An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of $\mathrm{PG}(n,q)$

M. Lavrauw L. Storme P. Sziklai* G. Van de Voorde †

July 9, 2008

Abstract

Let $C_k(n,q)$ be the p-ary linear code defined by the incidence matrix of points and k-spaces in $\mathrm{PG}(n,q),\ q=p^h,\ p$ prime, $h\geq 1$. In this paper, we show that there are no codewords of weight in $]\frac{q^{k+1}-1}{q-1},2q^k[$ in $C_k(n,q)\setminus C_{n-k}(n,q)^\perp$ which implies that there are no codewords with this weight in $C_k(n,q)\setminus C_k(n,q)^\perp$ if $k\geq n/2$. In particular, for the code $C_{n-1}(n,q)$ of points and hyperplanes of $\mathrm{PG}(n,q)$, we exclude all codewords in $C_{n-1}(n,q)$ with weight in $]\frac{q^n-1}{q-1},2q^{n-1}[$. This latter result implies a sharp bound on the weight of small weight codewords of $C_{n-1}(n,q)$, a result which was previously only known for general dimension for q prime and $q=p^2$, with p prime, p>11, and in the case n=2, for $q=p^3,\ p\geq 7$.

1 Introduction

Let $\operatorname{PG}(n,q)$ denote the *n*-dimensional projective space over the finite field \mathbb{F}_q with q elements, where $q=p^h$, p prime, $h\geq 1$, and let $\operatorname{V}(n+1,q)$ denote the underlying vector space. Let θ_n denote the number of points in $\operatorname{PG}(n,q)$, i.e., $\theta_n=(q^{n+1}-1)/(q-1)$.

We define the incidence matrix $A = (a_{ij})$ of points and k-spaces in the projective space $\operatorname{PG}(n,q)$, $q = p^h$, p prime, $h \geq 1$, as the matrix whose rows are indexed by the k-spaces of $\operatorname{PG}(n,q)$ and whose columns are indexed by the points of $\operatorname{PG}(n,q)$, and with entry

$$a_{ij} = \left\{ \begin{array}{ll} 1 & \text{if point } j \text{ belongs to } k\text{-space } i, \\ 0 & \text{otherwise.} \end{array} \right.$$

The p-ary linear code of points and k-spaces of PG(n,q), $q=p^h$, p prime, $h \geq 1$, is the \mathbb{F}_p -span of the rows of the incidence matrix A. We denote this code by $C_k(n,q)$. The support of a codeword c, denoted by supp(c), is the set of all non-zero positions of c. The weight of c is the number of non-zero positions of

^{*}This author was partially supported by OTKA T-049662, T-067867 and Bolyai grants.

[†]This author's research was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

c and is denoted by wt(c). Often we identify the support of a codeword with the corresponding set of points of $\mathrm{PG}(n,q)$. We let (c_1,c_2) denote the scalar product in \mathbb{F}_p of two codewords c_1,c_2 of $\mathrm{C}_k(n,q)$. Furthermore, if T is a set of points of $\mathrm{PG}(n,q)$, then the incidence vector of this set is also denoted by T. The dual code $\mathrm{C}_k(n,q)^{\perp}$ is the set of all vectors orthogonal to all codewords of $\mathrm{C}_k(n,q)$, hence

$$C_k(n,q)^{\perp} = \{ v \in V(\theta_n, p) | | (v,c) = 0, \ \forall c \in C_k(n,q) \}.$$

It is easy to see that $c \in C_k(n,q)^{\perp}$ if and only if (c,K) = 0 for all k-spaces K of PG(n,q).

In [4] and [5], we excluded codewords of small weight in $C_{n-1}(n,q)$, resp. $C_k(n,q) \setminus C_k(n,q)^{\perp}$, corresponding to linear small minimal blocking sets, which implied Result 1 and Result 2.

Result 1. [4] The only possible codewords c of $C_{n-1}(n,q)$ of weight in $]\theta_{n-1}, 2q^{n-1}[$ are the scalar multiples of non-linear minimal blocking sets, intersecting every line in 1 (mod p) points.

Result 2. [5] For $k \ge n/2$, the only possible codewords c of $C_k(n,q) \setminus C_k(n,q)^{\perp}$ of weight in $]\theta_k, 2q^k[$ are scalar multiples of non-linear minimal k-blocking sets of PG(n,q), intersecting every line in 1 (mod p) or zero points.

Remark 3. It is believed (and conjectured, see [7]) that all small minimal blocking sets are linear. If that conjecture is true, then Result 1 eliminates all possible codewords of $C_{n-1}(n,q)$ of weight in $]\theta_{n-1}, 2q^{n-1}[$, and Result 2 eliminates all codewords of $C_k(n,q) \setminus C_k(n,q)^{\perp}$ of weight in $]\theta_k, 2q^k[$ if $k \ge n/2$.

In this article, we improve on Result 1 and Result 2 by showing that there are no codewords in $C_k(n,q) \setminus C_{n-k}(n,q)^{\perp}$, $q=p^h$, p prime, p>5, $h\geq 1$, in the interval $]\theta_k, 2q^k[$, which implies that there are no codewords in the interval $]\theta_k, 2q^k[$ in $C_k(n,q) \setminus C_k(n,q)^{\perp}$ if $k\geq n/2$. Using the results of [5], we show that there are no codewords in $C_k(n,q)$, $q=p^h$, p prime, $h\geq 1$, p>7, with weight in $]\theta_k, (12\theta_k+6)/7[$.

In the case that k = n-1, we show that there are no codewords in $C_{n-1}(n,q)$ in the interval $]\theta_{n-1}, 2q^{n-1}[$. This interval is sharp: codewords of minimum weight in $C_{n-1}(n,q)$ have been characterized as scalar multiples of incidence vectors of hyperplanes (see [1, Proposition 5.7.3]), and codewords of weight $2q^{n-1}$ can be obtained by taking the difference of the incidence vectors of two hyperplanes.

2 Blocking sets

A blocking set of PG(n,q) is a set K of points such that each hyperplane of PG(n,q) contains at least one point of K. A blocking set K is called trivial if it contains a line of PG(n,q). These blocking sets are also called 1-blocking sets in [2]. In general, a k-blocking set K in PG(n,q) is a set of points such that any (n-k)-dimensional subspace intersects K. A k-blocking set K is called trivial if there is a k-dimensional subspace contained in K. If an (n-k)-dimensional space contains exactly one point of a k-blocking set K in PG(n,q), it is called a tangent (n-k)-space to K, and a point P of K is called essential when it belongs

to a tangent (n-k)-space of K. A k-blocking set K is called *minimal* when no proper subset of K is also a k-blocking set, i.e., when each point of K is essential. A k-blocking set is called *small* if it contains less than $3(q^k+1)/2$ points.

In order to define a $linear\ k$ -blocking set, we introduce the notion of a Desarguesian spread.

By field reduction, the points of $\operatorname{PG}(n,q)$, $q=p^h$, p prime, $h\geq 1$, correspond to (h-1)-dimensional subspaces of $\operatorname{PG}((n+1)h-1,p)$, since a point of $\operatorname{PG}(n,q)$ is a 1-dimensional vector space over \mathbb{F}_q , and so an h-dimensional vector space over \mathbb{F}_p . In this way, we obtain a partition \mathcal{D} of the point set of $\operatorname{PG}((n+1)h-1,p)$ by (h-1)-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension k is called a spread , or a k-spread if we want to specify the dimension. The spread we have obtained here is called a $\operatorname{Desarguesian spread}$. Note that the Desarguesian spread satisfies the property that each subspace spanned by two spread elements is again partitioned by spread elements. In fact, it can be shown that if $n\geq 2$, this property characterises a Desarguesian spread [6].

Definition 4. Let U be a subset of PG((n+1)h-1,p) and let \mathcal{D} be a Desarguesian (h-1)-spread of PG((n+1)h-1,p), then $\mathcal{B}(U) = \{R \in \mathcal{D} | |U \cap R \neq \emptyset\}$.

Analogously to the correspondence between the points of PG(n,q) and the elements of a Desarguesian spread \mathcal{D} in PG((n+1)h-1,p), we obtain the correspondence between the lines of PG(n,q) and the (2h-1)-dimensional subspaces of PG((n+1)h-1,p) spanned by two elements of \mathcal{D} , and in general, we obtain the correspondence between the (n-k)-spaces of PG(n,q) and the ((n-k+1)h-1)-dimensional subspaces of PG((n+1)h-1,p) spanned by n-k+1 elements of \mathcal{D} . With this in mind, it is clear that any hk-dimensional subspace U of PG(h(n+1)-1,p) defines a k-blocking set $\mathcal{B}(U)$ in PG(n,q). A blocking set constructed in this way is called a *linear k-blocking set*. Linear k-blocking sets were first introduced by Lunardon [6], although there a different approach is used. For more on the approach explained here, we refer to [3].

3 Results

In [8], Szőnyi and Weiner proved the following result on small blocking sets.

Result 5. [8, Theorem 2.7] Let B be a minimal blocking set of PG(n,q) with respect to k-dimensional subspaces, $q = p^h$, p > 2 prime, $h \ge 1$, and assume that $|B| < 3(q^{n-k} + 1)/2$. Then any subspace that intersects B, intersects it in 1 (mod p) points.

In [5], we proved the following lemmas.

Result 6. The support of a codeword $c \in C_k(n,q)$ with weight smaller than $2q^k$, for which $(c,S) \neq 0$ for some (n-k)-space S, is a minimal k-blocking set in PG(n,q). Moreover, c is a scalar multiple of a certain incidence vector, and supp(c) intersects every (n-k)-dimensional space in $1 \pmod{p}$ points.

Lemma 7. Let $c \in C_k(n,q)$, then there exists a constant $a \in \mathbb{F}_p$ such that (c,U) = a, for all subspaces U of dimension at least n-k.

In the same way as the authors do in [5, Theorem 19], one can prove Lemma 8, which shows that all minimal k-blocking sets of size less than $2q^k$ and intersecting every (n-k)-space in 1 (mod p) points, are small.

Lemma 8. Let B be a minimal k-blocking set in PG(n,q), $n \geq 2$, $q = p^h$, p prime, p > 5, $h \geq 1$, intersecting every (n-k)-dimensional space in 1 (mod p) points. If $|B| \in]\theta_k, 2q^k[$, then

$$|B| < \frac{3(q^k - q^k/p)}{2}.$$

Lemma 9. Let B_1 and B_2 be small minimal (n-k)-blocking sets in PG(n,q). Then $B_1 - B_2 \in C_k(n,q)^{\perp}$.

Proof. It follows from Result 5 that $(B_i, \pi_k) = 1$ for all k-spaces π_k , i = 1, 2. Hence $(B_1 - B_2, \pi_k) = 0$ for all k-spaces π_k . This implies that $B_1 - B_2 \in C_k(n,q)^{\perp}$.

Lemma 10. Let c be a codeword of $C_k(n,q)$ with weight smaller than $2q^k$, for which $(c,S) \neq 0$ for some (n-k)-space S, and let B be a small minimal (n-k)-blocking set. Then supp(c) intersects B in 1 (mod p) points.

Proof. Let c be a codeword of $C_k(n,q)$ with weight smaller than $2q^k$, for which $(c,S) \neq 0$ for some (n-k)-space S. Lemma 9 shows that $(c,B_1-B_2)=0=(c,B_1)-(c,B_2)$ for all small minimal (n-k)-blocking sets B_1 and B_2 . Hence (c,B), with B a small minimal (n-k)-blocking set, is a constant. Result 6 shows that c is a codeword only taking values from $\{0,a\}$, so (c,B)=a(supp(c),B), hence (supp(c),B) is a constant too. Let B_1 be an (n-k)-space, then Result 6 shows that $(supp(c),B_1)=1$. Since B_1 is a small minimal (n-k)-blocking set, the number of intersection points of supp(c) and B is equal to 1 (mod p) for any small minimal blocking set B.

It follows from Lemma 7 that, for $c \in C_k(n,q)$ and S an (n-k)-space, (c,S) is a constant. Hence, either $(c,S) \neq 0$ for all (n-k)-spaces S, or (c,S) = 0 for all (n-k)-spaces S. In this latter case, $c \in C_{n-k}(n,q)^{\perp}$.

Theorem 11. There are no codewords in $C_k(n,q) \setminus C_{n-k}(n,q)^{\perp}$ with weight in $|\theta_k, 2q^k|$, $q = p^h$, p prime, p > 5, $h \ge 1$.

Proof. Let Y be a linear small minimal (n-k)-blocking set in $\operatorname{PG}(n,q)$. As explained in Section 2, Y corresponds to a set $\bar{Y} = \mathcal{B}(\pi)$ of (h-1)-dimensional spread elements intersecting a certain (h(n-k))-space π in $\operatorname{PG}(h(n+1)-1,p)$. Let c be a codeword of $\operatorname{C}_k(n,q) \setminus \operatorname{C}_{n-k}(n,q)^{\perp}$ with weight at most $2q^k-1$. Result 6 and Lemma 8 show that $\operatorname{supp}(c)$ is a small minimal k-blocking set B. This blocking set B corresponds to a set \bar{B} of |B| spread elements in $\operatorname{PG}(h(n+1)-1,p)$. Since $\operatorname{supp}(c)$ and Y intersect in 1 (mod p) points (see Lemma 10), \bar{B} and \bar{Y} intersect in 1 (mod p) spread elements. Since all spread elements of \bar{Y} intersect π , there are 1 (mod p) spread elements of \bar{B} that intersect π .

But this holds for any (h(n-k))-space π' in PG(h(n+1)-1,p), since any (h(n-k))-space π' corresponds to a linear small minimal (n-k)-blocking set Y' in PG(n,q).

Let B be the set of points contained in the spread elements of the set \overline{B} . Since a spread element that intersects a subspace of PG(h(n+1)-1,p) intersects

it in 1 (mod p) points, \tilde{B} intersects any (h(n-k))-space in 1 (mod p) points. Moreover, $|\tilde{B}| = |B| \cdot (p^h - 1)/(p - 1) \le 3(p^{hk} - p^{hk-1}) \cdot (p^h - 1)/(2(p - 1)) < 3(p^{h(k+1)-1} + 1)/2$ (see Lemma 8). This implies that \tilde{B} is a small (h(k+1)-1)-blocking set in PG(h(n+1)-1,p).

Moreover, \tilde{B} is minimal. This can be proven in the following way. Let R be a point of \tilde{B} . Since B is a minimal k-blocking set in $\mathrm{PG}(n,q)$, there is a tangent (n-k)-space S through the point R' of $\mathrm{PG}(n,q)$ corresponding to the spread element $\mathcal{B}(R)$. Now S corresponds to an (h(n-k+1)-1)-space π' in $\mathrm{PG}(h(n+1)-1,p)$, such that $\mathcal{B}(R)$ is the only element of \bar{B} in π' . This implies that through R, there is an (h(n-k))-space in π' containing only the point R of \tilde{B} . This shows that through every point of \tilde{B} , there is a tangent (h(n-k))-space, hence that \tilde{B} is a minimal (h(k+1)-1)-blocking set.

Result 5 implies that B intersects any subspace of $\operatorname{PG}(h(n+1)-1,p)$ in zero or 1 (mod p) points. This implies that a line is skew, tangent or entirely contained in \tilde{B} , hence \tilde{B} is a subspace of $\operatorname{PG}(h(n+1)-1,p)$, with at most $3(p^{h(k+1)-1}+1)/2$ points, intersecting every (h(n-k))-space. Moreover, it is the point set of a set of |B| spread elements. Hence, \bar{B} is the set of spread elements corresponding to a k-space in $\operatorname{PG}(n,q)$, so $\operatorname{supp}(c)$ has size θ_k .

In [5], we determined a lower bound on the weight of the code $C_k(n,q)^{\perp}$.

Result 12. The minimum weight of $C_k(n,q)^{\perp}$ is at least $(12\theta_{n-k}+2)/7$ if p=7, and at least $(12\theta_{n-k}+6)/7$ if p>7.

Theorem 13. There are no codewords in $C_k(n,q)$ with weight in $]\theta_k, (12\theta_k + 2)/7[$ if p = 7 and there are no codewords in $C_k(n,q)$ with weight in $]\theta_k, (12\theta_k + 6)/7[$ if p > 7.

Proof. This follows immediately from Theorem 11 and Result 12. \Box

In [5], we proved the following result.

Result 14. Assume that $k \geq n/2$. A codeword c of $C_k(n,q)$ is in $C_k(n,q) \cap C_k(n,q)^{\perp}$ if and only if (c,U) = 0 for all subspaces U with $\dim(U) \geq n - k$.

Corollary 15. If $k \geq n/2$, $C_k(n,q) \setminus C_{n-k}(n,q)^{\perp} = C_k(n,q) \setminus C_k(n,q)^{\perp}$.

Proof. It follows from Result 14 that $C_k(n,q) \cap C_{n-k}(n,q)^{\perp} = C_k(n,q) \cap C_k(n,q)^{\perp}$ if $k \geq n/2$.

In [4], we proved the following result.

Result 16. The minimum weight of $C_{n-1}(n,q) \cap C_{n-1}(n,q)^{\perp}$ is equal to $2q^{n-1}$.

Theorem 11, Corollary 15, and Result 16 yield the following corollary, which gives a sharp empty interval on the size of small weight codewords of $C_{n-1}(n,q)$, since θ_{n-1} is the weight of a codeword arising from the incidence vector of an (n-1)-space and $2q^{n-1}$ is the weight of a codeword arising from the difference of the incidence vectors of two (n-1)-spaces.

Corollary 17. There are no codewords with weight in $]\theta_{n-1}, 2q^{n-1}[$ in the code $C_{n-1}(n,q)$.

In the planar case, this yields the following corollary, which improves on the results in [1].

Corollary 18. There are no codewords with weight in]q + 1, 2q[in the code of points and lines of PG(2, q).

In this case, the weight q+1 corresponds to the incidence vector of a line, and the weight 2q can be obtained by taking the difference of the incidence vectors of two different lines.

References

- [1] E.F. Assmus, Jr. and J.D. Key. Designs and their codes. *Cambridge University Press*, 1992.
- [2] A. Beutelspacher. Blocking sets and partial spreads in finite projective spaces. *Geom. Dedicata* **9** (1980), 130–157.
- [3] M. Lavrauw. Scattered spaces with respect to spreads, and eggs in finite projective spaces. PhD Dissertation, Eindhoven University of Technology, Eindhoven, 2001. viii+115 pp.
- [4] M. Lavrauw, L. Storme and G. Van de Voorde. On the code generated by the incidence matrix of points and hyperplanes in PG(n,q) and its dual. Des. Codes Cryptogr., to appear.
- [5] M. Lavrauw, L. Storme and G. Van de Voorde. On the code generated by the incidence matrix of points and k-spaces in PG(n,q) and its dual. *Finite Fields Appl.*, to appear.
- [6] G. Lunardon. Normal spreads. Geom. Dedicata 75 (1999), 245–261.
- [7] P. Sziklai. On small blocking sets and their linearity. *J. Combin. Theory, Ser. A*, to appear.
- [8] T. Szőnyi and Zs. Weiner. Small blocking sets in higher dimensions. *J. Combin. Theory Ser. A* **95** (2001), no. 1, 88–101.

Address of the authors:

Michel Lavrauw, Leo Storme, Geertrui Van de Voorde:
Department of pure mathematics and computer algebra,
Ghent University
Krijgslaan 281-S22
9000 Ghent (Belgium)
{ml,ls,gvdvoorde}@cage.ugent.be
http://cage.ugent.be/ ~ {ml,ls,gvdvoorde}

Peter Sziklai:

Department of Computer Science, Eötvös Loránd University Pázmány P. sétány 1/C H-1117 Budapest (Hungary) sziklai@cs.elte.hu http://www.cs.elte.hu/~sziklai