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Abstract
We give a new proof of the main theorem of [6] concerning the connection between

good eggs in PG(4n —1,q), q odd, and Veronese varieties, using the model for good
eggs in PG(4n — 1,q), ¢ odd, from [2].
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1 Introduction

An egg € in PG(4n —1,q) is a partial (n — 1)-spread of size ¢*" + 1, such that
every three egg elements span a (3n — 1)-space and for every egg element E
there exists a (3n — 1)-space Tk (called the tangent space of € at E) which
contains £/ and is skew to the other egg elements. The egg is good at an
element E if every (3n—1)-space which contains F and two other egg elements,
contains exactly ¢" + 1 egg elements. Put F' = GF(¢"), ¢ odd, and let € be a
good egg of PG(4n — 1,¢q). In [2] it was shown that there exist a;, b;,¢; € F,
for i € {0,...,n — 1}, such that the elements of £ can be written as

E(a7 b) = {<_gt(a7 b)ata —at, _bt>|| te F*}v Va,b € F,

E(o0) = {(t,0,0,0)|| t € F*},
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with
n—1

gila,b) = > (a;a® + bab + ¢;p*) V7417
i=0
and with this notation the egg is good at the element F(occ). We use the
notation (xi,...,x4) for the projective point corresponding to the vector
(x1,...,24) and the egg elements are represented as subsets of PG(3,q").
Starting from an ovoid of PG(3, ¢") one can construct an egg of PG(4n—1, q),
and we call such an egg elementary ([5]).

2 A theorem by J. A. Thas

In 1997 J. A. Thas published the paper [6] in which a connection is made
between good eggs in PG(4n—1, q), ¢ odd, and Veronese Varieties in PG(5, ¢").
Here we state the updated version of the main theorem as in [7], but leaving
out the connection with translation generalized quadrangles.

Theorem 1 (From Thas [7, Theorem 9.1])
If the egg € of PG(4n — 1,q), q odd, is good at an element E, then we have
one of the following.

(a) There exists a PG(3,q") in the extension PG(4n —1,¢") of PG(4n —1,q)
which has exactly one point in common with each of the extensions of the egg
elements. The set of these ¢*™ + 1 points is an elliptic quadric of PG(3,q")
and & is elementary.

(b) We are not in case (a) and there exists a PG(4,q¢") in PG(4n — 1,¢")
which intersects the extension of E in a line M and which has exactly one
point r; in common with the extension of the other eqg elements. Let W be
the set of these intersection points r;, i = 1,...,¢*", and let M be the set of
all common points of M and the conics which contain exactly q" points of V.
Then the set W UM is the projection of a quadric Veronesean Vy from a point
P in a conic plane of V3 onto PG(4,q"); the point P is an exterior point of
the conic of Vi in the conic plane. In this case the egg € is isomorphic to the
eqg of Kantor-type.

(c) We are in case neither (a) nor (b) and there ezists a PG(5,¢") in PG(4n—
1, q™) which intersects the extension of E in a plane w, and which has exactly
one point r; in common with the extension of the other eqgg elements. Let VW
be the set of these intersection points r;, i = 1,...,¢*", and let P be the set of
all common points of m and the conics which contain exactly ¢ points of V.
Then the set W U P is a quadric Veronesean in PG(5, ¢™)



Denote the egg elements by {E, E1, ..., E2n} and let E be the good element.
If we project the egg elements from one of its elements onto a (3n — 1)-space
PG(3n — 1, q) skew to that element then we obtain a partial (n — 1)-spread of
size ¢°". If we project from E then we can extend this partial (n — 1)-spread
to a Desarguesian (n — 1)-spread. It was proved by Segre [4] (see also [3])
that this implies that there exists an imaginary plane 7 in PG(4n — 1,¢"),
such that the elements of the Desarguesian spread are the intersections of
PG(3n — 1,¢) with the subspaces (P, P?, P” ... P°"), P C &, where o is
the non-identity collineation of PG(4n — 1,¢") fixing PG(4n — 1, ¢) pointwise.
Let p be the (n + 2)-space spanned by the good element and 7, and let P; be
the intersection of the extension of the egg element F; with p (note that this
intersection is indeed a point). Let W = {PF|li = 1,...,¢*"}. Then we will
show that one of the following cases occurs.

(a) W generates a 3-space and then the egg is elementary.

(b) W generates a 4-space and the egg is of Kantor-type (and W is the affine
part of a projection of a Veronesean of PG(5, ¢"))

(c) W generates a 5-space and W is the affine part of a Veronesean in PG(5, ¢™).

3 A new proof

In this section we give a proof of Theorem 1 using the model for good eggs
given in the introduction. Let V(n,¢") denote an n-dimensional vectorspace
over GF(¢"). Let V(n, q) be the vectorspace consisting of vectors of V(n, ¢")
with coordinates in GF(q) with respect to a fixed basis. The egg elements
are represented as subsets of PG(3,¢"). In order to write down the extension
of the egg elements to subspaces of PG(4n — 1,¢"), we construct a suitable
embedding of GF(¢") in V(n,¢") in the following way. Let X be an element
of GL(n, q) of order ¢" — 1, and let v be an eigenvector of X with eigenvalue
A. Then A is a primitive element of GF(¢"), and the eigenvalues of X are
AT with corresponding eigenvectors v, vo,...,vo" !, where o :
(X1, xn) — (2f,...,22). And so with every o € GF(¢")* there corresponds
a certain power of X, which we denote by Z(«), such that av = vZ(«).
Define e = Mv + Nvo + - + Med" g gn—t ,for k=0,...,n — 1. Then
{e1,e3,...,e,} is a basis of V(n,q"), consisting of vectors of V(n,q), since
{v,vo,...,vo" '} is a basis for V(n, ¢"). We define the bijection

a=ay+a A+ +a, "= a=ae +ages+ -+ aze,



between GF(¢") and V(n, q). Since
e Z(ay + agh + -+ a ") = aje; + ageg + - - + ayen,

we have af = e, Z(af8) = e, Z(3)Z(a) = BZ(a). This implies that Z(«)
is the matrix of the linear transformation in V(n,q) corresponding to mul-
tiplying by a in GF(¢"). The automorphism « +— a? of GF(¢") defines the
GF(gq)—semilinear map A from V' (n, ¢) in itself, such that Z(a?) = A~'Z(a)A.
This implies that vA~!Z(a)A = afv, i.e., vA~! is an eigenvector of Z(a) with
eigenvalue o, and it follows that vA~" is an eigenvector of Z(a) with eigen-
value a?'. We identify the GF(q)—linear map t + g;(a,b) = S0 (yit)V/e
(with v; = a;a® + biab + ¢;b*) in GF(¢") with the GF(¢)—linear map L, in
V(n,q") defined by: Loy(a) = B if and only if g,(a,b) = 3, for all a, 3 €
GF(q"). Hence L, : a — Y04 @A*iZ(%l/ql), and L,p(v) = Y0 vivA™.
Now we can write down the extension of the egg elements as

E(a,b) = {(=Laop(W),w,wZ(—a),wZ(=b))||lw € V(n,q")},

for all a,b € GF(¢"). By projecting the egg elements from the good element
onto PG(3n — 1,q) = {(0,r,s,t)||(r,s,t) € (GF(¢")?)*}, the Desarguesian
spread obtained this way, corresponds to the imaginary plane 7 generated by
(0,v,0,0), (0,0,v,0), (0,0,0,v). Eventually we find that the point P; (with
E; = E(a,b)) has coordinates (—L,;(v), Vv, —av, —bv), and hence

n—1
W= {{(-=> (a;a® + biab + c;b>)vA~" v, —av, —bv)|a,b € GF(¢")}.
i=0

If (ap,a1,...,a,_1) or (co,c1, ...,Cph_1) is O then one easily sees that the tan-
gent space at F/(oo) intersects one of the other egg elements, contradicting
the definition of an egg. If (bg, b1,...,b,—1) # 0, then W is contained in the
subspace spanned by Q; = (— " a;vA™ 0,0,0), Qy := (— XI5 bivA~,
0,0,0), Q3 == (=X} e;vA™ 0,0,0), Q4 := (0,v,0,0), Qs := (0,0, —v,0),
and Qg := (0,0,0, —v). If the dimension of U := (@1, Q2, Q3, Q4, Q5, Qg) is
5 then by taking {Q1, Q2, Qs,Q4, Qs, s} as a basis for U the points of W
have coordinates (a?,ab,b* 1,a,b), a,b € GF(¢"). This is the affine part of
the Veronesean Vs, and this proves part (c) of the theorem. If U has dimen-
sion 4 then, since we may assume (ag,aq,...,a,-1) = (1,0,...,0) (see e.g.
Remark 1.3 in [1]), there exists a v € GF(¢")* such that (by,bs,...,b,1) =
v(er,¢a, ..., 1) But then it is a straightforward calculation to see that the
tangent space at F/(0,1) contains an element of the Desarguesian spread in-
duced by the ¢"+1 egg elements contained in (F(c0), £(0,0), E(1,0)) (see e.g.
the proof of Theorem 4.2 in [1]). By [1, Theorem 4.1] we may conclude that
the egg is of Kantor type. Choosing {Q), @2, Q4, Qs, Qs} as a basis for U, we
see that W is a projection of the Veronesean from the point (0, —v, 1,0, 0, 0)
onto the the hyperplane with equation X5 = 0. This proves part (b). If U is
3-dimensional then again with (ag, aq,...,a,-1) = (1,0,...,0), b; = ¢; = 0 for



1 > 0. It is easy to see that then the egg is elementary and the set W is the set
of affine points on an elliptic quadric. If (bg, by, ...,b,—1) = 0, then by using
completely the same arguments as above one easily sees that the egg is either
of Kantor type or elementary.
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