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Finite Semifields and Galois Geometry∗

Michel Lavrauw†

and

Olga Polverino ‡

1 Introduction and preliminaries
In this article, we concentrate on the links between Galois geometry and a particular kind
of non-associative algebras of finite dimension over a finite field F, called finite semifields.
Although in the earlier literature (predating 1965) the term semifields was not used, the study of
these algebras was initiated about a century ago by Dickson [31], shortly after the classification
of finite fields, taking a purely algebraic point of view. Nowadays it is common to use the term
semifields introduced by Knuth [58] in 1965 with the following motivation:

“We are concerned with a certain type of algebraic system, called a semifield. Such a
system has several names in the literature, where it is called, for example, a "nonassociative
division ring" or a "distributive quasifield". Since these terms are rather lengthy, and since we
make frequent reference to such systems in this paper, the more convenient name semifield will
be used."

By now, the theory of semifields has become of considerable interest in many different areas
of mathematics. Besides the numerous links with finite geometry, most of which are considered
here, semifields arise in the context of difference sets, coding theory, cryptography, and group
theory.

To conclude this prelude we would like to emphasize that this article should not be con-
sidered as a general survey on finite semifields, but rather an approach to the subject with the
focus on its connections with Galois geometry. There are many other interesting properties and
constructions of finite semifields (and links with other subjects) that are not addressed here.
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1.1 Definition and first properties
A finite semifield S is an algebra with at least two elements, and two binary operations + and
◦, satisfying the following axioms.

(S1) (S,+) is a group with identity element 0.

(S2) x◦ (y+ z) = x◦ y+ x◦ z and (x+ y)◦ z = x◦ z+ y◦ z, for all x,y,z ∈ S.

(S3) x◦ y = 0 implies x = 0 or y = 0.

(S4) ∃1 ∈ S such that 1◦ x = x◦1 = x, for all x ∈ S.

An algebra satisfying all of the axioms of a semifield except (S4) is called a pre-semifield.
By what is sometimes called Kaplansky’s trick, a semifield with identity u◦u is obtained from
a pre-semifield by defining a new multiplication ◦̂ as follows

(x◦u)◦̂(u◦ y) = x◦ y. (1)

A finite field is of course a trivial example of a semifield. The first non-trivial examples of semi-
fields were constructed by Dickson in [31]: a semifield (F2

qk ,+,◦) of order q2k with addition
and multiplication defined by{

(x,y)+(u,v) = (x+u,y+ v)
(x,y)◦ (u,v) = (xu+αyqvq,xv+ yu) (2)

where q is an odd prime power and α is a non-square in Fqk .
One easily shows that the additive group of a semifield is elementary abelian, and the addi-

tive order of the elements of S is called the characteristic of S. Contained in a semifield are the
following important substructures, all of which are isomorphic to a finite field. The left nucleus
Nl(S), the middle nucleus Nm(S), and the right nucleus Nr(S) are defined as follows:

Nl(S) := {x : x ∈ S | x◦ (y◦ z) = (x◦ y)◦ z, ∀y,z ∈ S}, (3)

Nm(S) := {y : y ∈ S | x◦ (y◦ z) = (x◦ y)◦ z, ∀x,z ∈ S}, (4)

Nr(S) := {z : z ∈ S | x◦ (y◦ z) = (x◦ y)◦ z, ∀x,y ∈ S}. (5)

The intersection of the associative center N(S) (the intersection of the three nuclei) and the
commutative center is called the center of S and denoted by C(S). Apart from the usual repre-
sentation of a semifield as a finite-dimensional algebra over its center, a semifield can also be
viewed as a left vector space Vl(S) over its left nucleus, as a left vector space Vlm(S) and right
vector space Vrm(S) over its middle nucleus, and as a right vector space Vr(S) over its right
nucleus. Left (resp. right) multiplication in S by an element x is denoted by Lx (resp. Rx), i.e.
yLx = x ◦ y (resp. yRx = y ◦ x). It follows that Lx is an endomorphism of Vr(S), while Rx is an
endomorphism of Vl(S).

If S is an n-dimensional algebra over the field F, and {e1, . . . ,en} is an F-basis for S, then the
multiplication can be written in terms of the multiplication of the ei, i.e., if x = x1e1 + · · ·+xnen
and y = y1e1 + · · ·+ ynen, with xi,yi ∈ F, then

x◦ y =
n

∑
i, j=1

xiy j(ei ◦ e j) =
n

∑
i, j=1

xiy j

(
n

∑
k=1

ai jkek

)
(6)
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for certain ai jk ∈ F, called the structure constants of S with respect to the basis {e1, . . . ,en}.
This approach was used by Dickson in 1906 to prove the following characterisation of finite
fields.

Theorem 1 ( [31]). A two-dimensional finite semifield is a finite field.

In [58] Knuth noted that the action, of the symmetric group S3, on the indices of the
structure constants gives rise to another five semifields starting from one semifield S. This
set of at most six semifields is called the S3-orbit of S, and consists of the semifields
{S,S(12),S(13),S(23),S(123),S(132)}.

1.2 Projective planes and isotopism
As mentioned before, the study of semifields originated around 1900, and the link with pro-
jective planes through the coordinatisation method inspired by Hilbert’s Grundlagen der Ge-
ometrie (1999), and generalised by Hall [39] in 1943, was a further stimulation for the de-
velopment of the theory of finite semifields. Everything which is contained in this section
concerning projective planes and the connections with semifields can be found with more de-
tails in [28], [44], [47], and [73]. It is in this context that the notion of isotopism is of the
essence.

Two semifields S and Ŝ are called isotopic if there exists a triple (F,G,H) of non-singular
linear transformations from S to Ŝ such that xF ◦̂yG = (x ◦ y)H , for all x,y,z ∈ S. The triple
(F,G,H) is called an isotopism. An isotopism where H is the identity is called a principal
isotopism. The set of semifields isotopic to a semifield S is called the isotopism class of S and
is denoted by [S]. Note that the size of the center as well as the size of the nuclei of a semifield
are invariants of its isotopism class, and since the nuclei are finite fields, it is allowed to talk
about the nuclei of an isotopism class [S].

A projective plane is a geometry consisting of a set P of points and a set L of subsets of P ,
called lines, satisfying the following three axioms

(PP1) Each two different points are contained in exactly one line.

(PP2) Each two different lines intersect in exactly one point.

(PP3) There exist four points, no three of which are contained in a line.

Two projective planes π and π′ are isomorphic if there exists a one-to-one correspondence
between the points of π and the points of π′ preserving collinearity, i.e., a line of π is mapped
onto a line of π′. A projective plane is called Desarguesian if it is isomorphic to PG(2,F), for
some (skew) field F. An isomorphism of a projective plane π is usually called a collineation
and a (P, `)-perspectivity of π is a collineation of π that fixes every line on P and every point on
`. Because of the self-dual property of the set of axioms {(PP1),(PP2),(PP3)}, interchanging
points and lines of a projective plane π, one obtains another projective plane, called the dual
plane, which we denote by πd . If there exists a line ` in a projective plane π, such that for each
point P on ` the group of (P, `)-perspectivities acts transitively on the points of the affine plane
π\ `, then π is called a translation plane , and ` is called a translation line of π. If both π and
πd are translation planes, then π is called a semifield plane . The point of a semifield plane cor-
responding to the translation line of the dual plane is called the shears point. It can be shown
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that, unless the plane is Desarguesian, the translation line (shears point) of a translation plane
(dual translation plane) is unique, and the shears point of a semifield plane π lies on the transla-
tion line of π. The importance of the notion of isotopism arises from the equivalence between
the isomorphism classes of projective planes and the isotopism classes of finite semifields, as
shown by A. A. Albert in 1960.

Theorem 2 ( [1]). Two semifield planes are isomorphic if and only if the corresponding semi-
fields are isotopic.

The connection between semifield planes and the notion of semifields as we introduced
them (as an algebra) is given by the coordinatisation method of projective planes. Without full
details here, let us give an overview using homogeneous coordinates, following Knuth [58]. Let
π be a projective plane, and let (R,T ) be a ternary ring coordinatising π, with respect to a frame
G in π. The points of π are represented by (1,a,b), (0,1,a), or (0,0,1), where a,b ∈ R and the
lines are represented by [1,c,d], [0,1,c], [0,0,1], with c,d ∈ R, where the frame G = {(1,0,0),
(0,1,0), (0,0,1), (1,1,1)} . The point (a,b,c) lies on the line [d,e, f ] if and only if

dc = T (b,e,a f ). (7)

Since d and a must be either 0 or 1, it is clear what dc and a f means.
It follows that T satisfies certain properties, and in fact one can list the necessary and suffi-

cient properties that a ternary ring has to satisfy in order to be a ternary ring obtained by coor-
dinatising a projective plane (by “inverse coordinatisation", i.e. constructing the plane starting
from the ternary ring). In this case (R,T ) is called a planar ternary ring , usually abbreviated
to PTR. Now define two operations a◦b := T (a,b,0), and a+b := T (a,1,b), and consider the
structure (R,◦,+). This turns (R,+) and (R,◦) into loops, with respective identities 0 and 1.
With this setup, one is able to connect the algebraic properties of the PTR with the geometric
properties of the plane, or more specifically, with the properties of the automorphism group of
the plane π, using the following standard terminology.

A PTR is called linear if T (a,b,c) = a◦b+c, ∀a,b,c∈R. A cartesian group is a linear PTR
with associative addition; a (left) quasifield is a cartesian group in which the left distributive law
holds; and a semifield is a quasifield in which both distributive laws hold, consistent with (S1)-
(S4). These algebraic properties correspond to the following geometric properties. A linear
PTR is a cartesian group if and only if π is ((0,0,1), [0,0,1])-transitive. A cartesian group is
a quasifield if and only if π is ((0,1,0), [0,0,1])-transitive, and in this case π is a translation
plane with translation line [0,0,1], and (R,+) is abelian. A semifield plane was defined as a
translation plane which is also a dual translation plane, and we leave it to the reader to check
the consistency of this definition.

1.3 Spreads and linear sets
An elegant way to construct a translation plane is by using so-called spreads of projective
spaces. This construction is often called the André-Bruck-Bose construction.

Let S be a set of (t−1)-dimensional subspaces of PG(n−1,q). Then S is called a (t−1)-
spread of PG(n−1,q) if every point of PG(n−1,q) is contained in exactly one element of S .
If S is a set of subspaces of V (n,q) of rank t, then S is called a t-spread of V (n,q) if every
vector of V (n,q)\{0} is contained in exactly one element of S .
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Theorem 3 ( [88]). There exists a (t−1)-spread in PG(n−1,q) if and only if t divides n.

Suppose t divides n, and put n = rt. The (t− 1)-spread of PG(rt− 1,q) obtained by con-
sidering the points of PG(r−1,qt) as (t−1)-dimensional subspaces over Fq is called a Desar-
guesian spread . This correspondence between the points of PG(r−1,qt) and the elements of
a Desarguesian (t− 1)-spread will often be used in this article, and if the context is clear, we
will identify the elements of the Desarguesian (t−1)-spread of PG(rt−1,q) with the points of
PG(r−1,qt). If T is any subset of PG(rt−1,q) endowed with a Desarguesian spread D , then
by BD(T ) (or B(T ) if there is no confusion) we denote the set of elements of D that intersect
T non-trivially.

A set L of points in PG(r− 1,q0) is called a linear set if there exists a subspace U in
PG(rt − 1,q), for some t ≥ 1, qt = q0, such that L is the set of points corresponding to the
elements of a Desarguesian (t− 1)-spread of PG(rt− 1,q) intersecting U , i.e. L = B(U). If
we want to specify the field Fq over which L is linear, we call L an Fq-linear set. If U has
dimension d in PG(rt−1,q), then the linear set B(U) is called a linear set of rank d +1.

The same notation and terminology is used when U is a subspace of the vector space V (rt,q)
instead of a projective subspace. For an overview of the use of linear sets in various other areas
of Galois geometries, we refer to [59], [66], and [85].

Let S be a (t − 1)-spread in PG(2t − 1,q). Consider PG(2t − 1,q) as a hyperplane of
PG(2t,q). We define an incidence structure (P ,L ,I ) as follows. The pointset P consists
of all points of PG(2t,q)\PG(2t−1,q) and the lineset L consists of all t-spaces of PG(2t,q)
intersecting PG(2t−1,q) in an element of S . The incidence relation I is containment.

Theorem 4 ( [3], [17], [18]). The incidence structure (P ,L ,I ) is an affine plane and its pro-
jective completion is a translation plane of order qt . Moreover, every translation plane can be
constructed in this way.

For this reason, a (t−1)-spread in PG(2t−1,q) is sometimes called a planar spread. Two
spreads are said to be isomorphic if there exists a collineation of the projective space mapping
one spread onto the other.

Theorem 5 ( [3], [17], [18]). Two translation planes are isomorphic if and only if the corre-
sponding spreads are isomorphic.

These theorems are of fundamental importance in Galois geometry; they imply a one-to-one
correspondence between translation planes and planar spreads. The construction of a transla-
tion plane from a planar spread is called the André-Bruck-Bose construction . If the translation
plane obtained is a semifield plane, then the spread is called a semifield spread . It follows from
the fact that a semifield plane π is a dual translation plane, that a semifield spread S contains
a special element S∞ (corresponding to the shears point) such that the stabiliser of S fixes S∞

pointwise and acts transitively on the elements of S \ {S∞}, and moreover, this property char-
acterises a semifield spread. The next theorem motivates the choice of the term Desarguesian
spread.

Theorem 6 ( [88]). A (t−1)-spread of PG(2t−1,q) is Desarguesian if and only if the corre-
sponding translation plane is Desarguesian, i.e. isomorphic to PG(2,qt).

By a method called derivation , it is possible to construct a non-Desarguesian translation
plane from a Desarguesian plane. This construction can in fact be applied to any translation
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plane corresponding to a spread that contains a regulus. A regulus in PG(3,q) is a set of q+1
lines that intersect a given set of three two by two disjoint lines (see [28]). Replacing a regulus
by its opposite regulus one obtains another spread, and the corresponding new translation plane
is called the derived plane.

The spread corresponding to a translation plane π can also be constructed algebraically
from the coordinatising quasifield, see e.g. [44]. In order to avoid unnecessary generality, we
restrict ourselves to the case where π is a semifield plane. In this case there are essentially two
approaches one can take, by considering either the endomorphisms Lx or Rx. In the literature
it is common to use the endomorphism Rx. We define the following subspaces of S×S. For
each x ∈ S, consider the set of vectors Sx := {(y,yRx) : y ∈ S}, and put S∞ := {(0,y) : y ∈ S}.
It is an easy exercise to show that S := {Sx : x ∈ S}∪ {S∞} is a spread of S×S. The set of
endomorphisms

S := {Rx : x ∈ S} ⊂ End(Vl(S))

is called the semifield spread set corresponding to S. Note that by (S2) the spread set S is closed
under addition and, by (S3), the non-zero elements of S are invertible.

More generally, if S is a t-spread of Ft
q×Ft

q, containing S0 = {(y,0) : y ∈ Ft
q}, and S∞ =

{(0,y) : y ∈ Ft
q}, then we can label the elements of S different from S∞ as Sx := {(y,yφx) : y ∈

Ft
q}, with φx ∈ End(Ft

q). The set S := {φx : x ∈ Ft
q} ⊂ End(Ft

q) of endomorphisms is called a
spread set associated with S . A spread set S is a semifield spread set if it forms an additive
subgroup of End(Ft

q).
Two spread sets are called equivalent if the corresponding spreads are isomorphic. The

following theorem is well known, and should probably be credited to Maduram [74]. By lack
of a reference containing the exact same statement, we include a short proof.

Theorem 7. Two semifield spread sets S, S′ ⊂ End(Ft) are equivalent if and only if there exist
invertible elements ω,ψ ∈ End(Ft) and σ ∈ Aut(F) such that S′ = {ωRσ

x ψ : Rx ∈ S}.

Proof. Using the properties of a semifield spread, we may assume that an equivalence between
two semifield spread sets S and S′ is induced by an isomorphism β between the corresponding
spreads S and S ′ which fixes S∞ = S′∞ and S0 = S′0 with the notation from above. It follows
that β is of the form (x,y) 7→ (Axσ,Byσ), where A,B are elements of GL(n,q) and σ ∈Aut(Fq).
Calculating the effect on the elements of the spread set concludes the proof (see e.g. [63, page
908]).

1.4 Dual and transpose of a semifield, the Knuth orbit
Knuth proved that the action of S3, defined above, on the indices of the structure constants of
a semifield S is well-defined with respect to the isotopism classes of S, and by the Knuth orbit
of S (notation K (S)), we mean the set of isotopism classes corresponding to the S3-orbit of S,
i.e.,

K (S) = {[S], [S(12)], [S(13)], [S(23)], [S(123)], [S(132)]}. (8)

The advantage of using Knuth’s approach to the coordinatisation with homogeneous coordi-
nates, is that we immediately notice the duality. The semifield corresponding to the dual plane
π(S)d of a semifield plane π(S) is the plane π(Sopp), where Sopp is the opposite algebra of S

6
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obtained by reversing the multiplication ◦, or in other words, the semifield corresponding to the
dual plane is S(12), which we also denote by Sd , i.e.,

Sd = S(12) = Sopp. (9)

Similarly, it is easy to see that the semifield S(23) can be obtained by transposing the matrices
corresponding to the transformations Lei , ei ∈ S, with respect to some basis {e1,e2, . . . ,en} of
Vr(S), and for this reason S(23) is also denoted by St , called the transpose of S . With this
notation, the Knuth orbit becomes

K (S) = {[S], [Sd], [St ], [Sdt ], [Std], [Sdtd]}. (10)

Taking the transpose of a semifield can also be interpreted geometrically as dualising the semi-
field spread (Maduram [74]). The resulting action on the set of nuclei of the isotopism class S
is as follows. The permutation (12) fixes the middle nucleus and interchanges the left and right
nuclei; the permutation (23) fixes the left nucleus and interchanges the middle and right nuclei.
Summarising, the action of the dual and transpose generate a series of at most six isotopism
classes of semifields, with nuclei according to Figure 1.

[S]dt

[S]

[S]td

rml lrm

rlm mrl

[S]dtd = [S]tdt

[S]t

mlr

lmr
[S]d

Figure 1: The Knuth orbit of a semifield S with nuclei lmr

2 Semifields: a geometric approach
In this section, we explain a geometric approach to finite semifields, which has been very
fruitful in recent years. In what follows, we consider the set of endomorphisms corresponding
to right multiplication in the semifield, and by doing so it is natural to consider the semifield as
a left vector space over (a subfield of) its left nucleus. It should be clear to the reader that this is
just a matter of choice and the same geometric approach can be taken by considering the set of
endomorphisms corresponding to left multiplication in the semifield. The left nucleus should
then be replaced by the right nucleus in what follows.

Let S = (S,+,◦) be a finite semifield and let S be the semifield spread set associated with
S. Clearly, for any subfield F ⊂ Nl(S), S is a left vector space over F, and S is also an ad-
ditive subgroup of End(Fn) (if |S| = |F|n) by considering Rx as elements of End(Fn) instead
of End(Vl(S)). Conversely, any subgroup S of the additive group of End(Fn) whose non-zero
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elements are invertible defines a semifield S whose left nucleus contains the field F. If S does
not contain the identity map, then S defines a pre–semifield.

This means that semifields, n–dimensional over a subfield Fq of their left nucleus, can be
investigated via the semifield spread sets of Fq–linear maps of Fqn , regarded as a vector space
over Fq. An element ϕ of EndFq(Fqn) can be represented in a unique way as a q–polynomial
over Fqn , that is a polynomial of the form

n−1

∑
i=0

aiXqi
∈ Fqn[X ],

and ϕ is invertible if and only if det(A) 6= 0, where

A =



a0 aq
n−1 aq2

n−2 . . . aqn−1

1

a1 aq
0 aq2

n−1 . . . aqn−1

2

a2 aq
1 aq2

0 . . . aqn−1

3
...

...
...

...

an−1 aq
n−2 aq2

n−3 . . . aqn−1

0


(see e.g. [67, page 362]).

Hence, any spread set S of linear maps defining a semifield of order qn can be seen as a set
of qn linearized polynomials, closed with respect to the addition, containing the zero map and
satisfying the above mentioned non-singularity condition.

2.1 Linear sets and the Segre variety
Let M(n,q) denote the n2-dimensional vector space of all (n×n)-matrices over Fq. The Segre
variety Sn,n of the projective space PG(M(n,q),Fq) = PG(n2−1,q) is an algebraic variety cor-
responding to the matrices of M(n,q) of rank one and the (n− 2)–th secant variety Ω(Sn,n)
of Sn,n is the hypersurface corresponding to the non-invertible matrices of M(n,q) (also called
a determinantal hypersurface). There are two systems R1 and R2 of maximal subspaces con-
tained in Sn,n and each element of Ri has dimension n− 1. If n = 2, then S2,2 is a hyperbolic
quadric Q+(3,q) of a 3-dimensional projective space and R1 and R2 are the reguli of Q+(3,q).

By the well-known isomorphism between the vector spaces M(n,q) and V = EndFq(Fqn),
we have that the elements of V with kernel of rank n−1 correspond to a Segre variety Sn,n of
the projective space PG(V) = PG(n2− 1,q) and the non–invertible elements of V correspond
to the (n−2)–th secant variety Ω(Sn,n) of Sn,n.

Also, the collineations of PG(V) induced by the semilinear maps

Γψσω : ϕ 7→ ψϕ
σ
ω, (11)

(where ω and ψ are invertible elements of V and σ ∈ Aut(Fq)) form the automorphism group
H (Sn,n) of Sn,n preserving the systems R1 and R2 of Sn,n (see [41]). The group H (Sn,n) has
index two in the stabiliser G(Sn,n) of Sn,n inside PΓL(n2,q).

Now, let S be a semifield and let S be its semifield spread set consisting of Fq–linear maps
of Fqn . Since S is an additive subgroup of V, it is an Fs–subspace of V, for some subfield Fs
of Fq (say q = st), of dimension nt. This implies that (using the terminology of linear sets
from above) S defines an Fs–linear set L(S) := B(S) in PG(n2− 1,q) of rank nt. Note that
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Fs is contained in the center of S. Since each non-zero element of S is invertible, the linear
set L(S) is disjoint from the variety Ω(Sn,n) of PG(V). Conversely, if L is an Fs–linear set
of PG(V) = PG(n2− 1,st) of rank nt disjoint from Ω(Sn,n), then the set S of Fq–linear maps
underlying L satisfies the properties of a semifield spread set except, possibly, the existence
of the identity map and hence L defines a pre–semifield of order qn = snt , whose associated
semifield has left nucleus containing Fq and center containing Fs. So we have the following
theorem.

Theorem 8 ( [64]). To any semifield S of order qn (q = st), with left (right) nucleus containing
Fq and center containing Fs, there corresponds an Fs–linear set L(S) of the projective space
PG(n2−1,q) of rank nt disjoint from the (n−2)–th secant variety Ω(Sn,n) of a Segre variety,
and conversely.

Note that, if Fq is a subfield of the center of the semifield (i.e., if t = 1), then the correspond-
ing linear set is simply an (n− 1)–dimensional subspace of PG(n2− 1,q). Now, rephrasing
Theorem 7, using (11), in the projective space PG(V) we have the following theorem.

Theorem 9 ( [64]). Two semifields S1 and S2 with corresponding Fs–linear sets L(S1) and
L(S2) in PG(n2−1,q) are isotopic if and only if there exists a collineation Φ ∈ H (Sn,n) such
that L(S2) = L(S1)Φ.

By the previous arguments, it is clear that linear sets L(S1) and L(S2) having a different
geometric structure with respect to the collineation group H (Sn,n), determine non–isotopic
semifields S1 and S2, and hence non–equivalent semifield spread sets S1 and S2, and non–
isomorphic semifield spreads S(S1) and S(S2). Theorems 8 and 9 can be found in [64]; they
generalize previous results obtained in [63], and in [69] and [21] where rank two semifields are
studied.

Using the geometric approach, the transpose operation S 7→ St can be read in the following
way. If τ is any polarity of the projective space PG(S×S,Fq), then S(S)τ is a semifield spread
as well and the corresponding semifield is isotopic to the transpose semifield St of S.

It can be shown that any polarity of PG(S×S,Fq) fixing the subspaces S∞ and S0 induces
in PG(n2−1,q) a collineation of G(Sn,n) interchanging the systems of Sn,n (see [72]). Hence,
since H (Sn,n) has index two in G(Sn,n), by Theorem 9 we have the following.

Theorem 10 ( [72]). If Φ is a collineation of G(Sn,n) not belonging to H (Sn,n) then the linear
set L(S)Φ corresponds to the isotopism class of the transpose semifield St of S.

2.2 BEL-construction
In this section we concentrate on a geometric construction of finite semifield spreads. The
construction we give here is taken from [64], but the main idea is the slightly less general
construction given in [7] (where L is a subspace, i.e. t = 1).

We define a BEL-configuration as a triple (D,U,W ), where D a Desarguesian (n− 1)-
spread of Σ1 := PG(rn− 1,st), t ≥ 1, r ≥ 2; U is an nt-dimensional subspace of Frnt

s such
that L = B(U) is an Fs-linear set of Σ1 of rank nt; and W is a subspace of Σ1 of dimension
rn−n−1, such that no element of D intersects both L and W . From a BEL-configuration one
can construct a semifield spread as follows.

• Embed Σ1 in Λ1 ∼= PG(rn+n−1,st) and extend D to a Desarguesian spread D1 of Λ1.

9
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• Let L′ = B(U ′), U ⊂U ′ be an Fs-linear set of Λ1 of rank nt +1 which intersects Σ1 in L.

• Let S(D,U,W ) be the set of subspaces defined by L′ in the quotient geometry Λ1/W ∼=
PG(2n−1,st) of W , i.e.,

S(D,U,W ) = {〈R,W 〉/W : R ∈D1,R∩L′ 6= /0}.

Theorem 11 ( [64]). The set S(D,U,W ) is a semifield spread of PG(2n− 1,st). Conversely,
for every finite semifield spread S , there exists a BEL-configuration (D,U,W ), such that
S(D,U,W )∼= S .

The pre-semifield corresponding to S(D,U,W ) is denoted by S(D,U,W ). Using this BEL-
construction it is not difficult to prove the following characterisation of the linear sets corre-
sponding to a finite field.

Theorem 12 ( [63]). The linear set L(S) of PG(n2−1,q) disjoint from Ω(Sn,n) corresponds to
a pre–semifield isotopic to a field if and only if there exists a Desarguesian (n− 1)–spread of
PG(n2−1,q) containing L(S) and a system of Sn,n.

If r = 2 and s = 1, then we can use the symmetry in the definition of a BEL-configuration
to construct two semifields, namely S(D,U,W ) and S(D,W,U), and in this way we can extend
the Knuth orbit by considering the operation

κ := S(D,U,W ) 7→ S(D,W,U). (12)

Except in the case where the semifield is a rank two semifield, in which case κ becomes the
translation dual (see Section 4), it is not known whether κ is well defined on the set of isotopism
classes (see [7], [54]).

3 Rank two semifields
Semifields of dimension two over (a subfield of) their left nucleus (rank two semifields) corre-
spond to semifield spreads of 3–dimensional projective spaces, as explained in Section 1. In
the last years, the connection between semifields and linear sets described in Section 2 has been
intensively used to construct and characterize families of rank two semifields.

If S = (Fq2,+,◦) is a semifield with left nucleus containing Fq and center containing Fs,
q = st , then by Theorem 8 its semifield spread set S defines an Fs-linear set L(S) of rank 2t in
the 3-dimensional projective space Σ = PG(V,Fq) = PG(3,q), where V = EndFq(Fq2), disjoint
from the hyperbolic quadric Q+(3,q) of Σ defined by the non–invertible elements of V, and
conversely. Also, by Theorem 9 the study up to isotopy of semifields of order q2 with left
nucleus containing Fq and center containing Fs corresponds to the study of Fs-linear sets of
rank 2t of Σ with respect to the action of the collineation group of Σ fixing the reguli of the
hyperbolic quadric Q+(3,q).

In this case the Knuth orbit of S can be extended in the following way. If b(X ,Y ) is the
bilinear form associated with Q+(3,q), then by field reduction we can use the bilinear form

bs(X ,Y ) := Trq/s(b(X ,Y )),

10
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where Trq/s is the trace function from Fq to Fs, to obtain another linear set L(S)⊥ disjoint from
Q+(3,q) induced by the semifield spread set

S⊥ := {x ∈ V : bs(x,y) = 0,∀y ∈ V}.

Theorem 13. The set S⊥ is a semifield spread set of Fq–linear maps of Fq2 .

The pre–semifield arising from the semifield spread set S⊥ is called the translation dual S⊥ of
the semifield S. The translation dual of a rank two semifield has been introduced in [69] in
terms of translation ovoids of Q+(5,q) generalizing the relationship between semifield flocks
and translation ovoids of Q(4,q) that will be detailed in Section 5. In [61], it was shown that
this operation links the two sets of three semifields associated with a semifield flock from [6],
and that this operation is a special case of the semifield operation κ (see (12)) from [7] (see (12)
at the end of Section 2). The translation dual operation is well defined on the set of isotopism
classes and leaves invariant the sizes of the nuclei of a semifield S, as proven in [71, Theorem
5.3]. This implies that in general [S⊥] is not contained in the Knuth orbit K (S) and hence in
the 2–dimensional case we have a chain of possibly twelve isotopism classes K (S)∪K (S⊥),
with nuclei as illustrated by Figure 2.

[S⊥]dtd = [S⊥]tdt

[S]

[S]td

rml lrm

rlm mrl

[S]dtd = [S]tdt

[S]t

mlr

lmr
[S]d

[S]dt

lmr

lrmrml

mrlrlm

mlr

[S⊥]

[S⊥]t[S⊥]d

[S⊥]td[S⊥]dt

Figure 2: The isotopism classes K (S)∪K (S⊥) of a rank two semifield S with nuclei lmr

To our knowledge, the known examples of semifields S for which S⊥ is not isotopic to S are:
the symplectic semifield of order q = 32t (t > 2) from Cohen-Ganley [23], and Thas-Payne [92],
the symplectic semifield of order 310 from Penttila–Williams [84], the HMO–semifields of
order q4 (for q = pk, k odd, k ≥ 3 and p prime with p ≡ 1(mod4)) exhibited in [54, Example
5.8] and their translation duals. But, in all of these cases, the size of K (S)∪K (S⊥) is six, since
these are self-transpose semifields, i.e. [S] = [St ].

Using the geometric approach from Section 2, in [21], the authors classify all semifields of
order q4 with left nucleus of order q2 and center of order q (see Theorem 26).

In [75], [48] and [34], semifields of order q6, with left nucleus of order q3 and center of
order q, are studied using the same geometric approach, giving the following result.

Theorem 14 ( [75], [48]). Let S be a semifield of order q6 with left nucleus of order q3 and
center of order q. Then there are eight possible geometric configurations for the corresponding
linear set L(S) in PG(3,q3). The corresponding classes of semifields are partitioned into eight
non-isotopic families, labeled F0, F1, F2, F3, F (a)

4 ,F (b)
4 , F (c)

4 and F5.

11



i
i

“LaPo2010” — 2011/3/8 — 11:54 — page 12 — #12 i
i

i
i

i
i

The families Fi, i = 0,1,2, are completely characterized: the family F0 contains only
Generalized Dickson/Knuth semifields with the given parameters; the family F1 contains only
the symplectic semifield associated with the Payne–Thas ovoid of Q+(4,33); the family F2
contains only the semifield associated with the Ganley flock of the quadratic cone of PG(3,33).

So far, only few examples of semifields belonging to F3 and F (b)
4 are known for small

values of q. These were obtained by using a computer algebra software package.
A further investigation of families F (a)

4 and F (c)
4 led to the construction of new infinite

families of semifields (Section 6, EMPT2 semifields).
Moreover, all semifields of order q6 with left nucleus of order q3, right and middle nuclei

of order q2, and center of order q fall in family F (c)
4 and they are completely classified (see

Section 6, Theorem 27).

Finally, semifields belonging to the family F5 are called scattered semifields , because their
associated linear sets are of maximum size q5 + q4 + · · ·+ q + 1, i.e., are scattered follow-
ing [14]. In [75], it has been proved that to any semifield S belonging to F5 is associated
an Fq–pseudoregulus L(S) of PG(3,q3), which is a set of q3 + 1 pairwise disjoint lines with
exactly two transversal lines. An Fq-pseudoregulus of PG(3,q3) defines a derivation set in a
similar way as the pseudoregulus of PG(3,q2) defined by Freeman [37]. The known examples
of semifields belonging to the family F5 are the Generalized twisted fields and the two families
of Knuth semifields of type III and IV with the involved parameters. In [75], they are also char-
acterized in terms of the associated Fq–pseudoreguli. Precisely, in the case of Knuth semifields
the transversal lines of the associated pseudoregulus are contained in a regulus of Q+(3,q);
whereas in the case of Generalized twisted fields the transversal lines of the associated pseu-
doregulus are pairwise polar external lines of Q+(3,q) and the set of lines of the pseudoregulus
is preserved by the polarity ⊥ induced by Q+(3,q).

Recent results obtained in [65] have shown that various other possible geometric configu-
rations of the transversal lines of a pseudoregulus of PG(3,q3) can produce new semifields in
family F5.

The results obtained in the case q6 inspired a more general construction method that led to
the discovery of new infinite families of rank two semifields of size q2t for arbitrary values of
q and t (see Section 6, EMPT1 semifields).

Some other existence and classification results for rank two semifields obtained by the ge-
ometric approach of linear sets can be found in [49], [76] and [77].

4 Symplectic semifields and commutative semifields
A semifield spread S of the projective space PG(2n−1,q) is symplectic when all subspaces of
S are totally isotropic with respect to a symplectic polarity of PG(2n−1,q).

Starting from a semifield S, we can construct a family of semifield spreads; precisely, we
can associate to S a semifield spread SF for any subfield F of its left nucleus (see Section 1.3).
By [53] and [70], if SF is a symplectic semifield spread then any other semifield spread arising
from S is symplectic. Hence, it makes sense to define a symplectic semifield as a semifield
whose associated semifield spread is symplectic.

12
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In terms of the associated linear set, a symplectic semifield can be characterized in the
following way.

Theorem 15 ( [72]). The semifield S with corresponding linear set L(S) in PG(EndFq(Fqn)) is

symplectic if and only if there is a subspace Γ of PG(EndFq(Fqn)) of dimension n(n+1)
2 −1 such

that Γ∩Sn,n is a quadric Veronesean and L(S)⊂ Γ.

Symplectic semifields and commutative semifields are related via the S3-action in the fol-
lowing way.

Theorem 16 ( [52]). A pre–semifield S is isotopic to a commutative semifield if and only if the
pre–semifield Std is symplectic.

It follows from the above that the Knuth orbit K (S) of a symplectic semifield consists of
the isotopism classes {[S] = [St ], [Sd] = [Std], [Sdt ] = [Stdt ]} (see Figure 3).

rlm

[S] = [S]t [S]dt = [S]tdt[S]d = [S]td

lmr rml

Figure 3: The Knuth orbit K (S) of a symplectic semifield S with nuclei lmr

Using this connection, in [52], a large number of commutative semifields of even order are
constructed starting from the symplectic semifield scions of the Desarguesian spreads. These
spreads were introduced and investigated in [56]. There the study of symplectic semifield
spreads in characteristic 2 having odd dimension over F2 was motivated by their connections
with extremal Z4-linear codes and extremal line sets in Euclidean spaces (see [20]).

In odd characteristic, commutative pre–semifields are related to the notion of planar DO
polynomial. A Dembowski-Ostrom (DO) polynomial f ∈ Fq[x] (q = pe) is a polynomial of the
shape

f (x) =
k

∑
i, j=0

ai jxpi+p j
;

whereas a polynomial f ∈ Fq[x] is planar or perfect nonlinear (PN for short) if the difference
polynomial f (x+a)− f (x)− f (a) is a permutation polynomial for each a∈ F∗q. If f (x)∈ Fq[x],
q odd, is a planar DO polynomial, then S f = (Fq,+,◦) is a commutative pre–semifield with
multiplication ◦ defined by a ◦ b = f (a + b)− f (a)− f (b). Conversely, if S = (Fq,+,◦) is
a commutative pre–semifield of odd order, then the polynomial given by f (x) = 1

2(x ◦ x) is a
planar DO polynomial and S = S f (see [25], and [27]).

Perfect nonlinear functions are differentially 1-uniform functions and they are of special
interest in differential cryptanalysis (see [12], [80]).

For the known examples of symplectic or commutative (pre)semifields, see semifields of
type D, A, K, G, CG/TP, CM-DY, PW/BLP, KW/K, CHK, BH, ZKW, Bi and LMPT listed in
Section 6.

13
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5 Rank two commutative semifields
In this section, we turn our attention to commutative semifields that are of rank at most two over
their middle nucleus, which we will call rank two commutative semifields or RTCS for short.
Note that with this definition, finite fields are examples of RTCS. These semifields deserve
special attention because of their importance in Galois geometry. They are connected to many
of the central objects in the field, such as flocks of a quadratic cone, translation generalized
quadrangles, ovoids, eggs, . . . see e.g. [8].

As seen in the previous section, commutative semifields are linked with symplectic semi-
fields, and the study of RTCS is equivalent to the study of symplectic semifields that are of rank
two over their left nucleus. Figure 4 diplays the six isotopism classes corresponding to a RTCS,
consisting of two Knuth orbits (see [6] and [61] for more details).

mrl

[S] = [S]d

[S]td = [S]dtd

[S⊥] = [S⊥]d

[S⊥]t = [S⊥]dt

[S⊥]td = [S⊥]dtd

lmr lmr

lrm[S]t = [S]dt lrm

mrl

Figure 4: The isotopism classes K (S)∪K (S⊥) corresponding to a RTCS S with nuclei lmr

Rewriting the example (2) from Dickson [31], we have the following construction of an
RTCS. Let σ be an automorphism of Fq, q odd, and define the following multiplication on F2

q:

(x,y)◦ (u,v) = (xv+ yu,yv+mxσuσ), (13)

where m is a non-square in Fq. Cohen and Ganley made significant progress in the investigation
of RTCS. They put Dickson’s construction in the following more general setting. Let S be an
RTCS of order q2 with middle nucleus Fq, and let α ∈ S\Fq be such that {1,α} is a basis for
S. Addition in S is component-wise and multiplication is defined as

(x,y)◦ (u,v) = (xv+ yu+g(xu),yv+ f (xu)), (14)

where f and g are additive functions from Fq to Fq, such that xα2 = g(x)α+ f (x). We denote
this semifield by S( f ,g). Verifying that this multiplication has no zero divisors leads to the
following theorem which comes from [23].

Theorem 17. Let S be a RTCS of order q2 and characteristic p. Then there exist Fp-linear
functions f and g such that S = S( f ,g), with multiplication as in (14) and such that zw2 +
g(z)w− f (z) = 0 has no solutions for all w, z ∈ Fq, and z 6= 0.

For q even, Cohen and Ganley obtained the following remarkable theorem proving the
non-existence of proper RTCS in even characteristic. To our knowledge, there is no obvious
geometric reason why this should be so.
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Theorem 18 ( [23]). For q even the only RTCS of order q2 is the finite field Fq2 .

If q is odd, then the quadratic zw2 + g(z)w− f (z) = 0 in w will have no solutions in Fq if
and only if g(z)2 +4z f (z) is a non-square for all z ∈ F∗q. In [23], Cohen and Ganley prove that
in odd characteristic, in addition to the example with multiplication (13) by Dickson, there is
just one other infinite family of proper RTCS, namely of order 32r, with multiplication given
by:

(x,y)◦ (u,v) = (xv+ yu+ x3u3,yv+ηx9u9 +η
−1xu), (15)

with η a non-square in F3r (r ≥ 2).

Theorem 19 ( [23]). Suppose that f and g are linear polynomials of degree less than q over
Fq, q odd, such that for infinitely many extensions Fqe of Fq, the functions

f ∗ : Fqe → Fqe : x 7→ f (x), and

g∗ : Fqe → Fqe : x 7→ g(x),

define an RTCS S( f ∗,g∗) of order q2e. Then S( f ,g) is a semifield with multiplication given by
(13) or (15), or S( f ,g) is a field.

The only other example of an RTCS was constructed from a translation ovoid of Q(4,35),
first found by computer in 1999 by Penttila and Williams ( [84]). The associated semifield has
order 310 and multiplication

(x,y)◦ (u,v) = (xv+ yu+ x27u27,yv+ x9u9). (16)

Summarising, the only known examples of RTCS which are not fields are of Dickson type (13),
of Cohen-Ganley type (15), or of Penttila-Williams type (16).

The existence of RTCS was further examined in [15] and [62] obtaining the following
theorems which show that there is little room for further examples.

Theorem 20 ( [62]). Let S be an RTCS of order p2n, p an odd prime. If p > 2n2−(4−2
√

3)n+
(3−2

√
3), then S is either a field or a RTCS of Dickson type.

Theorem 21 ( [15]). Let S be an RTCS of order q2n, q an odd prime power, with center Fq. If
q≥ 4n2−8n+2, then S is either a field or a RTCS of Dickson type.

In combination with a computational result by Bloemen, Thas, and Van Maldeghem [13],
the above implies a complete classification of RTCS of order q6, with centre of order q.

Theorem 22 ( [15]). Let S be an RTCS of order q6 with centre of order q, then either S is a
field, or q is odd and S is of Dickson type.

We end this section with the connections between RTCS and some interesting objects in
Galois geometry.
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5.1 Translation generalized quadrangles and eggs
Let S( f ,g) be an RTCS of order q2n such that f and g are Fq-linear, and for (a,b) ∈ F2

qn define

gt(a,b) := a2t +g(t)ab− f (t)b2. (17)

Then the set E( f ,g) := {E(a,b) : a,b ∈ Fqn}∪{E(∞)}, with

E(a,b) := {〈(t,−gt(a,b),−2at−bg(t),ag(t)−2b f (t))〉 : t ∈ F∗qn} (18)

and E(∞) := {〈(0, t,0,0)〉 : t ∈ F∗qn}, (19)

is a set of q2n + 1 (n− 1)-dimensional subspaces of PG(4n− 1,q) satisfying the following
properties:

(E1) each three different elements of E( f ,g) span a (3n − 1)-dimensional subspace of
PG(4n−1,q);

(E2) each element of E( f ,g) is contained in a (3n−1)-dimensional subspace of PG(4n−1,q)
that is disjoint from the other elements of E( f ,g).

Such a set of q2n +1 (n−1)-dimensional subspaces in PG(4n−1,q), satisfying (E1) and (E2)
is called a pseudo-ovoid, generalized ovoid, or egg of PG(4n− 1,q). These notions can be
defined in more generality and were first studied in [89]. A more recent reference contain-
ing the general definition is [59]. Analogously to the relationship between planar spreads and
translation planes, there is a one-to-one correspondence between eggs and translation general-
ized quadrangles (TGQ) (see [83]). It is far beyond the scope of this article to give a complete
overview of the theory of eggs and TGQ here, and we refer the reader to [59], [83], or [93] for
more details. However, we do want to mention the remarkable fact that all known examples of
eggs (and hence of TGQ) are either obtained by field reduction from an ovoid or an oval, or
they arise from an RTCS, i.e., they correspond to an egg E( f ,g) (or its dual) constructed from
an RTCS S( f ,g) as above (see [59, Section 3.8] for more details).

5.2 Semifield flocks and translation ovoids
A flock of a quadratic cone K of PG(3,q) with vertex v is a partition of K \{v} into irreducible
conics. The planes containing the conics of the flock are called the planes of the flock. In [90],
Thas shows that a flock of a quadratic cone coexists with a set of upper triangular two by two
matrices (sometimes called a q-clan) for which the difference of any two matrices is anisotropic,
i.e. v(A−B)vt = 0 implies v = 0 for A 6= B. Previous work, by Kantor [51] and Payne [81] [82],
shows that such a set of two by two matrices gives rise to a generalized quadrangle of order
(q2,q).

If K is the quadratic cone in PG(3,qn), q odd, with vertex v = (0,0,0,1) and base the conic
C with equation X0X1−X2

2 = 0 in the plane X3 = 0, then the planes of a flock of K may be
written as

πt : tX0− f (t)X1 +g(t)X2 +X3 = 0, t ∈ Fqn , (20)
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for some f ,g : Fqn → Fqn . We denote this flock by F ( f ,g). The associated set of two by two
matrices consists of the matrices(

t g(t)
0 − f (t)

)
, t ∈ Fqn. (21)

If f and g are linear over a subfield Fq of Fqn , then F ( f ,g) is called a semifield flock . Using
Theorem 17 and the above, one may conclude that F ( f ,g) is a semifield flock if and only if
S( f ,g) is an RTCS.

Another well studied object in Galois geometry connected to RTCS are translation ovoids
of the generalized quadrangle Q(4,q), consisting of points and lines that are contained in the
projective algebraic variety V (X0X1−X2

2 + X3X4) in PG(4,q). An ovoid of Q(4,q) is a set Ω

of points such that each line of Q(4,q) contains exactly one point of Ω. An ovoid Ω is called
a translation ovoid if there exists a group H of automorphisms of Q(4,q), fixing Ω, a point
x ∈Ω and every line through x, acting transitively on the points of Ω not collinear with x. The
correspondence between semifield flocks and translation ovoids of Q(4,q) was first explained
by Thas in [91], and later by Lunardon [68] with more details. The explicit calculations of what
follows can be found in [60, Section 3]. Let S( f ,g) be an RTCS of order q2n, with f and g Fq-
linear, i.e. there exist bi,ci ∈ Fqn such that g(t) = ∑bitqi

, and f (t) = ∑citqi
. The corresponding

ovoid Ω( f ,g) of Q(4,qn) is then given by the set of points

{(u,F(u,v),v,1,v2−uF(u,v)) : (u,v) ∈ F2
qn}∪{(0,0,0,0,1)},

with

F(u,v) =
n−1

∑
i=0

(ciu+biv)1/qi
.

6 Known examples and classification results
In this section, we list the known finite non-associative semifields and some of the known
classification results.

In the sequel, p and q will denote a prime and a prime power, respectively. Also, we will
say that a semifield S′ is a Knuth derivative of a semifield S if the isotopism class [S′] of S′
belongs to the Knuth orbit of S. Recall that, by Theorem 16, a pre-semifield S is isotopic to a
commutative semifield if and only if its Knuth derivative Std is symplectic.

1. (D) Dickson commutative semifields of order p2e with p odd and e > 1 [32].

2. (HK) Hughes–Kleinfeld semifields of order p2e with e > 1 [43].

3. (A) Albert Generalized twisted fields of order qn with center of order q (q > 2 and n > 2) [2]. For q
odd some Generalized twisted fields are symplectic [4] and their Knuth commutative derivatives
are Generalized twisted fields as well. Indeed, the family of the Generalized twisted fields is
closed under the Knuth operations (see [52]).

4. (S) Sandler semifields of order qmn with center of order q and 1 < n≤ m [87].
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5. (K) In [58], Knuth generalizes the Dickson commutative semifields ( [58, (7.16)] Generalized
Dickson semifields) and constructs four types of semifields: families I, II, III, and IV of order
p2e, with e > 1 [58, (7.17)]; semifields of type II are Hughes-Kleinfeld semifields and families
II, III and IV belong to the same Knuth orbit (see [9]). Some Generalized Dickson semifields are
symplectic semifields (see [50]) and their commutative Knuth derivatives are Dickson semifields
(see [52]). In the same paper Knuth also provides a family of commutative semifields of order
2mn, n odd and mn > 3: the Knuth binary semifields [58, (6.10)].

6. (G) Ganley commutative semifields [38] of order 32r, with r ≥ 3 odd, and their symplectic Knuth
derivatives [52, (5.14)].

7. (CG/TP) Cohen–Ganley commutative semifields of order 32r, r ≥ 2 [23, Example 3], their sym-
plectic derivatives (Thas–Payne symplectic semifields) and the corresponding semifields associ-
ated with a flock [92].

8. (BL) Boerner-Lantz semifield of order 81 [16].

9. (JJ) Jha–Johnson cyclic semifields of type (q,m,n), of order ql where l = lcm(n,m), m,n > 1 and
l > max{m,n} [45, Theorem 2]. Jha–Johnson cyclic semifields generalize the Sandler semifields.

10. (HJ) Huang–Johnson semifields: 7 non-isotopic semifields of order 82 (classes II, III, . . . ,VIII)
[42].

11. (CM−DY) Coulter–Matthews/Ding–Yuang commutative pre–semifields of order 3n, n > 1 odd
[27], [33], and their symplectic Knuth derivatives (see [52]).

12. (PW/BLP) Penttila–Williams symplectic semifield of order 310 [84], its commutative Knuth
derivative and the related Bader-Lunardon-Pinneri semifield associated with a flock [5].

13. (KW/K) Kantor–Williams symplectic pre-semifields of order qm, for q even and m > 1 odd [56],
and their commutative Knuth derivatives (Kantor commutative pre-semifields) [52, (4.2)]. Kantor
commutative pre-semifields generalize the Knuth binary semifields.

14. (CHK) Coulter–Henderson–Kosick commutative pre–semifield of order 38 [26].

15. (CF) Cordero–Figueroa semifield of order 36 [47, 37.10].

16. (De) Dempwolff semifields of order 34 [30]. The author in [30] completes the classification of
semifields of order 81 and determines 4 Knuth orbits of semifields not previously known (classes
I, II, III and V). He also discusses the embedding of semifields of type III and V in an infinite
series.

17. (BH) Budaghyan–Helleseth commutative pre-semifields Bs,k of order p2k, p odd, constructed from
PN DO–polynomials of type (i*) with s and k integers such that 0 < s < 2k, gcd(ps +1, pk +1) 6=
gcd(ps +1,(pk +1)/2) and gcd(k + s,2k) = gcd(k + s,k); and of type (i**) with s and k integers
such that 0 < s < 2k and gcd(k + s,2k) = gcd(k + s,k) [19].

18. (MPT) Marino–Polverino–Trombetti semifields: 4 non-isotopic semifields of order 214 [76, The-
orem 5.3].

19. (JMPT) Johnson–Marino–Polverino–Trombetti semifields of order q2n with n > 1 odd [49, The-
orem 1]. JMPT semifields generalize the Jha–Johnson cyclic semifields of type (q,2,n), n odd.
Also, the Huang–Johnson semifield of class VI belongs to this family.
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20. (JMPT(45,165)) Johnson–Marino–Polverino–Trombetti non-cyclic semifields of order 45 and or-
der 165 [49, Theorem 7].

21. (ZKW) Zha–Kyureghyan–Wang commutative pre-semifields Zs,k of order p3k, p odd where s and
k are integers such that gcd(3,k) = 1, 0 < s < 3k, k≡ s(mod 3), k 6= s and 3k

gcd(s,3k) odd, constructed
in [95] from PN DO–polynomials.

22. (EMPT2) Ebert–Marino–Polverino–Trombetti semifields of order q6 for q odd [36, Theorems
2.7, 2.8].

23. (EMPT1) Ebert–Marino–Polverino–Trombetti semifields of order q2n with either n ≥ 3 odd, or
n > 2 even and q odd [35, Theorem 1.1]. The Huang–Johnson semifields of type VII and VIII
belong to this family.

24. (MT) Marino–Trombetti semifield of order 210 [77].

25. (Bi) Bierbrauer commutative pre-semifields from PN DO–polynomials [10] and [11].

26. (RCR) Rúa–Combarro–Ranilla semifields of order 26 [86]. The authors in [86] classify all semi-
fields of order 64 and determine 67 Knuth orbits of semifields with 64 elements not previously
known.

27. (LaMPT) Lavrauw–Marino–Polverino–Trombetti rank two scattered semifields of order q6 for q
odd, q ≡ 1(mod 3) and for q = 22h, h ≡ 1(mod 3) from [65]. These semifields belong to family
F5.

28. (LuMPT) Lunardon–Marino–Polverino–Trombetti symplectic semifields of order q6 for q odd,
and their commutative Knuth derivatives [72].

Apart from the Knuth cubical array (see Section 1), the translation dual construction and
the BEL geometric model (see Section 2), some other "construction processes" are known to
produce semifields starting from a given one: the lifting construction (or HMO construction)
and the symplectic dual construction.

The lifting construction produces semifields of order q4 with left nucleus of order q2 start-
ing from rank two semifields of order q2. Note that this process may be iterated producing
semifields of order q2i

for any integer i ≥ 2. Also, the lifting construction is not closed un-
der the isotopy relation, indeed isotopic semifields can produce non-isotopic lifted semifields.
This construction method has been introduced by Hiramine, Matsumoto and Oyama in [40],
for q odd, and then generalized by Johnson in [46] for any value of q. Semifields lifted from
a field are completely determined (see [16], [24] and [21]). For further details on lifting see
e.g. [47, Chapter 93] and [54].

The symplectic dual construction has been recently introduced in [72] and produces a sym-
plectic semifield of order q3 (q odd) with left nucleus containing Fq starting from a symplectic
semifield S with the same data. As the translation dual construction, the symplectic dual con-
struction is an involutary operation, (i.e., if Sτ denotes the symplectic dual of the semifield S,
then (Sτ)τ = S). Indeed the symplectic dual of a semifield is obtained by dualizing the associ-
ated linear set with respect to a suitable polarity.
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6.1 Classification results for any q

We have already seen that all two-dimensional finite semifields are fields. In 1977, G.
Menichetti classified all three-dimensional finite semifields proving the following result.

Theorem 23 ( [78]). A semifield of order q3 with center containing Fq either is a field or is
isotopic to a Generalized twisted field.

Later on Menichetti generalized the previous result proving the following theorem.

Theorem 24 ( [79]). Let S be a semifield of prime dimension n over the center Fq. Then
there exists an integer ν(n) depending only on n, such that if q > ν(n) then S is isotopic to a
Generalized twisted field.

As a corollary we have that a semifield of order p3 is a field or a Generalized twisted field
and that a semifield of order pn, n prime, if p is "large enough", is a field or a Generalized
twisted field.

All the other classification results for semifields of given order involve conditions on one or
more of their nuclei. In fact, all of them deal with rank two semifields.

The first result in this direction is the following theorem that can be found in [43] (case (a))
and in [58, Theorem 7.4.1].

Theorem 25. Let S be a semifield which is not a field and which is a 2-dimensional vector
space over a finite field F. Then
(a) F = Nr = Nm if and only if S is a Knuth semifield of type II.
(b) F = Nl = Nm if and only if S is a Knuth semifield of type III.
(c) F = Nl = Nr if and only if S is a Knuth semifield of type IV.

More recently, using the geometric approach of the linear sets the following results for rank
two semifields of order q4 and q6 have been obtained in [21] and [49], respectively.

Theorem 26 ( [21]). A semifield S of order q4 with left nucleus Fq2 and center Fq is isotopic
to one of the following semifields: Generalized Dickson/Knuth semifields (q odd), Hughes-
Kleinfeld semifields, semifields lifted from Desarguesian planes or Generalized twisted fields.

Theorem 27 ( [49]). Each semifield S of order q6, with left nucleus of order q3 and middle and
right nuclei of order q2 and center of order q is isotopic to a JMPT semifield, precisely S is
isotopic to a semifield (Fq6,+,◦) with multiplication given by

x◦ y = (α+βu)x+bγxq3
, where y = α+βu+ γb (α,β,γ ∈ Fq2),

with u a fixed element of Fq3 \Fq and b an element of Fq6 such that bq3+1 = u.

Finally, for classification results concerning rank two commutative semifields (RTCS) we
refer to Section 5.
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6.2 Classification results for small values of q

All semifields of order q≤ 125 are classified. By [58, Theorem 6.1], a non-associative semifield
has order pn, where n≥ 3 and pn ≥ 16, and by Menichetti’s classification result (Theorem 23),
semifields of order 27 and 125 are fields or Generalized twisted fields.

Semifields of order 16 and order 32 have been classified in the sixties; those of order 16 form
three isotopism classes (see [57]) and those of order 32 form six isotopism classes (see [94]).

Recently in [30] with the aid of the computer algebra software package GAP, Dempwolff
has completed the classification of semifields of order 81 proving that there are 27 non-isotopic
semifields with 81 elements, partitioned into 12 Knuth orbits.

Finally, in [86], Rúa, Combarro and Ranilla have obtained a computer assisted classifica-
tion of all semifields of order 64. They have determined 332 non-isotopic semifields with 64
elements, partitioned into 80 Knuth orbits.

7 Open Problems
We conclude this overview of finite semifields with some open problems, at least one problem
from every section.

In this article we have encountered a number of different invariants of the isotopism classes
of finite semifields, such as the size of semifield, and the size of its nuclei, or the characteristic.
Of course, since the isotopism classes for semifields correspond to the isomorphism classes
of the corresponding semifield planes, each invariant of the isomorphism classes of projective
planes (e.g. the fingerprint, Kennzahl, Leitzahl defined in [22] and [29]) serves as an invariant
of the isotopism class of semifields. However, these invariants can sometimes only be
computed for semifields of small order, and it often remains very difficult to determine whether
a semifield is “new" or not, where “new" means not isotopic to a semifield that was already
known before. Moreover, these invariants are perhaps too general, as they apply to general
translation planes and not just to semifield planes. As we saw in this article, the geometric
approach can sometimes be used in order to distinguishing between isotopism classes of
semifield, but there is still no guarantee that different isotopism classes are represented by
linear sets that are distinguishable by their geometric properties. This leads us to the following
problem.

Problem 1 (Section 1) Find new invariants of isotopism classes of finite semifields, or
even better: find a unique representative for each isotopism class.

The following two problems are related to the geometric construction for semifields
(from [7]) explained in Section 2.

Problem 2 (Section 2) Find examples of semifields S that are not 2-dimensional over
their left nucleus, having r = 2 (r is the integer in the BEL-construction), and such that the
semifield Sκ is new.

Problem 3 (Section 2) Does the operation κ that interchanges U and W extend to an
operation on the isotopism classes, and if so, how many isotopism classes of semifields does
this operation produce in conjunction with the Knuth orbit?
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The following problem is also related to the Knuth orbit. As pointed out in Section 3,
all known examples of rank two semifields S for which S⊥ is not isotopic to S have the
property that the size of K (S)∪K (S⊥) is six.

Problem 4 (Section 3) Find examples of rank two semifields S for which the set of iso-
topism classes K (S)∪K (S⊥) has size twelve.

Theorem 15 gives a characterisation of symplectic semifields, which in combination
with Theorem 16 gives an indirect characterisation of commutative semifields. Can we find a
more direct characterisation without using the S3-action?

Problem 5 (Section 4) Find a geometric characterisation of linear sets associated with a
commutative semifield without using Theorem 16.

A longstanding open problem is the classification of RTCS. This would have many in-
teresting corollaries in Galois geometry, for instance in the theory of semifield flocks,
translation ovoids, eggs and translation generalized quadrangles.

Problem 6 (Section 5) Improve on the bounds from [15] and [62], or classify RTCS up
to isotopism.

In Section 6, we have listed many examples of finite semifields. Some are contained in
infinite families, others are standalone examples. Here is a list of examples that might be
embeddable in an infinite family.

Problem 7 (Section 6) Find infinite families (if they exist) of semifields containing the
sporadic examples listed in Section 6 (BL, HJ, PW/BLP, CHK, CF, De, MPT, JMPT(45,165),
MT, RCR).

During the last decade a lot of data has been produced including a lot of infinite fami-
lies of finite semifields. In order to make any progress in the classification of finite semifields,
it is important to have strong characterisations for the known families.

Problem 8 (Section 6) Find characterisations of known families of semifields.

Another classification problem for which progress has already been made concerns rank
two semifields of order q6 that are 6-dimensional over their center (see Theorem 27).

Problem 9 (Section 6) Complete the classification of semifields of order q6, 2-dimensional
over the left nucleus and 6-dimensional over the center.
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