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EGGS AND TGQ’S

Abstract

We study eggs in PG(4n—1,q). A new model for eggs is presented in which
all known examples are given. We calculate the general form of the dual egg
for eggs arising from a semifield flock. Applying this to the egg obtained in L.
Bader, G. Lunardon and I. Pinneri [1] from the Penttila-Williams ovoid [11],
we obtain the dual egg, which is not isomorphic to any of the previous known
examples, see [1]. Furthermore we give a new proof of a conjecture of J.A.Thas
[17] using our model, and classify all eggs of PG(7,2) which is equivalent to
the classification of all translation generalised quadrangles of order (4,16).
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1. Introduction

Let PG(n,q) denote the projective n-dimensional space over the finite field GF(q)
of order q. A weak egg £ of PG(2n +m — 1,q) is a set of ¢™ + 1 (n — 1)-spaces
of PG(2n + m — 1,q) such that any three different elements of € span a (3n — 1)-
space. If each element E of £ is contained in an (n+m — 1)-dimensional subspace of
PG(2n+m—1,q), Tg, which is skew from any element of £ different from F, then
€ is called an egg of PG(2n+m — 1,q). The space Ty is called the tangent space
of £ at E. The set of tangent spaces of an egg £ is denoted by Tg. By projecting
the egg from an element onto a PG(n + m — 1,q) skew from that element, it is
easy to see that the tangent spaces of an egg are uniquely determined by the weak
egg. If n=m then an egg &£ is called a pseudo oval or a generalised oval. The only
known examples of pseudo ovals are ovals of PG(2,¢™), seen over GF(gq). All pseudo
ovals of PG(3n —1,q), ¢" < 16 have been classified, see [10]. If 2n = m then &
is called a pseudo ovoid or a generalised ovoid. An ovoid of PG(3,q"™) seen over
GF(q) is an example of a pseudo ovoid. Here more examples are known, which will
be described later. All known examples of eggs are generalised ovals or generalised
ovoids. Following J. A. Thas [16] we call the examples of eggs which are ovals of
PG(2,q™) or ovoids of PG(3,¢™) seen over GF(q) elementary. If every four elements
of a pseudo ovoid either are contained in a (3n — 1)-dimensional space or span a
(4n — 1)-dimensional space then the pseudo ovoid is elementary, see [16].

A generalised quadrangle of order (s,t) (GQ(s,t)), s > 1, t > 1, is an incidence
structure of points and lines with the properties that any two points are incident
with at most one common line, any two lines are incident with at most one common
point, every line is incident with s+ 1 points, every point is incident with ¢+ 1 lines,
and given a line [ and a point P not incident with [, there is a unique line m and
a unique point @, such that m is incident with P and @ and @ is incident with
I. If s =t then we speak of a generalised quadrangle of order s (GQ(s)). From
a GQ(s,t) we get a GQ(t,s) by interchanging the labels point and line, called the
point-line dual of the generalised quadrangle of order (s,t). For more on generalised
quadrangles we refer to [9].

A translation generalised quadrangle with base point P (TGQ) is a generalised quad-
rangle for which there is an abelian group 71" acting regularly on the points not
collinear with P, while fixing every line through P. For more on TGQ’s we refer to
[9], [17], and [19].

Let € be an egg of PG(2n+m—1, q). Now embed PG(2n+m—1,q) in a PG(2n+m, q)
and construct the incidence structure T'(£) as follows. Points are of three types: (i)
the points of PG(2n + m,q) — PG(2n + m — 1,q); (ii) the (n + m)-dimensional
subspaces of PG(2n + m, ¢q) which intersect PG(2n +m — 1,¢) in a tangent space;
(iii) the symbol (0o0). Lines are of two types: (a) the n-dimensional subspaces of
PG(2n + m, q) which intersect PG(2n + m — 1,q) in an egg element; (b) the egg
elements. Incidence is defined as follows: lines of type (b) are incident with points of
type (ii) which contain them and with the point (c0); lines of type (a) are incident
with points of type (i) contained in it and with points of type (ii) which contain
them.
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Theorem 1.1 (8.7.1 of S. E. Payne and J. A. Thas [9])

The incidence structure T'(E) is a translation generalised quadrangle (TGQ) of order
(¢"™, ¢™) with base point (00). Conversely, every TGQ is isomorphic to a T(E) for
some egg € of PG(2n+m —1,q). It follows that the theory of TGQ is equivalent to
the theory of eggs.

By the following theorem we know that isomorphic eggs give isomorphic TGQ’s and
conversely.

Theorem 1.2 (L. Bader, G. Lunardon, I. Pinneri [1])
Let &1, & be two eggs of PG(2n+m — 1,q). Then there is an isomorphism from
T(&1) to T(E2), which maps the point (o) to the point (c0) if and only if there is a
collineation of PG(2n +m — 1,q) which maps &1 to Es.

The next theorem gives some restrictions on the parameters m and n of an egg and
states a nice property about the tangent spaces. It is proved using the theory of

TGQ.

Theorem 1.3 (8.7.2 of S. E. Payne and J. A. Thas [9])
If € is an egg of PG(2n+m — 1,q), then

1. n=m orn(a+ 1) = ma with a odd.
2. If q is even, then n =m or m = 2n.

3. If n #m (resp., 2n = m), then each point of PG(2n +m — 1,q) which is not
contained in an egg element belongs to 0 or ¢~ ™ +1 (resp., to exactly ¢"+1)
tangent spaces of .

4. If n # m the ¢™ + 1 tangent spaces of € form an egg EP in the dual space of
PG(2n+m —1,q), called the dual egg. So in addition to T'(E) there arises a
TGQ T(EP), called the translation dual of T(E).

5. If n £ m (resp., 2n = m), then each hyperplane of PG(2n+m — 1,q) which
does not contain a tangent space of € contains 0 or ¢™~"™ + 1 (resp., contains
exactly " + 1) egg elements.

2. Eggs, 4-gonal families, and ¢-clans

In this section we only consider eggs of PG(4n — 1,q). This is the case a = 1
in Theorem 1.3. There are some examples known of pseudo ovoids which are not
elementary. They all arise in a similar way which will be explained here. We start
with the connection between 4-gonal families, ¢-clans, and eggs. Put F' = GF(q").

Let G be a finite group of order s*¢, 1 < s,1 < t, together with a family J =
{4; ]| 0 < i <t} of 1+ ¢ subgroups of G, each of order s. Assume furthermore
that for each A; € J, there exists a subgroup A} of G of order st containing A;.
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Put J* = {A* | 0 <i < t}. If (i) 4,A; N A, = {1}, for distinct 4,5, k, and (ii)
AT N A; = {1}, for i # j, then j is called a 4-gonal family for G. It was proved
by W. M. Kantor [5] that with every 4-gonal family there corresponds a generalised
quadrangle (GQ) of order (s,t).

A g¢™-clan is a set {A.||t € F} of ¢" two by two matrices over F, such that the
difference of each two is anisotropic, i.e., a(A; — A;)aT = 0, implies a = (0,0) or
s=1t. A g"-clan is additive if Ay + As = Ayqs.

Let C = {A||t € F} be a ¢"-clan, put K; = A; + AT, and define g;(vy) = 7477 and
7% = yK; for v € F2. Let G = {(a,¢,3) || @, € F?, ¢ € F}, and define a binary
operation on G by:

(a,c,8)* (o, 3) = (a—i—a',c—l—c’—i—ﬁa'T,ﬁ—i—ﬁ').
This makes G into a group. Let J be the family of subgroups
A(t) = {(e, g1(@),0™) || @ € F}, t € F,
and
A(o0) = {(0,0,5) || B € F?}.
Let J* be the family of subgroups
A1) = {(ave,0™) | a € F,c€ F), te F,

and
A*(00) ={(0,¢,8) || c € F, B € F?}.

Then the following theorem is a combination of results of S. E. Payne [7], S. E.
Payne [8] and W. M. Kantor [4].

Theorem 2.1 The set J is a 4-gonal family for G if and only if C is a q"-clan.

In [6] S. E. Payne studies 4-gonal families associated with GQ’s whose point-line
duals are TGQ’s. Starting with a 4-gonal family corresponding with a GQ S, he
deduces a 4-gonal family corresponding with the TGQ S”. The following theorem
states the connection between additive ¢™-clans and eggs and it is a corollary of the
work done by S. E. Payne in [6] and Theorem 2.1.

Theorem 2.2 The set C = {A, || t € F} of two by two matrices over F is an
additive q"-clan if and only if the set & = {E(y) || v € F? U {oo}}, with
E(y) = {{(t,~g:(), =) || t € F}, ¥y € F?,

E(00) = {((0,£,(0,0))) || t € F'},

together with the set Te = {E*(7) | v € F2U {oo}}, with
E* () = {(t. 7" +9"7" = 0:(7),8)) | t € F, B € F*}, ¥y € F?,
B*(00) = {{(0,1,8)) || t € F, B € F?},

forms an egg of PG(4n — 1,q), where g;(v) = vAy" and % = ~v(A; + AT).
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If we are in the situation of the above theorem then, since A; is additive, we can

write A; as
n—1 a b )
- i 0; ¢
a=Y (o)

i=0

for some a;, b;,c; € F'. If an egg £ can be written in this form then we denote the egg
as £(a, b,¢), where @ = (ag,...,an—1), b= (bo,...,bp—1), and €= (cg,...,¢n-1). In

this case we can deduce the explicit form of the dual egg in terms of @, b,¢. We need
the following lemma.

Lemma 2.3 Let tr be the trace map from F to GF(q). Then
n—1 ]
tT‘(Z Aitql) = 0,
i=0

for allt € F if and only if

n—1 L

n—1l—
St —o.
i=0

Proof : Because the trace function is additive and tr(z) = tr(z?), we get

n—1 n—1 )
tr <Z Ait‘f) = tr [(Z A‘;””) tq“] .
1=0 1=0

Since tr(ax) =0, Yz € F implies a = 0 the proof is complete. a

Theorem 2.4 The elements of the dual egg EP (@, b, ) of an egg £(a,b, ) are given

! E(Y) = {{(=g:(v),t, =) || t € F}, ¥y € F?,
E(c0) = {((t,0,(0,0))) || t € F},
E*(7) = {{(f(B,) + 3:(1), 1, B) | t € F, B € F?}, ¥y € F?,
E*(00) = {((,0,8) )| t € F\, 5 € F?},
with
Gi(a,b) = nf(aia? + bab + c;b?) /¢4
=0
and
f((a,b). (c,d)) = S@aiac + by (ad + be) + 2¢;bd) 7.
1=0
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Proof : To find E(v), respectively E*(v), we calculate the vector space dual of
E*(7), respectively E(v) in V(4n, q) with respect to the inproduct:

((@,y,2,w), (¢, 2/, w') = tr(za’ + yy' + 22"+ ww'),

where tr is the trace map from F — GF(q). If (z,y, z,w) is in the vector space dual
of E*(7) then tr [zt + y(By" + 7" — g:(7)) + (z,w)BT] =0, for all t € F, for all
B € F?. With v = (a,b) and 8 = (c,d), this is

tr [zt + y(ac + bd + 4" — g:(v)) + zc + wd] = 0,

for all ¢,d,t € F. For t = 0, this equation is satisfied if w = —by and z = —ay.
Substituting this back into the equation we get that ¢r [xt +y(YryT — gi(y) ] =0,
for all ¢t € F. Using the formula for g; and d; this is equivalent with

n—1
tr | (z + y(aoa® + boab + cob?))t + Z(aiaz + biab + ¢;b*)t? | =0,
i=1

for all ¢t € F. Using the above lemma, it follows that (z,y, z,w) is of the form

|
—

(= (a;a® + bjab + cibz)l/qitl/qi ,t, —at, —bt),

7

Il
o

for some ¢t € F. This proves the form of the elements E(v) of the dual egg. The
tangent spaces are obtained in the same way. O

Using the same notation we now present all the known examples and their duals
up to isomorphism. We only write down a typical egg element F(vy) and dual egg
element E (7). They all arise from the theory of TGQ. We exclude the elementary
pseudo ovoids.

1. Arising from the Kantor-Knuth semifield flock. The corresponding GQ was
first discovered by Kantor [4] in (1986). Here the eggs are self dual as proven
by S. E. Payne [6]. They exist for ¢ odd. Let o € Aut(F'), and s a nonsquare
in F', then

E(y) = {{(t, —a®t + sb*t7, —2at, 2bst)) || t € F},

E(y) = {((=a® + (sb®)7 't ,t,—at,—bt)) || t € F}.

2. Arising from the Ganley translation plane (1981) [2]. They first appeared in
[3]. They are not self dual; here the translation dual was called the Roman
GQ by S. E. Payne [6]. They exist for ¢ = 3. Let s be a nonsquare in F, then
E(y) = {{(t, = (a®=b*s)t—abt>+b*s 117 at—bt®, —at>—b(st+s'1%))) || t € F},

E(y) = {{(—(a® = b%s)t — (ab)*/3t}/3 4 (b2~ )V/24Y/ t —at, —bt)) || t € F}.
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3. Arising from the Penttila-Williams ovoid of Q(4, ¢) (1999) [11]. They are not
self dual, see L. Bader, G. Lunardon, I. Pinneri [1]. Here ¢ = 3 and n = 5.

E(y) = {{(t, —a*t — abt® + b*t*7 at — bt®, —at® — bt*")) || t € F}

B(y) = {{(—a%t — (ab) /3413 4 (b2)M/7T41/2T 1, _at, —bt) || ¢ € F}
In the last example the dual egg is new, as was proven in [1].

3. A model for eggs of PG(4n —1,q)

Motivated by the previous section and in the spirit of the model for skew translation
generalised quadrangles (STGQ) presented in [9], we present a model for a weak egg
€ of PG(4n —1,q).

Let £(g,6) be the set {E(y) || v € F? U {oco}}, with

E(y) = {((t, —g:(v), =) || t € F}, and
E(o0) = {((0,1,0,0)) || t € F'},
where g:t — ¢y, g4 : F2 — F,and 6§ : t — &y, 6; : F? — F2.

Working out the conditions for a weak egg we obtain the following theorem.

Theorem 3.1 The set £(g,0) forms a weak egg of PG(4n — 1,q) if and only if
(i) the functions g and & are linear in t over GF(q),
(i1) &: is a bijection for t # 0,

50 ER !
(1) ge, (71) + 9e2(V2) 7 Gt 1. (1 " + 72 2)5““2); forallty #0,ta #0, 1 +12 #0,
50 Siyns—1
M #Y2 and 11 # (1) +75) 0 £ .

We say that a (weak) egg £ of PG(4n — 1,q) is good at an element E if every
(3n — 1)-space containing F and at least two other (weak) egg elements, contains
exactly ¢" +1 (weak) egg elements, see [19]. So an egg of PG(4n—1, q) which is good
at an element induces an egg of PG(3n—1,¢q) in every (3n — 1)-space containing the
good element and at least two other elements of the egg.

Theorem 3.2 The weak egg £ is good at an element if and only if € is isomorphic
to a weak eqg E(g,0) with §; : v — ~t.

Proof : Suppose £(g,9) is a weak egg with 0; : v — ~t. Projecting £(g,d) from
E(o0) shows that £(g,d) is good at E(cc). Conversely suppose that £ is a weak
egg which is good at an element. Without loss of generality we may assume that
€ is of the form &(g,d) and good at E(c0). Projecting from FE(oo) onto W =
{{(r,0,s,t)) || r,s,t € F}, gives a partial (n — 1)-spread P of W. Since £(g,0) is
good at E(oc0), every (2n — 1)-space of W spanned by two elements of P, contains
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exactly ¢" elements of P. If B is the set of (2n — 1)-spaces spanned by two elements
of P, then with respect to inclusion, the elements of P and B form the points and
lines of an affine plane A of order ¢". Let T be the set of points of W, not contained
in an element of P. Every two elements of B necessarily meet in an (n — 1)-space
of W. Two elements of B which correspond with two parallel lines of A, meet in an
(n — 1)-space contained in T'. Tt follows that all lines belonging to the same parallel
class of A, intersect T in a common (n — 1)-space. Let £ be the set of all these
(n — 1)-spaces of T. Any two elements of £ are disjoint since two non-parallel lines
of A meet in a point of A, i.e., an element of P. This shows that £ partitions the
set T'. We completed the partial spread P to a normal spread of W. By a theorem
of Segre [13] it follows that the affine plane A is Desarguesian. This implies that
the set P is isomorphic with the set {{((¢,0, —at, —bt)) | t € F} || a,b € F}, under
a collineation of W. Extending this collineation to a collineation of PG(4n — 1, q),
the result follows. ]

In [17], J. A. Thas proves that, for ¢ odd, every sub GQ that you get from a (3n—1)-
space on the good element is isomorphic to Q(4,¢"™). Together with Theorem 1.2,
this implies the following lemma.

Lemma 3.3 If € is an egg of PG(4n — 1,q), q odd, is good at an element E, then
every pseudo oval on E is elementary

The next theorem proves a conjecture of J. A. Thas [19]. The conjecture was first
proved by J. A. Thas in [20], as a corollary of a more general result. Here a shorter
direct proof of the conjecture is given.

Theorem 3.4 An egg € of PG(4n —1,q), q odd, is good at an element if and only
if T(E) is the translation dual of the point-line dual of a semifield flock GQ.

Proof : Starting from a semifield flock GQ, it follows from Theorem 2.4 and
Theorem 3.2 that the egg is good at an element. Conversely, let £ be an egg of
PG(4n — 1, q) which is good at an element. Without loss of generality we may as-
sume that £ is of the form £(g,d) and good at E(oc). From Theorem 3.2 it follows
that we may assume that d; : v — ~t. Define the following (3n — 1)-spaces:

Vo= {((r,s, —ar,t)) | r;s,t € F},Va € F,

Wy = {((r,s,t,=br)) || r,s,t € F},Vb € F,
U= {<(T757 —at, _bt)> H TS, t € F}

Then every one of these (3n — 1)-spaces contains exactly ¢ + 1 egg elements. Hence
they intersect £(g,d) in a pseudo oval on E(oo). Now fix b € F and consider the
pseudo oval Cp lying in W;. By the above lemma C;, is isomorphic to an oval of
PG(2,qm), seen over GF(q). Since ¢ is odd this oval is a conic C (see B. Segre [14]).
So we can write the points of C as (1, fiz? + fox + f3,2)), for some fi1, fa, f3 € F. If
we look at the points of C as (n — 1)-spaces over GF(q), then we may write them as
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{{(t, (frz®+ faz+f3)t,xt)) || t € F}. The set of these (n—1)-spaces is a pseudo oval of
PG(3n—1,q). We denote this pseudo oval with C. So there exists a collineation of W}
mapping C to Cp. The elements of Cp, are of the form {{(¢,—g:(a,b), —at)) || t € F'},
where we omit the last coordinate, since it is fixed in W;,. Without loss of generality
we may assume that there exists a collineation (A, o) € PI'L(3n, ¢), which maps the
(n—1)-space {((t, (fra®+ faa+ fa)t, —at)) || t € F'} to {{(t, —ge(a,]), —at)) | t € F},
such that
A(t, ((f1a® + faa + f3)t, —at)")7 = (t, —g:(a,b), —at)T.

This implies that 0 = 1 and A is of the form

I, 0 O
Ay Ay Az |,
0o 0 I,

where I,, is the (n x n) identity matrix, and Aj, A2, A3 are (n X n) matrices over
GF(q). Since every linear operator on F over GF(q) can be represented by a unique
g-polynomial over F' (see Theorem 9.4.4 in [12]), there exist «;, 8;,v; € F such that

n—1 ) n—1 ) n—1 i
—ge(a,b) = 3 ut? + 37 Bi(fra® + foa+ f)D)T + 3 vi(—at).
1=0

i=0 i=0
Simplifying this expression we get that there exist a;, b;, ¢; € F such that

n—1

gi(a,b) = > (aia® + bia + ;)7 17
1=0

This was for a fixed b € F, so the coefficients may depend on b. Repeating the same
argument for all b € F', we get that there exist maps a;, b;, ¢; from F to F such that

n—1

ge(a,b) = Y (ai(b)a® + bi(b)a + ci(b)” 1.
=0

We can apply the same reasoning to the pseudo ovals contained in the (3n — 1)-
spaces V,, for all a € F, and for U. So there exist maps d;, e;, f; from F to F, and
constants, u;, v;, w; € F, such that

n—1

gi(a,b) =Y (di(a) + ei(a)b + fi(a)h?)T 17,
i=0
and
n—1 o
gi(a,a) = Z(uia2 + via 4+ w;) 7.
i=0

Consider the pseudo ovals in Wy and Vj. Their elements are of the form

{{(t, —g¢(a,0),—at,0)) || t € F} and {{(t,—g:(0,b),0,—bt)) || t € F}, respectively.
Using a coordinate transformation involving only the first 3n coordinates we can
get rid of the linear terms (terms with a in) and the constant terms (terms without

10
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a) in g¢(a,0). This only adds constant terms or linear terms to g:(a,b). Using a
coordinate transformation involving the second n and the last n coordinates, we can
get rid of the linear terms in ¢;(0,b). Again this only adds linear terms to g¢(a,b).
We use the same notation for the possible new g:(a,b). It follows that ¢:(0,0) = 0,
which implies that

n—1 n—1 n—1
D (wit)” = (ci(0)t)” = (d:i(0)t)” =0
1=0 1=0 1=0
The form of g;(a,0) and g;(0,b) implies that
n—1 ) n—1 )
D (Bi(0)at)” = (es(0)bt)" =0,
i=0 i=0
and therefore
n—1 ) n—1
D (e’ = (fi(0)p?t)
i=0 i=0
and
n—1 ) n—1 )
D (ai(0)a’t)” = (di(a)t)” .
i=0 i=0

It also follows that the total degree in a and b must be 2 (up to the exponents ¢;).
This implies that we obtained the following formula for g.(a,b):

gu(b) = 3 (a:(0)a? + bi(b)a + £(0)R) 47
1=0

and
n—1

gi(a,b) = > (ai(0)a® + e;(a)b + fi(0)b%)7' ¢
i=0
From g;(a, a) it then follows that we can also replace b;(b)a and e;(a)b by a constant

times ab. We have shown that there exist constants a;,b;,¢; € F such that g;(a,b)
can be written as

n—1
gt(a,b) = Z(aia2 + biab + ¢;b*)T 7.
i=1
Theorem 2.4 implies that £(g, ) is the dual of an egg £P, such that T'(EP) is the
point-line dual of a semifield flock GQ. O

4. Classification of eggs in PG(7,2)

In this section, we show by computer that there is a unique translation generalised
quadrangle of order (4,16). This is based on the classification of eggs in PG(7,2).
The fundamental, underlying, computer-based result is the following lemma.

11
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Lemma 4.1 Let E be an egg of PG(7,2), and H be a hyperplane containing no
tangent space to E. Then H contains 5 elements of E which span a 5-space.

Proof: By Theorem 1.3 (5), H contains 5 elements of E. We must show that these
span a 5-space. The stabiliser of H in PGL(8,2) is transitive on unordered triples
of lines of H spanning a 5-space. It has two orbits on unordered quadruples of lines
of H, any triple of which span a 5-space, namely, those for which span a 5-space and
those which span H. It has at most three orbits on ordered quintuples of lines of H,
any triple of which span a 5-space, and such that the quintuple spans H. We must
show that such quintuples cannot be the set of lines of £ in H. We use the tangent
spaces to F to do this. Since H contains no tangent space to E, each tangent space
to F must meet H in a 4-space. Considering each of the three possible quintuples of
lines in turn, we find that each has one line lying on four 4-spaces disjoint from the
remaining 4 lines, and the other 4 lines lie on two 4-spaces disjoint from the other
lines. Thus there are 64 possible tangent structures on intersection with H. Using
the fact that the remaining 12 lines of £ meet H in a point on no tangent space to
FE and on no transversal line to a pair of elements of the quintuple, we can rule out
all but one of the quintuples, and only 6 possible tangent structures survive for that
quintuple, each of which leaves 14 possible candidates for the 12 points. Finally,
these 6 possibilities can be eliminated by noting that there must be no lines joining
2 of the 12 points and meeting an element of the quintuple.

O

Theorem 4.2 There is a unique translation generalised quadrangle of order (4,16),
namely, the classical generalised quadrangle Q(5,4).

Proof: By [9], 8.7.1, each translation generalised quadrangle of order (4, 16) arises
from an egg F of PG(7,2). By the Lemma above, each PG(5,2) containing 3
elements of F contains exactly 5 elements of E. By [9], 8.7.4, it follows that the
generalised quadrangle is isomorphic to T3(0), for some ovoid O of PG(3,4). By a
theorem of Barlotti, O is an elliptic quadric. By [9], 3.2.4, the generalised quadrangle
is isomorphic to Q(5,4). ]
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