set of
qn + 1 (2n − 1)-spaces corresponding to the qn + 1 lines of a dual conic in PG(2, qn). By embedding
PG(2, qn) in PG(3, qn) and dualising in PG(3, qn) one sees that the set of affine points of any n-space
intersecting PG(2, qn) in U ′ becomes a set of planes forming a semifield flock of a quadratic cone in
PG(3, qn) and since q is even the corresponding semifield is a field, which implies that U corresponds
to a line in PG(2, qn).

Lemma 4.2. Let S be a TGQ of order (s, s2) with a translation point (∞) and a subquadrangle S ′ =
(P ′,B′, I′) of order s containing the point (∞). Then the egg corresponding to S contains a pseudo-oval
O and S ′ is a TGQ isomorphic to T (O).
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Proof : Suppose that the kernel of S contains GF(q) and s = qn. Then let E be the corresponding egg
in PG(4n− 1, q) and represent S as T (E). The qn + 1 lines of S ′ incident with the point (∞) determine
a set O of qn+ 1 egg elements {E0, E1, . . . , Eqn}. Let A denote the set of affine points of S ′. Let Q ∈ A
and consider the line 〈E0, Q〉 in S ′. It follows that every affine point of 〈E0, Q〉 is contained in A. Let P
be an affine point in 〈E0, Q,E1〉\ 〈E0, Q〉. Then 〈E1, P 〉 intersects 〈E0, Q〉 in an affine point R ∈ A, and
hence P ∈ A. Hence all affine points of 〈E0, Q,E1〉 are contained in A. Now consider any affine point
P in 〈E0, E1, E2, Q〉 \ 〈E0, Q,E1〉. Then 〈E2, P 〉 intersects 〈E0, E1, Q〉 in a point R ∈ A. It follows that
A is the set of affine points of 〈E0, E1, E2, Q〉 and O is contained in 〈E0, E1, E2〉. This implies that O
is a pseudo-oval contained in E and S ′ is a TGQ isomorphic to T (O).

Theorem 4.3. Let S = (P,B, I) be a TGQ of order (s, s2), s even, with a translation point (∞) and
a subquadrangle S ′ = (P ′,B′, I′) isomorphic to T2(O) where O is a pointed conic of PG(2, s). Further
suppose that S ′ contains (∞) and that (∞) is a translation point of S ′ (and so may be considered as the
point (∞) of T2(O)). Then either s = 4 and S ∼= Q(5, 4); or s = 8 and each ovoid of S ′ subtended by a
point of P \ (P ′ ∪ (∞)⊥) is a projective ovoid of T2(O) arising from a Tits ovoid of PG(3, 8).

Proof : Suppose that the kernel of S contains GF(q) and s = qn. Then let E be the corresponding egg
in PG(4n− 1, q) and represent S as T (E). Now S ′ is a subquadrangle of order qn containing (∞). By
Lemma 4.2 E contains a pseudo pointed conic in PG(3n− 1, q) and S ′ is constructed from a PG(3n, q)
containing PG(3n− 1, q).

Suppose that X is a point of type (ii) of S \S ′, that is a subspace of dimension 3n meeting PG(4n−1, q)
in the tangent space at an egg element, and OX the ovoid of S ′ subtended by X. Then OX consists of
the point (∞) plus the q2n points (X ∩ PG(3n, q)) \ PG(3n − 1, q). The subspace X ∩ PG(3n − 1, q)
is a (2n − 1)-dimensional subspace skew from the pseudo pointed conic O. From Lemma 4.1 we have
that this is the span of two elements of the Desarguesian spread induced by the pseudo pointed conic.
Representing S ′ over GF(qn), that is, as T2(O) where O is a pointed conic in PG(2, qn), we see that
OX consists of (∞) and the affine points of a plane of PG(3, qn) skew from O. Counting reveals that
there are q2n(qn− 1)/2 ovoids of T2(O) of this form and q2n(qn− 1) points of P \P ′ collinear with (∞)
and hence subtending an ovoid of S ′ containing (∞). Since each such point may subtend at most two
ovoids of T2(O), it follows that each planar ovoid of T2(O) is doubly subtended.

Now let Y be a point of P \ P ′ not collinear with (∞) and OY the ovoid it subtends in S ′. We will
consider this ovoid in the T2(O) model of S ′. Since Y 6∼ (∞) it follows that OY = A ∪ {πP : P ∈ O},
where A is a set of q2n − qn affine points of T2(O) and πP is a point of type (ii) of T2(O) which is a
plane containing P ∈ O. We now investigate the intersections of a plane π of PG(3, qn) with A. If π
contains no point of O, then π ∪ (∞) is a planar ovoid subtended by two points, X and X ′ of S \ S ′. If
Y is collinear with X or X ′, then π ∩A is a single point. If Y is not collinear with X nor with X ′, then
{X,X ′, Y } is a triad of S and hence has qn + 1 centres. Hence |π ∩ A| = qn + 1. Next suppose that π
contains a unique point P of O. If π = πP ⊂ OY , then π contains no point of A. If π 6= πP , then the
qn lines of π incident with P and not in the plane of O are lines of T2(O) and so contain precisely one
point of A. Hence |π∩A| = qn. Next suppose that π contains two points, P and Q, of O. Of the qn + 1
projective lines in π incident with P one is contained in PG(2, qn), one is contained in πP and qn − 1
are lines of T2(O) containing a unique point of A. Hence |π ∩ A| = qn − 1. Finally, if π = PG(2, qn),
then π contains no point of A.

Consider the set of points of PG(3, qn) defined by OY = A ∪ O. By the above the plane intersections
with OY have size 1 or qn + 1 and a straightforward count shows that OY is an ovoid of PG(3, qn).
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Further, since OY contains the pointed conic O then by Theorem 1.1 either qn = 4 and OY is an elliptic
quadric or qn = 8 and OY is a Tits ovoid.

In the case qn = 4 by the isomorphism from Q(4, 4) to T2(O) ([21]) it is clear that the planar ovoids of
T2(O) are elliptic quadric ovoids (in fact, this is true in general for q even and O a conic), as are the
ovoids OY . Thus we have that every ovoid of S ′ ∼= Q(4, 4) subtended by a point of P \ P ′ is an elliptic
quadric ovoid. By a theorem due independently to Brown ([8]) and Brouns, Thas and Van Maldeghem
([4]) it now follows that S is the classical GQ Q(5, 4).

Following on from this theorem we need to prove that if O is a pointed conic of PG(2, 8) and T2(O)
is contained as a subquadrangle in a GQ S of order (8, 64) such that each subtended ovoid of T2(O)
is either a planar or a projective ovoid (arising from a Tits ovoid), then S ∼= T3(Ω), where Ω is a Tits
ovoid.

5. Configurations of Tits ovoids and the proof of the main theorem

Let q = 22e+1, e ≥ 1, and O be an oval of π∞ ∼= PG(2, q) equivalent to {(1, t, tσ) : t ∈ GF(q)}∪{(0, 0, 1)}
where σ is the automorphism of GF(q) such that σ : x 7→ x2e+1

. Let S = (P,B, I) be a GQ of order
(q, q2) containing T2(O) = (P ′,B′, I′) as a subquadrangle such that each point of P \ P ′ collinear with
(∞) subtends a planar ovoid of T2(O) and each point of P \ P ′ not collinear with (∞) subtends a
projective ovoid of T2(O) arising from a Tits ovoid. Suppose that ` is a line of B \ B′ incident with the
affine point P of T2(O). Of the other q points of S incident with `, one is collinear with (∞) and so
subtends a planar ovoid of T2(O) and the other q − 1 subtend projective ovoids. If the planar ovoid
arises from the plane π of PG(3, q) and the projective ovoids arise from the Tits ovoids Ω1,Ω2, . . . ,Ωq−1,
then it follows that Ωi ∩ Ωj = O ∪ {P}, i, j ∈ {1, 2, . . . , q − 1}, i 6= j and π is the tangent plane to Ωi
at P for i = 1, 2, . . . , q − 1.

In general we will call such a set of ovoids a stack of ovoids. The point P is called the base point of the
stack and π∞ the base plane. The “classical” way to generate a stack of ovoids is to take a single ovoid
Ω1 and act on it by the group of homologies of PG(3, q) with centre P and axis π∞. Such a stack is
called a homologous stack.

Suppose that Ω is contained in a stack S with base point P and base plane π∞ and ⊥ denotes the
symplectic polarity defined by Ω. If Ω′ is a second ovoid in S, then the polarity defined by Ω′ shares
with the polarity of Ω (at least) the singular lines that are the lines incident with P in P⊥ and the lines
incident with π⊥∞ in π∞. There are exactly q − 1 symplectic polarities of PG(3, q) which have these
singular lines (this is straightforward to see in the Klein quadric Q+(5, q)). In the case of a homologous
stack each of the q − 1 ovoids defines a distinct symplectic polarity, however it is not clear prima facie
that this should be true for a general stack.

Theorem 5.1. Let O be an oval of PG(2, q) and S = (P,B, I) a GQ of order (q, q2) containing T2(O) =
(P ′,B′, I′) as a subquadrangle. Suppose that each point of P \ P ′ collinear with (∞) subtends a planar
ovoid of T2(O) and each point of P \ P ′ not collinear with (∞) subtends a projective ovoid of T2(O).
If for each line of B \ B′ incident with an affine point of S the stack of ovoids induced by this line is
homologous, then S ∼= T3(Ω) for some ovoid Ω of PG(3, q) with O ⊂ Ω.

Proof : Let X be a point of P \ P ′ not collinear with (∞), OX the ovoid of T2(O) subtended by X
and ΩX the corresonding ovoid of PG(3, q). For each point P ∈ ΩX \ O the line PX of S gives rise to
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a stack of ovoids with base point P , base plane π∞ and containing OX . This stack is homologous and
so is uniquely determined by P, π∞ and ΩX . Next we note that the subgraph of the point graph of S
defined on P \(P ′∪{(∞)}⊥), where ⊥ indicates collinearity in S, is connected. Hence if OX and OY are
any two subtended projective ovoids of T2(O), X and Y are connected in this graph and it follows that
OY is determined by OX . In other words the set of subtended projective ovoids is uniquely determined
by one of the ovoids.

So suppose Ω is the ovoid of PG(3, q) giving rise to one of the subtended projective ovoids of T2(O).
Construct the Tits GQ T3(Ω) in PG(4, q). Then T2(O) is a subquadrangle of T3(Ω) constructed from
a 3-dimensional subspace Σ of PG(4, q) meeting PG(3, q) in the plane π∞ containing O. Let ` be an
arbitrary line of T3(Ω) \ T2(O) that is not incident with (∞) and not concurrent with an element of
O. Suppose ` is incident with affine points {X1, X2, . . . , Xq−1, P} where P is a point of T2(O). Then
the group of homologies of PG(4, q) with centre P and axis PG(3, q) induce a group of collineations of
T3(Ω) that acts transitively on {X1, X2, . . . , Xq−1}. Since T2(O) is also fixed by these collineations it
follows that the group acts transitively on the subtended ovoids corresponding to X1, . . . , Xq−1. Since
this group is a homology group with centre P and axis π∞ in Σ, it follows that the corresponding stack
of ovoids is homologous.

From the above it follows that the set of subtended projective ovoids of T2(O) in S is exactly the same
as that of T2(O) in T3(Ω). It remains to show that this implies that S ∼= T3(Ω). First suppose that
Ω is an elliptic quadric. Then O is a conic and T2(O) is a subquadrangle of S isomorphic to Q(4, q)
each subtended ovoid of which is an elliptic quadric, hence by [4, 8] S ∼= Q(5, q) ∼= T3(Ω). So now we
suppose that Ω is not an elliptic quadric. Suppose further that there is a subtended projective ovoid OX
of T2(O) in T3(Ω) that is subtended by two distinct points X and Y . The line XY of PG(4, q) meets
the subspace Σ in some point P . The collineation of PG(4, q) with centre P and axis PG(3, q) mapping
X to Y induces a collineation of T3(Ω) mapping X to Y and fixing T2(O) and so also fixes OX . If ΩX
is the ovoid of Σ corresonding to OX , then ΩX is stabilised by a central collineation of Σ. By [9] this
implies that ΩX is in fact an elliptic quadric. Hence it follows that each subtended projective ovoid of
T2(O) is subtended by exactly one point. It also follows that each subtended projective ovoid of T2(O)
in S is subtended by exactly one point.

So now we have the same representation of the geometries T3(Ω) \ (∞)⊥ and S \ (∞)⊥ in T2(O) (where
we abuse notation and let ⊥ denote collinearity in both T3(Ω) and S):

Points : (i) Points of T2(O) \ (∞)⊥;
(ii) ovoids arising from subtended projective ovoids of T2(O).

Lines : (a) Lines of T2(O) not incident with (∞);
(b) pairs consisting of a subtended stack of ovoids and the base point of the stack.

Incidence : natural.

Since any GQ may be reconstructed uniquely from the incidence structure created by removing a point,
all the lines incident with that point and the points incident with those lines, it follows that the above
incidence structure uniquely reconstructs both T3(Ω) and S. Hence T3(Ω) ∼= S.

Returning to our original discussion in this section we consider Tits ovoids and possible configurations
leading to stacks of Tits ovoids. First we give properties of the Tits ovoid that will be useful for our
calculations.

Lemma 5.2 (see [19]). Let Ω be a Tits ovoid of PG(3, q) and G the homography stabiliser of Ω, which
is isomorphic to the Suzuki group Sz(q).
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1. G acts 2-transitively on the Ω.

2. For each P ∈ Ω there is a unique line ` of PG(3, q) such that P ∈ ` and for each plane π with
` ⊂ π and π not the tangent plane of Ω at P , π ∩ Ω is a translation oval with axis `.

For convenience we call ` the axis of Ω at P .

3. The stabiliser in G of two points P,Q ∈ Ω is cyclic of order q − 1 and acts regularly on the q − 1
oval sections, not containing P , with the axis of Ω at Q as a tangent.

Lemma 5.3. Let Ω be a Tits ovoid of PG(3, q). Then the homography stabiliser group of Ω is transitive
on pairs (O, P ) where O is an oval section of Ω and P ∈ Ω \ O.

Proof : Let (O, P ) and (O′, P ′) be two oval section, point pairs of Ω with P 6∈ O and P ′ 6∈ O′. Let
Q and Q′ be the points of Ω on the axis of O and O′, respectively. By the 2-transitivity of Ω we can
map (P ′, Q′) 7→ (P,Q). Now the homography group fixing Ω and the pair (P,Q) has order q − 1 and
acts regularly on oval sections of Ω not containing P and with the axis of Ω at Q as a tangent. Hence
we can find a map taking (O, P ) to (O′, P ′).

Lemma 5.4. Let Ω and Ω′ be two Tits ovoids of PG(3, 8) such that Ω ∩ Ω′ = O ∪ {P}, where O is an
oval in the plane π∞ and P is a point not contained in O. Further suppose that Ω′ is the image of Ω
under a non-trivial homology of PG(3, 8) with centre P and axis π∞. If Ω′′ is a Tits ovoid of PG(3, 8)
defining the same symplectic polarity as Ω and such that Ω′ ∩ Ω′′ = O ∪ {P}, then Ω′′ = Ω.

Proof : We start with calculations over general q = 22e+1, e ≥ 1, and then specialise to q = 8 later in
the proof. Let Ω = {(1, s, t, st+ sσ + tσ+2) : s, t ∈ GF(q)} ∪ {(0, 0, 0, 1)} which has symplectic polarity
with form x0y3 + x3y0 + x1y2 + x2y1 = 0. By Lemma 5.3 we may suppose that π∞ is the plane x2 = 0
with O = π∞ ∩ Ω = {(1, s, 0, sσ) : s ∈ GF(q)} ∪ {(0, 0, 0, 1)} and that P = (1, 0, 1, 1). Any non-trivial
homology with centre P and axis π∞ has the form

(x0, x1, x2, x3) 7→ (x0, x1, x2, x3) + λx2(1, 0, 1, 1) = (x0 + λx2, x1, (λ+ 1)x2, x3 + λx2)

for λ ∈ GF(q) \ {0, 1}. Hence

Ω′ = {(1 + λt, s, (λ+ 1)t, st+ sσ + tσ+2 + λt) : s, t ∈ GF(q)} ∪ {(0, 0, 0, 1)},

for some λ ∈ GF(q) \ {0, 1}.

Now suppose that Ω′′ is a Tits ovoid distinct from Ω, containing P and O and also defining the same
symplectic polarity as Ω. Since any automorphic collineation of PG(3, q) fixes Ω we may assume that
Ω is mapped to Ω′′ by a homography T of PG(3, q). Further, by Lemma 5.3 we may suppose that T
fixes O, P and commutes with the symplectic polarity defined by Ω. In particular, T must fix the point
(0, 0, 0, 1) of O on the axis of O, the tangent plane x0 = 0 at this point, the nucleus (0, 1, 0, 0) of O and
the plane π∞ : x2 = 0. From this we have that

T =


1 0 0 0
b c d 0
0 0 e 0
f 0 g h

 with c, e, h 6= 0.
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Next, T also fixes P = (1, 0, 1, 1), and so it follows that b = d and 1 = e = f + g + h 6= 0.

T (1, s, 0, sσ) = (1, b+ cs, 0, f + hsσ) ∈ O for s ∈ GF(q). Hence

bσ + cσsσ = f + hsσ, for all s ∈ GF(q).

Thus f = bσ and h = cσ. Since T commutes with the symplectic polarity defined by Ω, we obtain that
g + b = 0, and so g = b, while cσ = c from which it follows that c = 1.

Now b = g = 1 + bσ + 1. Hence b = 0 or b = 1. The case b = 0 implies that T is the identity, while b = 1
yields

T =


1 0 0 0
1 1 1 0
0 0 1 0
1 0 1 1

 .

Hence Ω′′ = {(1, 1 + s+ t, t, 1 + t+ st+ sσ + t
σ+2) : s, t ∈ GF(q)} ∪ {(0, 0, 0, 1)}.

Now we look for Ω′ and Ω′′ to have a point of intersection outside of O ∪ {P}. That is,

(1 + λt, s, (λ+ 1)t, st+ sσ + tσ+2 + λt) ≡ (1, 1 + s+ t, t, 1 + t+ st+ sσ + t
σ+2),

where t 6= 0, t 6= 0, (s, t) 6= (0, 1) and (s, t) 6= (0, 1). The first coordinates imply that 1 + λt 6= 0. We
have a solution if and only if the following equations are satisfied.

t =
(λ+ 1)t
1 + λt

, s =
s+ t+ 1
1 + λt

,
st+ sσ + tσ+2 + λt

1 + λt
= 1 + t+ st+ sσ + t

σ+2
.

This is the case if and only if

sσ
[
(1 + λt)σ+1 + (1 + λt)2

]
+ s

[
t(1 + λt)σ+1 + (λ+ 1)t(1 + λt)σ

]
+
[
(tσ+2 + λt)(1 + λt)σ+1 + (1 + λt)σ+2 + (λ+ 1)t(1 + λt)σ+1

+t(t+ 1)(λ+ 1)(1 + λt)σ + (t+ 1)σ(1 + λt)2 + (λ+ 1)σ+2tσ+2
]

= 0.

Now we set s = 0 in the above equation to obtain the equation

t2σ+3[λσ+1] + t2σ+2[λσ] + tσ+3[λ] + tσ+1[λσ+1] + tσ[λσ + 1] + t2 + t[λ] = 0

in t and look for solutions with t 6= 0, 1, 1/λ. At this point we specialise to the case q = 8 and obtain
the equation

t(λt6 + λ5t4 + (λ5 + λ4 + 1)t3 + λ4t2 + t+ λ) = 0.

If Tr(λ) = 1, then set t = λ2 6= 0, 1, 1/λ which gives a solution to the equation. If Tr(λ) = 0, then
set t = λ 6= 0, 1, 1/λ which also gives a solution to the above equation. Thus we have established
that in the case q = 8 the Tits ovoids Ω′ and Ω′′ intersect in more than O ∪ {P}. Hence Ω′ and
Ω′′ cannot be in a common stack. Thus the only ovoid defining the symplectic polarity with form
x0y3 +x3y0 +x1y2 +x2y1 = 0 and contained in a stack with Ω′ having base point P and base plane π∞
is Ω.

Lemma 5.5. In PG(3, 8) every stack of ovoids is homologous.
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Proof : By [12] every ovoid of PG(3, 8) is a Tits ovoids, so we are considering stacks of Tits ovoids. Let
Ω be a Tits ovoid of PG(3, 8) with oval section O = π∞ ∩Ω and P ∈ Ω \ O. Consider the 7 symplectic
polarities of PG(3, 8) that have as singular lines the lines of π∞ tangent to Ω and the lines tangent to
Ω at P . One of these polarities is that defined by Ω and by Lemma 5.4 for each of the other polarities,
there is a unique ovoid defining that polarity and intersecting Ω in exactly O ∪ {P}. In particular this
ovoid is the image of Ω under a homology with centre P and axis π∞. Hence every stack of ovoids of
PG(3, 8) must be homologous.

Theorem 5.6. Let S = (P,B, I) be a TGQ of order (s, s2), s even, with a translation point (∞) and
a subquadrangle S ′ = (P ′,B′, I′) isomorphic to T2(O) where O is a pointed conic of PG(2, s). Further
suppose that S ′ contains (∞) and that (∞) is a translation point of S ′ (and so may be considered as the
point (∞) of T2(O)). Then either s = 4 and S ∼= Q(5, 4); or s = 8 and S ∼= T3(Ω) where Ω is a Tits
ovoid of PG(3, 8).

Proof : By Theorem 4.3 we have only to consider the case where s = 8 and each ovoid of S ′ subtended
by a point of P \ (P ′ ∪ (∞)⊥) is a projective ovoid of T2(O) arising from a Tits ovoid of PG(3, 8). By
Lemma 5.5 every stack of ovoids of PG(3, 8) is homologous and so by Theorem 5.1 it follows that
S ∼= T3(Ω) where Ω is a Tits ovoid of PG(3, 8).

As a corollary we now have the main result of the paper.

Corollary 5.7. An egg E in PG(4n − 1, q), q even, contains a pseudo pointed conic if and only if the
egg is elementary and either the ovoid is an elliptic quadric in PG(3, 4), or the ovoid is a Tits ovoid in
PG(3, 8).

Proof : Since an elliptic quadric in PG(3, 4) and a Tits ovoid in PG(3, 8) contain pointed conics any
egg arising from these ovoids contains pseudo pointed conics.

Now suppose E is an egg of PG(4n − 1, q) containing a pseudo pointed conic. Then T (E) is a TGQ
of order (qn, q2n) containing a subquadrangle of order qn containing (∞) that is isomorphic to T2(O),
where O is a pointed conic of PG(2, qn). Consequently the point (∞) of T (E) may be considered to
be the point (∞) of T2(O). By Theorem 5.6 either qn = 4 and S ∼= Q(5, 4); or qn = 8 and S ∼= T3(Ω)
where Ω is a Tits ovoid of PG(3, 8). Hence by [1, Lemma 1] E arises from an elliptic quadric in PG(3, 4)
or a Tits ovoid in PG(3, 8).
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[19] H. Lüneburg, Translation planes. Springer-Verlag, Berlin-New York, 1980.

[20] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimenensionale) lineare sopra un
corpo finito, Boll. Un. Mat. Ital. 10(1955), 507–513.

[21] S. E. Payne and J. A. Thas, Finite generalized quadrangles. Research Notes in Mathematics, 110.
Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3

[22] T. Penttila, Translation generalised quadrangles and elation Laguerre planes of order 16, European
J. Combin., to appear.

[23] B. Segre, Sulle ovali nei piani lineari finiti, (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis.
Mat. Nat. (8) 17(1954). 141–142.

12



eggs containing a pseudo pointed conic

[24] J. A. Thas, The m-dimensional projective space Sm(Mn(GF(q))) over the total matrix algebra
Mn(GF(q)) of the n × n-matrices with elements in the Galois field GF(q), Rend. Mat. (6) 4(1971),
459–532.

[25] J. A. Thas, Geometric characterization of the [n−1]-ovaloids of the projective space PG(4n−1, q),
Simon Stevin 47(1973/74), 97–106.

[26] J. A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8(1987), no. 4,
441–452.

[27] J. A. Thas, Symplectic spreads in PG(3, q), inversive planes and projective planes. Combinatorics
(Rome and Montesilvano, 1994), Discrete Math. 174(1997), no. 1-3, 329–336.

13


