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Abstract

We give a new proof of the main theorem of [6] concerning the connection between
good eggs in PG(4n− 1, q), q odd, and Veronese varieties, using the model for good
eggs in PG(4n − 1, q), q odd, from [2].
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1 Introduction

An egg E in PG(4n− 1, q) is a partial (n− 1)-spread of size q2n + 1, such that
every three egg elements span a (3n − 1)-space and for every egg element E

there exists a (3n − 1)-space TE (called the tangent space of E at E) which
contains E and is skew to the other egg elements. The egg is good at an
element E if every (3n−1)-space which contains E and two other egg elements,
contains exactly qn + 1 egg elements. Put F = GF(qn), q odd, and let E be a
good egg of PG(4n − 1, q). In [2] it was shown that there exist ai, bi, ci ∈ F ,
for i ∈ {0, . . . , n − 1}, such that the elements of E can be written as

E(a, b) = {〈−gt(a, b), t,−at,−bt〉‖ t ∈ F ∗}, ∀a, b ∈ F,

E(∞) = {〈t, 0, 0, 0〉‖ t ∈ F ∗},
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with

gt(a, b) =
n−1∑

i=0

(aia
2 + biab + cib

2)1/qi

t1/qi

,

and with this notation the egg is good at the element E(∞). We use the
notation 〈x1, . . . , xd〉 for the projective point corresponding to the vector
(x1, . . . , xd) and the egg elements are represented as subsets of PG(3, qn).
Starting from an ovoid of PG(3, qn) one can construct an egg of PG(4n−1, q),
and we call such an egg elementary ([5]).

2 A theorem by J. A. Thas

In 1997 J. A. Thas published the paper [6] in which a connection is made
between good eggs in PG(4n−1, q), q odd, and Veronese Varieties in PG(5, qn).
Here we state the updated version of the main theorem as in [7], but leaving
out the connection with translation generalized quadrangles.

Theorem 1 (From Thas [7, Theorem 9.1])
If the egg E of PG(4n − 1, q), q odd, is good at an element E, then we have
one of the following.

(a) There exists a PG(3, qn) in the extension PG(4n− 1, qn) of PG(4n− 1, q)
which has exactly one point in common with each of the extensions of the egg
elements. The set of these q2n + 1 points is an elliptic quadric of PG(3, qn)
and E is elementary.

(b) We are not in case (a) and there exists a PG(4, qn) in PG(4n − 1, qn)
which intersects the extension of E in a line M and which has exactly one
point ri in common with the extension of the other egg elements. Let W be
the set of these intersection points ri, i = 1, . . . , q2n, and let M be the set of
all common points of M and the conics which contain exactly qn points of W.
Then the set W∪M is the projection of a quadric Veronesean V4

2 from a point
P in a conic plane of V4

2 onto PG(4, qn); the point P is an exterior point of
the conic of V4

2 in the conic plane. In this case the egg E is isomorphic to the
egg of Kantor-type.

(c) We are in case neither (a) nor (b) and there exists a PG(5, qn) in PG(4n−
1, qn) which intersects the extension of E in a plane π, and which has exactly
one point ri in common with the extension of the other egg elements. Let W
be the set of these intersection points ri, i = 1, . . . , q2n, and let P be the set of
all common points of π and the conics which contain exactly qn points of W.
Then the set W ∪P is a quadric Veronesean in PG(5, qn)
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Denote the egg elements by {E, E1, . . . , Eq2n} and let E be the good element.
If we project the egg elements from one of its elements onto a (3n − 1)-space
PG(3n− 1, q) skew to that element then we obtain a partial (n− 1)-spread of
size q2n. If we project from E then we can extend this partial (n − 1)-spread
to a Desarguesian (n − 1)-spread. It was proved by Segre [4] (see also [3])
that this implies that there exists an imaginary plane π in PG(4n − 1, qn),
such that the elements of the Desarguesian spread are the intersections of
PG(3n − 1, q) with the subspaces 〈P, P σ, P σ2

, . . . , P σn−1

〉, P ⊂ π, where σ is
the non-identity collineation of PG(4n− 1, qn) fixing PG(4n− 1, q) pointwise.
Let ρ be the (n + 2)-space spanned by the good element and π, and let Pi be
the intersection of the extension of the egg element Ei with ρ (note that this
intersection is indeed a point). Let W = {Pi‖i = 1, . . . , q2n}. Then we will
show that one of the following cases occurs.

(a) W generates a 3-space and then the egg is elementary.

(b) W generates a 4-space and the egg is of Kantor-type (and W is the affine
part of a projection of a Veronesean of PG(5, qn))

(c) W generates a 5-space and W is the affine part of a Veronesean in PG(5, qn).

3 A new proof

In this section we give a proof of Theorem 1 using the model for good eggs
given in the introduction. Let V (n, qn) denote an n-dimensional vectorspace
over GF(qn). Let V (n, q) be the vectorspace consisting of vectors of V (n, qn)
with coordinates in GF(q) with respect to a fixed basis. The egg elements
are represented as subsets of PG(3, qn). In order to write down the extension
of the egg elements to subspaces of PG(4n − 1, qn), we construct a suitable
embedding of GF(qn) in V (n, qn) in the following way. Let X be an element
of GL(n, q) of order qn − 1, and let v be an eigenvector of X with eigenvalue
λ. Then λ is a primitive element of GF(qn), and the eigenvalues of X are
λ, λq, . . . , λqn−1

with corresponding eigenvectors v, vσ, . . . ,vσn−1, where σ :
(x1, . . . , xn) 7→ (xq

1, . . . , x
q
n). And so with every α ∈ GF(qn)∗ there corresponds

a certain power of X, which we denote by Z(α), such that αv = vZ(α).
Define ek+1 = λkv + λkqvσ + · · · + λkqn−1

vσn−1 , for k = 0, . . . , n − 1. Then
{e1, e2, . . . , en} is a basis of V (n, qn), consisting of vectors of V (n, q), since
{v,vσ, . . . ,vσn−1} is a basis for V (n, qn). We define the bijection

α = a1 + a2λ + · · ·+ anλn−1 7→ ᾱ = a1e1 + a2e2 + · · ·+ anen
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between GF(qn) and V (n, q). Since

e1Z(a1 + a2λ + · · · + anλ
n−1) = a1e1 + a2e2 + · · ·+ anen,

we have αβ = e1Z(αβ) = e1Z(β)Z(α) = βZ(α). This implies that Z(α)
is the matrix of the linear transformation in V (n, q) corresponding to mul-
tiplying by α in GF(qn). The automorphism α 7→ αq of GF(qn) defines the
GF(q)−semilinear map A from V (n, q) in itself, such that Z(αq) = A−1Z(α)A.

This implies that vA−1Z(α)A = αqv, i.e., vA−1 is an eigenvector of Z(α) with
eigenvalue αq, and it follows that vA−i is an eigenvector of Z(α) with eigen-
value αqi

. We identify the GF(q)−linear map t 7→ gt(a, b) =
∑n−1

i=0 (γit)
1/qi

(with γi = aia
2 + biab + cib

2) in GF(qn) with the GF(q)−linear map La,b in
V (n, qn) defined by: La,b(ᾱ) = β̄ if and only if gα(a, b) = β, for all α, β ∈

GF(qn). Hence La,b : ᾱ 7→
∑n−1

i=0 ᾱA−iZ(γ
1/qi

i ), and La,b(v) =
∑n−1

i=0 γivA−i.
Now we can write down the extension of the egg elements as

Ē(a, b) = {〈−La,b(w),w,wZ(−a),wZ(−b)〉‖w ∈ V (n, qn)},

for all a, b ∈ GF(qn). By projecting the egg elements from the good element
onto PG(3n − 1, q) = {〈0, r, s, t〉‖(r, s, t) ∈ (GF(qn)3)∗}, the Desarguesian
spread obtained this way, corresponds to the imaginary plane π generated by
〈0,v, 0, 0〉, 〈0, 0,v, 0〉, 〈0, 0, 0,v〉. Eventually we find that the point Pi (with
Ei = E(a, b)) has coordinates 〈−La,b(v),v,−av,−bv〉, and hence

W = {〈−
n−1∑

i=0

(aia
2 + biab + cib

2)vA−i,v,−av,−bv〉‖a, b ∈ GF(qn)}.

If (a0, a1, . . . , an−1) or (c0, c1, . . . , cn−1) is 0 then one easily sees that the tan-
gent space at E(∞) intersects one of the other egg elements, contradicting
the definition of an egg. If (b0, b1, . . . , bn−1) 6= 0, then W is contained in the
subspace spanned by Q1 := 〈−

∑n−1

i=0 aivA−i, 0, 0, 0〉, Q2 := 〈−
∑n−1

i=0 bivA−i,

0, 0, 0〉, Q3 := 〈−
∑n−1

i=0 civA−i, 0, 0, 0〉, Q4 := 〈0,v, 0, 0〉, Q5 := 〈0, 0,−v, 0〉,
and Q6 := 〈0, 0, 0,−v〉. If the dimension of U := 〈Q1, Q2, Q3, Q4, Q5, Q6〉 is
5 then by taking {Q1, Q2, Q3, Q4, Q5, Q6} as a basis for U the points of W
have coordinates 〈a2, ab, b2, 1, a, b〉, a, b ∈ GF(qn). This is the affine part of
the Veronesean V4

2 , and this proves part (c) of the theorem. If U has dimen-
sion 4 then, since we may assume (a0, a1, . . . , an−1) = (1, 0, . . . , 0) (see e.g.
Remark 1.3 in [1]), there exists a γ ∈ GF(qn)∗ such that (b1, b2, . . . , bn−1) =
γ(c1, c2, . . . , cn−1). But then it is a straightforward calculation to see that the
tangent space at E(0, 1) contains an element of the Desarguesian spread in-
duced by the qn+1 egg elements contained in 〈E(∞), E(0, 0), E(1, 0)〉 (see e.g.
the proof of Theorem 4.2 in [1]). By [1, Theorem 4.1] we may conclude that
the egg is of Kantor type. Choosing {Q1, Q2, Q4, Q5, Q6} as a basis for U , we
see that W is a projection of the Veronesean from the point 〈0,−γ, 1, 0, 0, 0〉
onto the the hyperplane with equation X2 = 0. This proves part (b). If U is
3-dimensional then again with (a0, a1, . . . , an−1) = (1, 0, . . . , 0), bi = ci = 0 for
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i > 0. It is easy to see that then the egg is elementary and the set W is the set
of affine points on an elliptic quadric. If (b0, b1, . . . , bn−1) = 0, then by using
completely the same arguments as above one easily sees that the egg is either
of Kantor type or elementary.
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