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Abstract

We describe a set of subgroups isomorphic to S4 in PΓO(5, q),
q ≡ 5(6), and prove that they belong to exactly two different conjugacy
classes. As an application we use a representative group in each of the
conjugacy classes to construct a number of BLT-sets of Q(4, q), some
of which were previously found by computer in [5] (see also [4]), others
of which are new.

1 Introduction

Since their introduction in [1] in 1990, BLT-sets have received a great deal of
attention. Arising in the study of flocks of the quadratic cone of PG(3, q), q
odd, they are therefore connected intimately with elation generalised quad-
rangles of order (q2, q) and translation planes of order q2 arising from line-
spreads of PG(3, q). These connections are well studied, and for a survey
from the point of view of BLT-sets we refer to [4].

One main focus of research on BLT-sets has been their construction, and from
[5] we have a long list of examples constructed with the use of a computer.
The present article is an attempt to understand further the structure of
some of these examples. We note that the translation planes associated
with a flock can be of different types, arising from the flock via the ovoid of
Q+(5, q) construction of Thas and Walker, or from the flock via the hyperbolic
fibration of PG(3, q) construction of Baker, Ebert, Penttila. Hence, due to
the construction of Hiramine, Matsumoto, Oyama of a linespread of PG(3, q2)
from a linespread of PG(3, q), a BLT-set can give rise to many infinite families
of translation planes. This provides further motivation for attempting to
unify a number of examples of BLT-sets within a common framework.

2 A model for Q(4, q)

In this section we fix our notation and the quadratic form that we will use
throughout the article. Let q be a prime power, q ≡ 5(6). Then V =
{(x, y, z, α) : x, y, z ∈ GF (q), α ∈ GF (q2)} is a five-dimensional vector space
over the finite field GF (q). Define the quadratic form Q : V → GF (q) by

Q(x, y, z, α) := x2 + y2 + z2 + αq+1
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which has associated with it the symmetric bilinear polar form

f(X1, X2) = 2(x1x2 + y1y2 + z1z2) + αq
1α2 + α1α

q
2.

Then (V,Q) determines a nonsingular parabolic quadric Q(4, q) of the pro-
jective space PG(4, q) arising from V . This particular model for Q(4, q) is
chosen so that it allows us to give an elegant representation of the groups A4

and S4 as subgroups of PΓL(5, q), when q ≡ 5(6). Throughout the article
we will use the same notation for an element of ΓL(5, q) and the element of
PΓL(5, q) induced by it.

3 Subgroups of PΓO(5, q) isomorphic to A4

Let q ≡ 5 (6) and consider the above model of Q(4, q). Fix η to be an element
of order 3 in GF (q2) (which is necessarily not in GF (q) since q ≡ 5(6)), and
define the following two maps from V to V :

ϕ : (x, y, z, α) 7→ (x,−y,−z, α),

ψ : (x, y, z, α) 7→ (z, x, y, ηα).

Lemma 1 The collineations ϕ and ψ together generate a subgroup of PΓO(5, q)
isomorphic to A4.

Proof: Clearly both ϕ and ψ preserve Q(4, q), and so are elements of the
full collineation group PΓO(5, q) of Q(4, q). Since the alternating group A4

of degree 4 can be presented as the following set of generators and relations:

A4
∼= 〈h1, h2 : h2

1, h
3
2, (h1h2)

3〉,

taking h1 = ϕ and h2 = ψ as generators, one obtains a subgroup of PΓO(5, q)
isomorphic to A4. �

We will denote by Hη this subgroup isomorphic to A4, and list here explicitly
its elements for ease of reference throughout the paper (where the notation
for each element should be suggestive of its action, and ϕ23 = ϕ and ψη = ψ):
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ι : (x, y, z, α) 7→ (x, y, z, α)
ϕ12 : (x, y, z, α) 7→ (−x,−y, z, α)
ϕ13 : (x, y, z, α) 7→ (−x, y,−z, α)
ϕ23 : (x, y, z, α) 7→ (x,−y,−z, α)
ψη : (x, y, z, α) 7→ (z, x, y, ηα)

ψη12 : (x, y, z, α) 7→ (−z,−x, y, ηα)
ψη13 : (x, y, z, α) 7→ (−z, x,−y, ηα)
ψη23 : (x, y, z, α) 7→ (z,−x,−y, ηα)
ψη2 : (x, y, z, α) 7→ (y, z, x, η2α)

ψη212 : (x, y, z, α) 7→ (−y,−z, x, η2α)
ψη213 : (x, y, z, α) 7→ (−y, z,−x, η2α)
ψη223 : (x, y, z, α) 7→ (y,−z,−x, η2α)

Of course we could have taken η2 as the element of order 3 of GF (q2), and
obtained another subgroupHη2 of PΓO(5, q) isomorphic to A4. The following
lemma says that these are conjugate in PΓO(5, q).

Lemma 2 The groups Hη and Hη2 are conjugate subgroups of PΓO(5, q)

Proof: Let g be the map (x, y, z, α) 7→ (x, y, z, αq). Then it is straightfor-
ward to check that g−1Hηg = Hη2 and g fixes the quadratic form (hence is
an element of PΓO(5, q)). �

4 Subgroups of PΓO(5, q) isomorphic to S4

Let ε ∈ GF (q2) be an element of order q + 1, σ ∈ S3 a transposition, and
η ∈ GF (q2) \ GF (q) an element of order 3 as before. Define the following
map

θσ,εi : (x, y, z, α) 7→ (σ(x, y, z), εiαq),

where we assume the natural action of S3 on the first three coordinates, and
let Gη,σ,εi denote the group generated by Hη and θσ,εi .

Theorem 1 The groups Gη,σ,εi and Gη,σ,εj are conjugate subgroups of PΓO(5, q)
if and only if both i, j are even or both i, j are odd. Moreover every one of
these groups is isomorphic to the symmetric group S4.
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Proof: Without loss of generality assume that σ = (2, 3) ∈ S3. To prove
that each one of these groups is isomorphic to the symmetric group S4, recall
that S4 can be presented as the following set of generators and relations:

S4
∼= 〈g1, g2 : g3

1, g
2
2, (g1g2)

4〉,

and take g1 := ψ and g2 := θσ,εiϕ23. It is straightforward to check that
Gη,σ,εi ≤ PΓO(5, q). For every β ∈ GF (q2) of order dividing q + 1 define the
map

gβ : (x, y, z, α) 7→ (x, y, z, βα).

Then gβ
−1 = gβq , gβ

−1Hηgβ = Hη, and gβ
−1θσ,εigβ = θσ,β2εi . It follows that

with β = ε we get gε
−1Gη,σ,εigε = Gη,σ,εi+2 . By repeating this conjugation

from Gη,σ,εi one can obtain every Gη,σ,εj if j has the same parity as i. Clearly
gβ belongs to O(5, q).

To prove the converse we study the set of fixed points of the maps θε :
(x, y, z, α) 7→ (x, z, y, εαq) and θ1 : (x, y, z, α) 7→ (x, z, y, αq). Both of these
maps have no fixed points in the planes x = y = 0 and x = z = 0 and clearly
also in the plane α = 0 the structure of their set of fixed points does not
differ. From now on we only consider points with coordinates (x, y, z, α) with
α 6= 0, not both x and y equal to 0, and not both x and z equal to 0.

First we consider points contained in the hyperplane y − z = 0. Let P
denote the point with coordinates (x, y, y, α). If P θ1 = P then P lies in
the hyperplane α = αq and hence α ∈ GF (q)∗. It follows that the fixed
points of θ1 in the hyperplane y − z = 0 lie on the quadric defined by the
equation x2 + 2y2 + α2 = 0 in the plane π1 : y − z = α − αq = 0, which
is a non-degenerate conic on Q(4, q). If P θε = P then it follows that y = z,
1 + 2y2 + αq+1 = 0, and α = εαq. This defines a non-degenerate conic in
the plane πε, the intersection of the hyperplanes y − z = 0 and α− εαq = 0.
It follows that the set of fixed points of θ1, respectively θε contained in the
hyperplane y − z = 0, is exactly the set of points of a non-degenerate conic
in the plane π1, respectively πε.

Now we consider a point P not contained in the hyperplane y−z = 0. If P is
fixed by θ1 or θε then P is contained in the hyperplane x = 0, and P can be
normalised such that P has coordinates (0, 1, z, α) where z2 = 1, αq+1 = −2,
and εαq = zα, respectively αq = zα, for a fixed point of θε, respectively θ1.
Since P is not contained in the hyperplane y− z = 0 we obtain that z = −1,
αq+1 = −2, and εαq = −α, respectively αq = −α, for a fixed point of θε,
respectively θ1. In the latter case this implies that αq−1 = −1 and α2 = 2. If
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2 is a square in GF (q) (iff q = ±1(8)), then this is a contradiction. If 2 is a
non-square in GF (q) then there are two solutions α = ±

√
2 and hence two

fixed points (0, 1,−1,
√

2) and (0, 1,−1,−
√

2) of θ1. For θε we get two fixed
points (0, 1,−1,

√
2ε) and (0, 1,−1,−

√
2ε) if 2 is a square in GF (q). Note

that
(±
√

2ε)q+1 = −2,

and
(±
√

2ε)q−1 = −ε−1,

since

(
√
ε)q−1 = (w(q−1)/2)q−1 = w(q2−1)/2w1−q = (−1)(wq−1)q = −ε−1,

where w denotes a primitive element of GF (q2). If 2 is not a square in GF (q)
then the solutions of αq+1 = −2 are α = β

√
2, with βq+1 = 1. But then

2ε = αq+1/αq−1 = α2 = (β
√

2)2 = 2β2

implying
ε(q+1)/2 = βq+1 = 1,

contradicting that ε is of order q + 1.

We have shown that if q = ±1(8) then θ1 has q + 1 fixed points and θε has
q+ 3 fixed points, and if q = ±3(8) then θ1 has q+ 3 fixed points and θε has
q + 1 fixed points. The involutions in Gη,σ,εi \Hη all have the same number
of fixed points since they are conjugate in Gη,σ,εi . It follows that there are
exactly two conjugacy classes of subgroups Gη,σ,εi in PΓO(5, q). �

5 BLT-sets of Q(4, q)

A partial BLT-set of Q(4, q), q odd, is a set of at least three points of Q(4, q)
such that any three points of the set span a plane whose polar line with
respect to Q(4, q) is exterior to Q(4, q). A partial BLT-set can have size at
most q + 1, in which case it is called a BLT-set.

In the above model of PG(4, q), consider the plane π defined by α = 0. Then
π meets Q(4, q) in the conic defined by x2 + y2 + z2 = α = 0, which is a set
P of q + 1 points. The polar line l to π is defined by the intersection of the
three hyperplanes with equations x = 0, y = 0 and z = 0. Since αq+1 = 0
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has only the trivial solution, this line l is exterior to Q(4, q). Hence P is a
BLT-set, known as the classical BLT-set.

In general, Bader, O’Keefe and Penttila [2] have given the following algebraic
condition for a set of points of Q(4, q), q odd, to be a partial BLT-set. Here
we denote by � the subgroup of index 2 in the multiplicative group GF (q)∗

of GF (q) consisting of elements which are squares, and by � the other coset
of � in the factor group GF (q)∗/�. The discriminant disc(Q) of the non-
degenerate quadratic form Q, defined to be det(B)� ∈ GF (q)∗/� where B
is the matrix of the polar form f , is a complete invariant of such orthogonal
spaces for q odd.

Lemma 3 If 〈X〉, 〈Y 〉, 〈Z〉 are three points of Q(4, q), q odd, spanning a
plane of PG(4, q), then the polar line to 〈X, Y, Z〉 is exterior to Q(4, q) if and
only if

−2f(X, Y )f(X,Z)f(Y, Z)�
disc(Q)

= � ∈ GF (q)∗/�.

Furthermore, Johnson [3] has proved that we need only check all triples on
a randomly chosen point of our set.

Lemma 4 Let P be a set of at least three points of Q(4, q), q odd. If there
exists a point 〈X〉 of P such that {〈X〉, 〈Y 〉, 〈Z〉} is a partial BLT-set for all
distinct 〈Y 〉, 〈Z〉 ∈ P\{〈X〉}, then P is a partial BLT-set.

In the above model of Q(4, q), the value of disc(Q) is the product of the values
of the discriminant restricted to the first three coordinates and restricted to
the last coordinate, since this restriction represents an orthogonal direct sum
decomposition of V . The value of the discriminant restricted to the first three
coordinates is clearly 23� = 2�, whereas the value on the last coordinate, as
this represents an external line, is � if q ≡ 1 (4), and � if q ≡ 3 (4) (see, e.g.,
[4]). Now -1 is a square exactly when q ≡ 1 (4) and is a nonsquare exactly
when q ≡ 3 (4), hence combining the above two lemmas we have the following,
where we use the shorter notation F (X, Y, Z) = f(X, Y )f(X,Z)f(Y, Z).

Lemma 5 In the above model of Q(4, q), with q odd, let P be a set of at
least three points of Q(4, q). If there exists a point 〈X〉 of P such that

F (X, Y, Z)� = �

for all distinct 〈Y 〉, 〈Z〉 ∈ P\{〈X〉}, then P is a partial BLT-set.
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5.1 Partial BLT-sets as orbits under A4

Let H = Hη for some fixed η. Then the following lemma is clear from the
action of H on our model.

Lemma 6 If φ is an element of H then f(X,Y ) = f(φ(X), φ(Y )).

The condition for an orbit under Hη to be a partial BLT-set turns out to be
quite neat.

Lemma 7 The orbit PH under the subgroup H of a point P = (x, y, z, α) of
Q(4, q) forms a partial BLT-set if and only if each of −(x2 + y2), −(x2 + z2),
−(y2 + z2) is a (possibly zero-valued) square in GF (q).

Proof: Let P = (x, y, z, α) be a point of Q(4, q), and consider the orbit PH

of P under H. Any triple of distinct points of PH containing P is of the
form {P, φ1(P ), φ2(P )} for distinct φ1, φ2 ∈ H\{ι}. Hence, by Lemma 6,

F (P, φ1(P ), φ2(P )) = f(P, φ1(P ))f(P, φ2(P ))f(P, φ−1
1 φ2(P )).

Thus we need only calculate f(P, φ(P )) for each φ ∈ H\{ι} in order to deter-
mine if PH forms a partial BLT-set. Here we summarise these calculations.
Note that η2 + η = −1.

f(P, ϕ12(P )) = 4(z2 + αq+1) = −4(x2 + y2)

f(P, ϕ13(P )) = 4(y2 + αq+1) = −4(x2 + z2)

f(P, ϕ23(P )) = 4(x2 + αq+1) = −4(y2 + z2)

f(P, ψη(P )) = f(P, ψη2(P )) = (x+ y + z)2

f(P, ψη12(P )) = f(P, ψη213(P )) = (−x+ y + z)2

f(P, ψη13(P )) = f(P, ψη223(P )) = (x+ y − z)2

f(P, ψη23(P )) = f(P, ψη212(P )) = (x− y + z)2

Considering the various cases concludes the proof. �
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Note that we do not require that each of the above be nonzero, since the
possibility of starting with, for example, P = (0, 0, z, α), merely gives rise to
an orbit of length 6 (and not 12).

Examples The orbit of the point with coordinates (5, 10, 9, 1) in PG(4, 23)
is a partial BLT-set of size 12. Similarly (14, 40, 41, 1), and (12, 41, 17, 1) in
PG(4, 47).

5.2 Partial BLT-sets as orbits under S4

Let P = (x, y, z, α) be a point of Q(4, q) such that the orbit PH under
H ∼= A4 is a partial BLT-set, and consider the point Q = (x, z, y, εαq), where
εq+1 = 1. It then follows from Lemma 7 that QH is also a partial BLT-set.
From the previous section we see that in fact Q = θε(P ), and so considering
the orbit of P under the subgroup G ∼= S4 generated by H and θε, we need
merely consider PH ∪QH ; that is, the orbit PG of P under G is equal to the
union of the orbits PH and QH of P and Q under H.

Any triple of distinct points of PH∪QH containing P is of one of the following
forms : {P, φ1(P ), φ2(P )} for distinct φ1, φ2 ∈ H\{ι}; {P, φ1(P ), φ2(Q)} for
φ1 ∈ H\{ι}, φ2 ∈ H; {P, φ1(Q), φ2(Q)} for distinct φ1, φ2 ∈ H. Thus as
before, by Lemma 6, the product

F (P, P1, P2) = f(P, P1)f(P, P2)f(P1, P2)

with P1, P2 ∈ PH ∪ QH , contains an even number of f(P, φ(Q)), φ ∈ H,
and an odd number of f(R, φ(R)), R ∈ {P,Q}, φ ∈ H. It follows that in
order to determine if PH ∪ QH is a partial BLT-set, we need only further
calculate f(P, φ(Q)) for each φ ∈ H, and verify that these are all nonsquares
or all squares. Here we summarise these calculations, where T : GF (q2) →
GF (q), x 7→ x+xq is the trace function and N : GF (q2) → GF (q), x 7→ xq+1

is the norm function. Note that ηq = η2.

f(P,Q) = 2(x2 + 2yz) + T (εqα2) = −2(y − z)2 −N(α− εαq)

f(P, ϕ23(Q)) = 2(x2 − 2yz) + T (εqα2) = −2(y + z)2 −N(α− εαq)

f(P, ϕ12(Q)) = f(P, ϕ13(Q)) = −2x2 + T (εqα2) = 2(y2 + z2) +N(α+ εαq)

f(P, ψη(Q)) = 2(z2 + 2xy) + T (εqη2α2) = −2(x− y)2 −N(ηα− εηqαq)
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f(P, ψη12(Q)) = 2(z2 − 2xy) + T (εqη2α2) = −2(x+ y)2 −N(ηα− εηqαq)

f(P, ψη13(Q)) = f(P, ψη23(Q)) = −2z2+T (εqη2α2) = 2(x2+y2)+N(ηα+εηqαq)

f(P, ψη2(Q)) = 2(y2 + 2xz) + T (εqηα2) = −2(x− z)2 −N(η2α− εη2qαq)

f(P, ψη213(Q)) = 2(y2 − 2xz) + T (εqηα2) = −2(x+ z)2 −N(η2α− εη2qαq)

f(P, ψη212(Q)) = f(P, ψη223(Q)) = −2y2+T (εqηα2) = 2(x2+z2)+N(η2α+εη2qαq)

Hence for PH ∪QH to be a partial BLT-set, we require that all of the above
are squares, or they are all nonsquares.

Examples Here we list some examples of BLT-sets ofQ(4, q), q ≡ −1(24). In
all the examples η = w(q2−1)/3 and ε = w(q2−1)/(q+1), where w is a primitive
element in GF (q2). We give the minimal polynomial f(w) of w, and the
power εi which determines the group Gη,σ,εi in each case; for σ we always
take (2, 3). We do not list the classical BLT-set. For each q we give two
examples, the first one listed is fixed by the group Gη,σ,εi , for some odd i; the
second one for some even i. The number of fixed points of the involutions
of Gη,σ,εi \Hη follows from Theorem 1 (q + 3 for odd powers of ε and q + 1
for even powers of ε). The second example listed is the FTWK-example (see
[4]), and the first is the example found by computer, listed in [4], or is new
(for q = 167).

• q = 23: (f(w) = w2 − 2w + 5)

1. {(5, 10, 9, 1)} and ε9 = w198.

2. (5, 20, 17, w11) and ε4 = w88.

• q = 47: (f(w) = w2 − 2w + 5)

1. {(12, 41, 17, 1), (8, 12, 13, w943)} and ε43 = w1978.

2. {(14, 40, 41, 1), (8, 12, 13, w1679)} and ε22 = w1012.

• q = 71: (f(w) = w2 − 2w + 7)

1. {(46, 41, 6, 1), (27, 28, 11, w1785), (45, 62, 5, w2205)} and ε59 = w4130.

2. {(45, 21, 35, 1), (49, 2, 62, w315), (47, 54, 46, w2100)} and ε56 = w3920.

• q = 167: (f(w) = w2 + 104w + 109)
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1. {(28, 127, 17, w83), (141, 116, 79, w17098), (69, 95, 110, w6557),
(129, 144, 52, w1079), (154, 160, 99, w21580), (105, 110, 151, w15189),
(160, 79, 97, w8549)} and ε129 = w21414.

2. {(144, 71, 21, 1), (52, 131, 95, w10956), (123, 39, 160, w17430),
(58, 99, 19, w25564), (28, 160, 105, w19007), (140, 127, 141, w16434),
(124, 123, 97, w22327)} and ε166 = w27556.

Final remarks

Many more examples of BLT-sets can be constructed using this method.
Referring to the list of examples in [5], the following further BLT-sets are
found to arise naturally within the above model : for q = 17, the examples
DCH and PR with groups of orders 144 and 24 respectively; for q = 29,
the examples with groups of orders 720 and 48; for q = 41, the examples
with groups of orders 60 and 24; for q = 53, the examples with groups of
orders 24 and 12; and for q = 59, the examples with groups of orders 120
(not Penttila) and 24. For q = 11, the example arising from the family of
Penttila, and for q = 83 and q = 89 the examples listed in [4], both with
groups of order 24, can also be constructed. Furthermore, for all q ≡ 5(6),
q ≤ 71 (and presumably for greater q), the example arising from the family
of Fisher-Thas/Walker/Kantor can be described naturally within the above
model. The example in PG(4, 167) listed first is new and one could definitely
go on and construct more new examples. However it is our hope that some of
these examples will be shown to be members of an infinite family of BLT-sets
of Q(4, q), with S4 as automorphism group.
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