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Abstract

In this paper, we show that a small minimal k-blocking set in PG(n, q3),
g=p", h> 1, pprime, p > 7, intersecting every (n—k)-spacein 1 (mod q)
points, is linear. As a corollary, this result shows that all small minimal
k-blocking sets in PG(n,p3), p prime, p > 7, are Fp-linear, proving the
linearity conjecture (see [7]) in the case PG(n,p?), p prime, p > 7.

1 Introduction and preliminaries

Throughout this paper ¢ = p", p prime, h > 1 and PG(n,q) denotes the n-
dimensional projective space over the finite field F, of order q. A k-blocking
set B in PG(n,q) is a set of points such that any (n — k)-dimensional subspace
intersects B. A k-blocking set B is called trivial when a k-dimensional subspace
is contained in B. If an (n — k)-dimensional space contains exactly one point
of a k-blocking set B in PG(n,q), it is called a tangent (n — k)-space to B. A
k-blocking set B is called minimal when no proper subset of B is a k-blocking
set. A k-blocking set B is called small when |B| < 3(¢* +1)/2.

Linear blocking sets were first introduced by Lunardon [3] and can be defined
in several equivalent ways.

In this paper, we follow the approach described in [1]. In order to define
a linear k-blocking set in this way, we introduce the notion of a Desarguesian
spread. Suppose ¢ = ¢f, with ¢t > 1. By ”field reduction”, the points of PG(n, q)
correspond to (t —1)-dimensional subspaces of PG((n+1)t—1, qo), since a point
of PG(n,q) is a 1-dimensional vector space over F,, and so a t-dimensional
vector space over F, . In this way, we obtain a partition D of the pointset of
PG((n+1)t—1,qo) by (t — 1)-dimensional subspaces. In general, a partition of
the point set of a projective space by subspaces of a given dimension d is called
a spread, or a d-spread if we want to specify the dimension. The spread obtained
by field reduction is called a Desarguesian spread. Note that the Desarguesian
spread satisfies the property that each subspace spanned by spread elements is
partitioned by spread elements.

Let D be the Desarguesian (t — 1)-spread of PG((n 4+ 1)t — 1,q0). If U is a
subset of PG((n+1)t—1, o), then we define B(U) := {R € D||UNR # 0}, and we
identify the elements of B(U) with the corresponding points of PG(n,q}). If U
is subspace of PG((n+1)t—1, qo), then we call B(U) a linear set or an F, -linear
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set if we want to specify the underlying field. Note that through every point
in B(U), there is a subspace U’ such that B(U’) = B(U) since the elementwise
stabiliser of the Desarguesian spread D acts transitively on the points of a spread
element of D. If U intersects the elements of D in at most a point, i.e. |B(U)|
is maximal, then we say that U is scattered with respect to D; in this case B(U)
is called a scattered linear set. We denote the element of D corresponding to
a point P of PG(n,qf) by S(P). If U is a subset of PG(n,q), then we define
S(U) :={S(P)||P € U}. Analogously to the correspondence between the points
of PG(n,q}), and the elements D, we obtain the correspondence between the
lines of PG(n, ¢) and the (2t — 1)-dimensional subspaces of PG((n + 1)t — 1, qo)
spanned by two elements of D, and in general, we obtain the correspondence
between the (n — k)-spaces of PG(n, q) and the ((n — k + 1)t — 1)-dimensional
subspaces of PG((n—+1)t—1,qo) spanned by n —k+ 1 elements of D. With this
in mind, it is clear that any tk-dimensional subspace U of PG(¢t(n+ 1) — 1,4o)
defines a k-blocking set B(U) in PG(n,q). A (k-)blocking set constructed in
this way is called a linear (k-)blocking set, or an Fg,-linear (k-)blocking set if
we want to specify the underlying field.

By far the most challenging problem concerning blocking sets is the so-called
linearity conjecture. Since 1998 it has been conjectured by many mathematicians
working in the field. The conjecture was explicitly stated in the literature by
Sziklai in [7].

(LC) All small minimal k-blocking sets in PG(n,q) are linear.

Various instances of the conjecture have been proved; for an overview we refer to
[7]. In this paper we prove the linearity conjecture for small minimal k-blocking
sets in PG(n,p?), p > 7, as a corollary of the following main theorem:

Theorem 1. A small minimal k-blocking set in PG(n,q?), ¢ = p", p prime,
h>1,p>1, intersecting every (n — k)-space in 1 (mod q) points is linear.

1.1 Known characterisation results

In this section we mention a few results, that we will rely on in the sequel of this
paper. First of all, observe that a subspace intersects a linear set of PG(n, p")
in 1 (mod p) or zero points. The following result of Szényi and Weiner shows
that this property holds for all small minimal blocking sets.

Result 2. [8, Theorem 2.7] If B is a small minimal k-blocking set of PG(n, q),
p > 2, then every subspace intersects B in 1 (mod p) or zero points.

Result 2 answers the linearity conjecture in the affirmative for PG(n,p).
For PG(n,p?), the linearity conjecture was proved by Weiner (see [9]). For 1-
blocking sets in PG(n, ¢*), we have the following theorem of Polverino (n = 2)
and Storme and Weiner (n > 3).

Result 3. [5//6] A minimal 1-blocking set in PG(n,¢®), ¢ = p", h > 1, p prime,
p>17,n>2, of size at most ¢ + ¢> + q + 1, is linear.

In Theorem 8 we show that this implies the linearity conjecture for small
minimal 1-blocking sets PG(n, ¢®), p > 7, that intersect every hyperplane in 1
(mod ¢) points.

The following Result by Sz6nyi and Weiner gives a sufficient condition for a
blocking set to be minimal.



Result 4. [8, Lemma 3.1] Let B be a k-blocking set of PG(n,q), and suppose
that |B| < 2¢*. If each (n — k)-dimensional subspace of PG(n,q) intersects B
in 1 (mod p) points, then B is minimal.

1.2 The intersection of a subline and an F,-linear set

The possibilities for an Fy-linear set of PG(1,q?%), other than the empty set,
a point, and the set PG(1,¢?) itself are the following: a subline PG(1,q) of
PG(1,¢%), corresponding to the a line of PG(5,¢) not contained in an element
of D; a set of ¢> + 1 points of PG(1,¢?), corresponding to a plane of PG(5,q)
that intersects an element of D in a line; a set of ¢? + ¢ + 1 points of PG(1, ¢%),
corresponding to a plane of PG(5, ¢) that is scattered w.r.t. D.

The following results describe the possibilities for the intersection of a subline
with an F,-linear set in PG(1, ¢®), and will play an important role in this paper.

Result 5. [2] A subline = PG(1,q) intersects an F,-linear set of PG(1,q3) in
0,1,2,3, or g+ 1 points.

Result 6. [/, Lemma 4.4, 4.5, 4.6] Let q be a square. A subline PG(1,q) and
a Baer subline PG(1,q./q) of PG(1,4*) share at most a subline PG(1,/q). A
Baer subline PG(1,q,/q) and an F,-linear set of ¢>+1 or ¢> + q+ 1 points in
PG(1,¢%) share at most q + V4 + 1 points.

2 Some bounds and the case k£ =1

The Gaussian coefficient [ Z } denotes the number of (k — 1)-subspaces in

q
PG(n —1,q), i.e.,

|: n :| = (qn — 1)(qn_1 — 1)-..(qn—k+1 - 1)
“ (" = 1)(¢*1=1)--(qg—1)

Lemma 7. If B is a subset of PG(n,¢*), ¢ > 7, intersecting every (n—k)-space,
k>1,in 1 (mod q) points, and 7 is an (n — k + s)-space, s < k, then either

|Bﬂ7r| < q3s + q3sfl _|_q3572 + 3q3373
or
‘B ﬁ7r| > q3s+1 _ q3571 _ q3572 o 3q3573.

Proof. Let m be an (n — k + s)-space of PG(n,q®), and put B, := BN .
Let x; denote the number of (n — k)-spaces of 7 intersecting B, in ¢ points.
Counting the number of (n — k)-spaces, the number of incident pairs (P, o) with
P e B,,P € 0,0 an (n — k)-space, and the number of triples (Py, P, 0), with
Py,P, € By, Py # P5, P1, P, € 0, 0 an (n — k)-space yields:

_ n—k+s+1
o= | "] )
) q
. n—k-+s
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Since we assume that every (n — k)-space intersects B in 1 (mod ¢) points, it
follows that every (n—k)-space of 7 intersect B, in 1 (mod ¢) points, and hence
>, (i—=1)(i =1 —¢q)x; > 0. Using Equations (1), (2), and (3), this yields that

|B7T|(|Bﬂ‘_1)(q3n—3k_1)(q3n—3k+3_1)_(q+1)|B7r|(q3n—3k+33_1)(q3n—3k+3_1)

+(q + 1)(q3n—3k+35+3 _ 1)(q3n—3k+35 _ 1) > 0.

Putting [By| = ¢* +¢* ' +¢* 72 +3¢° 7% or |By| = ¢**T! — g% — g% -
3¢3*~3 in this inequality, with ¢ > 7, gives a contradiction. Hence the statement
follows. O

Theorem 8. A small minimal 1-blocking set in PG(n,q®), p > 7, intersecting
every hyperplane in 1 (mod q) points, is linear.

Proof. Lemma 7 implies that a small minimal 1-blocking set B in PG(n, ¢?),
intersecting every hyperplane in 1 (mod ¢) points, has at most ¢* + ¢*> + ¢ + 3
points. Since every hyperplane intersects B in 1 (mod ¢) points, it is easy to
see that |B| = 1 (mod ¢). This implies that |B| < ¢* + ¢*> + ¢+ 1. Result 3
shows that B is linear. O

Corollary 9. A small minimal 1-blocking set in PG(n,p%), p prime, p > 7, is
F,-linear.

Proof. This follows from Result 2 and Theorem 8. O
For the remaining of this section, we use the following assumption:

(B) B is small minimal k-blocking set in PG(n,¢%), p > 7, intersecting every
(n — k)-space in 1 (mod ¢) points.

For convenience let us introduce the following terminology. A full line of B
is a line which is contained in B. An (n — k + s)-space S, s < k, is called large
if S contains more than ¢>+! — ¢35~ — ¢35=2 — 3¢3=3 points of B, and S is

called small if it contains less than ¢3° + ¢3*~1 + ¢3$72 4 3¢*~3 points of B.

Lemma 10. Let L be a line such that 1 < |[BNL| < ¢ + 1.

(1) For all i € {1,...,n — k} there exists an i-space m; on L such that
Bnm=BnNL.

(2) Let N be a line, skew to L. For all j € {1,...k—2}, there exists a small
(n—k+j)-space m; on L, skew to N.

Proof. (1) It follows from Result 2 that every subspace on L intersects B \ L
in zero or at least p points. We proceed by induction on the dimension 7. The
statement obviously holds for ¢ = 1. Suppose there exists an i-space m; on L
such that m;NB=LNB, with i < n—k—1. If there is no (i41)-space intersecting
B only on L, then the number of points of B is at least

IBNL|+p(g*" 73 + #0764 4+ 1),

but by Lemma 7 |B| < ¢®% + ¢3! + ¢3 =2 + 3¢°%73. If i < n—k — 1 this is
a contradiction. If i = n — k — 1 then in the above count we may replace the
factor p by a factor ¢, using the hypothesis (B), and hence also in this case we

get a contradiction. We may conclude that there exists an i-space m; on L such
that BNL=Bnm, Vie{l,...,n—k}.



(2) Part (1) shows that there is an (n — k — 1)-space m,—x—1 on L, skew to
N, such that BNL = BN7,_k_1. If an (n — k)-space through m,,_;_1 contains
an extra element of B, it contains at least ¢® extra elements of B, since a line
containing 2 points of B contains at least ¢ + 1 points of B. This implies that
there is an (n — k)-space m,_j through 7, _,_; with no extra points of B, and
skew to V.

We proceed by induction on the dimension 4. Lemma 12(1) shows that there
are at least (¢** —1)/(¢®>—1)—¢* =5 —-5¢3* =641 > ¢>+1 small (n—k+1)-spaces
through m,_; which proves the statement for i = 1.

Suppose that there exists an (n — k + t)-space mp_k4+¢ on L, skew to N,
such that B N,k is a small minimal ¢-blocking set of 7, —g4¢. An (n—k +
t + 1)-space through m, . contains at most (¢3*** — 1)(¢ — 1) or more than
@t — @32 — 31— 363 points of B (see Lemmas 7 and 13).

Suppose all (¢3*73t —1)(¢> — 1) —¢®> — 1 (n — k +t)-spaces through 7, _x1¢_1,
skew to IV, contain more than ¢34 — ¢3t+2 — ¢3¥+1 — 3¢% points of B. Then the
number of points in B is larger than ¢3* + ¢! + ¢3%=2 4 3¢3F 3 if t < k — 3,
a contradiction.

We may conclude that there exists an (n — k + j)-space m; on L such that
BN, is a small minimal i-blocking set, skew to N, Vj € {1,...,k — 2}. O

Theorem 11. A line L intersects B in a linear set.

Proof. Note that it is enough to show that L is contained in a subspace of
PG (n, ¢®) intersecting B in a linear set. If k = 1, then B is linear by Theorem
8, and the statement follows. Let & > 1, let L be a line, not contained in B,
intersecting B in at least two points. It follows from Lemma 10 that there exists
an (n — k)-space 7z, such that BN L = BN . If each of the (¢3* —1)/(¢® — 1)
(n—k+1)-spaces through 7, is large, then the number of points in B is at least

q3k_1

- - -q-3-)+¢ > P L R e N W

a contradiction. Hence, there is a small (n — k + 1)-space 7w through L, so
BN is a small 1-blocking set which is linear by Theorem 8. This concludes
the proof. O

Lemma 12. Let 7 be an (n — k)-space of PG(n,q?), k > 1.

(1) If BN is a point, then there are at most ¢>*~>4+4¢3*=6—1 large (n—k+1)-
spaces through .

(2) If 7 intersects B in (q/q + 1), ¢>+1 or ¢> + g+ 1 collinear points, then
there are at most ¢**~° 4+ 5¢*~% — 1 large (n — k + 1)-spaces through =.

(3) If © intersects B in q+ 1 collinear points, then there are at most 3¢>*~6 —

¢*~7 — 1 large (n — k + 1)-spaces through .

Proof. Suppose there are y large (n —k+1)-spaces through 7. Then the number
of points in B is at least

y(¢' ¢’ —q=3—|Bna) + (@ - 1)/(@ —1) —y)z + BN, (+)

where z depends on the intersection B N .



n this case, x = ¢° an Nrm|=1. If y =¢°" 2 + 4¢>"°, then (x) is
1) In thi 3 and |B 1 If 3k=5 4 4¢%k=6 th i
larger than ¢3F + ¢3* =1 4+ ¢3 =2 4 3¢3%=3, a contradiction.
(2) In this case z = ¢® and |[BN7| < ¢ +q+ 1. If y = ¢ 7% + 5¢°76, then
(%) is larger than ¢3% 4 ¢®*~1 4 ¢®=2 4- 3¢3*=3, a contradiction.
esu we know that an (n — Kk + 1)-space 7' through 7 intersects
3) By Result 3 we k h k+ 1)-sp " through 7 int t
B in at least ¢® + ¢® + 1 points, since a (q + 1)-secant in 7' implies that the
intersection of n’ with B is non-trivial and not a Baer subplane, hence z =
@ +q¢®>—q and |[BN7| = q+ 1. If 3¢ 6 — ¢>~7 then (x) is larger than
¢%F + @31 + 352 4 3¢%% 3, a contradiction. L]

3 The proof of Theorem 1

In the proof of the main theorem, we distinguish two cases. In both cases we
need the following two lemmas.
We continue with the following assumption

(B) B is small minimal k-blocking set in PG(n, ¢%), p > 7, intersecting every
(n — k)-space in 1 (mod ¢) points;

and we consider the following properties:

(H1) Vs < k: every small minimal s-blocking set, intersecting every (n—s)-space
in 1 (mod ¢) points, not containing a (¢./q + 1)-secant, is F4-linear;

(H2) Vs < k: every small minimal s-blocking set, intersecting every (n—s)-space
in 1 (mod g) points, containing a (¢,/g + 1)-secant, is F, g-linear.

Lemma 13. If (Hy) or (Hs), and S is a small (n — k + s)-space, 0 < s < k,
then BN S is a small minimal linear s-blocking set in S, and hence |BN S| <
(@ =1)/(q-1).

Proof. Clearly B NS is an s-blocking set in S. Result 2 implies that B N S
intersects every (n — k + s — s)-space of S in 1 (mod p) points, and it follows
from Result 4 that BN .S is minimal. Now apply (H;) or (Hz). O

Lemma 14. Suppose (Hy) or (Hz). Let k > 2 and let m,_o be an (n—2)-space
such that BN\ mp_g is a non-trivial small linear (k — 2)-blocking set, then there
are at least ¢° — q + 6 small hyperplanes through T,_o.

Proof. Applying Lemma 13 with s = k — 2, it follows that BN, _o contains at
most (¢**~°—1)/(¢—1) points. On the other hand, from Lemmas 7 and 13 with
s = k—1, we know that a hyperplane intersects B in at most (¢**~2—1)/(g—1)
points or in more than ¢3%=2 — ¢3%=% — ¢3%=5 _ 3¢3%=6 points. In the first case,
a hyperplane H intersects B in at least ¢** =3 + 1+ (¢**~2 + ¢)/(¢ + 1) points,
using a result of Szényi and Weiner [8, Corollary 3.7] for the (k — 1)-blocking
set H N B. If there are at least ¢ — 4 large hyperplanes, then the number of

points in B is at least

3k—2 _ 3k—4 _ 3k—5 shee ¢ —1
(=)@ " —¢" " = ¢ = 3¢°" B )+
3k—3 3k—5 3k—5
3 3k—3 q +q ¢q -1 . q —1
_ 5 1 _
(¢ —q+5)(@" " +1+ P | )+ 1
which is larger than ¢%% + ¢3*~1 4 ¢3=2 + 3¢3*=2 if ¢ > 7, a contradiction.
Hence, there are at most ¢ — 5 large hyperplanes through 7, _». O



3.1 Case 1: there are no ¢,/q + 1-secants

In this subsection, we will use induction on k to prove that small minimal k-
blocking sets in PG(n, ¢%), intersecting every (n — k)-space in 1 (mod ¢) points
and not containing a (g,/q + 1)-secant, are Fy-linear. The induction basis is
Theorem 8. We continue with assumptions (H;) and

(B1) B is small minimal k-blocking set in PG(n,¢®), p > 7, intersecting every
(n — k)-space in 1 (mod ¢) points, not containing a (¢./q + 1)-secant.

Lemma 15. If B is non-trivial, there ezist a point P € B, a tangent (n — k)-
space m at the point P and small (n — k + 1)-spaces H;, through w, such that
there is a (q + 1)-secant through P in H;, i =1,...,¢* 3 — 2¢%F—4,

Proof. Since B is non-trivial, there is at least one line N with 1 < |[N N B| <
¢® +1. Lemma 10 shows that there is an (n — k)-space 7 through N such that
BN N = Bnmay. It follows from Theorem 11 and Lemma 12 that there is at
least one (n — k + 1)-space H through my such that H N B is a small minimal
linear 1-blocking set of H. In this non-trivial small minimal linear 1-blocking
set, there are (¢+1)-secants (see Result 3). Let M be one of those (¢+1)-secants
of B. Again using Lemma 10, we find an (n — k)-space mp; through M such
that BN M = BNmyy.

3k_q

3 _

Lemma 12(3) shows that through mys, there are at least qqil — 3¢3k—6 4

¢**~741 small (n —k+1)-spaces. Let P be a point of M. Since in each of these
intersections, P lies on at least ¢ — 1 other (g + 1)-secants, a point P of M lies

% —3¢3%=6 4+ ¢®*~7 4 1) other (g + 1)-secants.

qq :11 —3¢% =6+ ¢*~7 41 small (n— k+ 1)-spaces contains at
least ¢* + ¢® — q points of B not on M, and |B| < ¢3* + ¢®* =1 + ¢3F=2 4 3¢3F3
(see Lemma 7), there are less than 2¢3~2 + 6¢3*—3 points of B left in the large
(n — k + 1)-spaces. Hence, P lies on less than 2¢3~° 4 6¢3*~6 full lines.

Since B is minimal, P lies on a tangent (n — k)-space 7. There are at most
q** =2 +4¢3%=6 —1 large (n — k+1)-spaces through 7 (Lemma 12(1)). Moreover,
Lt — (@0 +4¢% 5 —1) = (2¢°* 2 +6¢%°%) (n— k+1)-spaces
through 7 contain at least ¢°+¢2 points of B, and at most 2¢3*~°+6¢3*~6 of the
small (n—k+1)-spaces through 7 contain exactly ¢+ 1 points of B, there are at
most 2¢3*~24-23¢%*~3 points of B left. Hence, P lies on at most 2¢%#~34-23¢3%—4
(g+ 1)-secants of the large (n — k+ 1)-spaces through 7. This implies that there

are at least (¢ — 1)(% —3¢%F 0 4+ BT 4 1) — (24373 +23¢3F %) (¢ + 1)-
secants through P left in small (n — k + 1)-spaces through 7. Since in a small
(n — k + 1)-space through =, there can lie at most ¢ + ¢ + 1 (g + 1)-secants
through P, this implies that there are at least ¢**~3 —2¢3*=* (n — k + 1)-spaces

H; through 7 such that P lies on a (g 4 1)-secant in H;. O

in total on at least (¢® — 1)(
Since each of the 3:

since at least

Lemma 16. Let 7 be an (n—k)-dimensional tangent space of B at the point P.
Let Hy and Hs be two (n — k + 1)-spaces through m for which BN H; = B(m;),
for some 3-space w; through x € S(P), B(x)Nm; = {x} (i = 1,2) and B(w;) not
contained in a line of PG(n,q*). Then B({(mry,m2)) C B.

Proof. Since (B(;)) is not contained in a line of PG(n, ¢%), there is at most one
element @) of B(m;) such that (S(P), Q) intersects m; in a plane. If there is such
a plane, then we denote its pointset by u;, otherwise we put u; = 0.



Let M be a line through « in 7 \ p1, let s # = be a point of 7y \ e, and
note that B(s) N my = {s}.

We claim that there is a line T' through s in w3 and an (n — 2)-space 7y
through (B(M)) such that there are at least 4 points ¢; € T, t; ¢ g, such that
(7, B(t;)) is small and hence has a linear intersection with B, with BNmy, = M
if k =2 and BNy is a small minimal (k — 2)-blocking set if & > 2.

If k = 2, the existence of mjs follows from Lemma 10(1), and we know from
Lemma 12(1) that there are at most g+ 3 large hyperplanes through ;. Denote
the set of points of B(ms), contained in one of those hyperplanes by F. Hence,
if @ is a point of B(ms) \ F, (@, ms) is a small hyperplane.

Let T} be a line through s in 79 \ pe and not through z, and suppose that
B(T1) contains at least ¢ — 3 points of F.

Let T3 be a line in 7o\ 2, through s, not in (x, T1), not through x. There are
at most ¢+ 3 — (¢ — 3) reguli through z of S(F), not in (z,T1), and if 1 # 0 one
element of B(us2) is contained B(T»). Since it is possible that B(s) is an element
of F, this gives in total at most 8 points of B(T%) that are contained in F. This
implies, if ¢ > 11, that at least 5 of the hyperplanes {{mas, B(t))||t € T2} are
small.

If ¢ = 11, it is possible that B(T%) contains at least 8 points of F. If T3 is a
line in 7o \ p2, through s, (z,T), (x,T5) and not through x, then there are at
least 5 points ¢ of T3 such that (mps, B(¢)) is a small hyperplane.

If ¢ = 7 and if B(s) € B(F'), it is possible that B(1%),B(T53), and B(T4), with
T; a line through s in w5 \ p9, not in (x,7}), j < ¢, not through z, contain 4
points of F. A fifth line 75 through s in 75\ it2, not in (x, T}), j < 4, not through
x, contains at least 5 points ¢ such that (mas, B(t)) is a small hyperplane.

If £ > 2, let T be a line through s in g \ pg, not through z. It follows
from Lemma 10(2) that there is an (n — 2)-space mys through (B(M)) such that
B N 7y is a small minimal (k — 2)-blocking set of PG(n,¢?), skew to B(T).
Lemma 14 shows that at most ¢ — 5 of the hyperplanes through 7, are large.
This implies that at least 5 of the hyperplanes {{mys, B(¢))||t € B(T)} are small.
This proves our claim.

Since B N (B(t;), mpr) is linear, also the intersection of (B(t;), B(M)) with
B is linear, i.e., there exist subspaces 7;, 7 N S(P) = {z}, such that B(r;) =
(B(t;), B(M)) N B. Since 7; N (B(M)) and M are both transversals through x
to the same regulus B(M), they coincide, hence M C 7;. The same holds for
7 N (B(t;), S(P)), implying ¢; € 7;. We conclude that B((M,t;)) C B(r;) C B.

We show that B((M,T)) C B. Let L’ be a line of (M, T), not intersecting
M. The line L’ intersects the planes (M,t;) in points p; such that B(p;) € B.
Since B(L') is a subline intersecting B in at least 4 points, Result 5 shows
that B(L') C B. Since every point of the space (M, T) lies on such a line L/,
B((M.T)) C B.

Hence, B((M, s)) C B for all lines M through =, M in 71 \ pi1, and all points
s # x € ma \ p2, 80 B((my,m2) \ ({111, m2) U (2, m1))) C B. Since every point of
(p1,m2)U{ o, m1) lies on a line N with ¢—1 points of (my, m2)\ ({11, m2)U {12, 71)),
Result 5 shows that B(N) C B. We conclude that B({(m,m2)) C B. O

Theorem 17. The set B is F-linear.

Proof. If B is a k-space, then B is [F-linear. If B is non-trivial small minimal k-
blocking set, Lemma 15 shows that there exists a point P of B, a tangent (n—k)-
space 7 at the point P and at least ¢°*~3 —2¢3*=* (n —k+1)-spaces H; through



7 for which BN H; is small and linear, where P lies on at least one (g4 1)-secant
of BNH;i=1,...,8 5> ¢F3-2¢°4 Let BNH; = B(m),i =1,...,s,
with 7; a 3-dimensional space.

Lemma 16 shows that B((m;,7;)) C B, 0<i#j <s.

If k = 2, the set B({m,m2)) corresponds to a linear 2-blocking set B’ in
PG(n,q?®). Since B is minimal, B = B’, and the Theorem is proven.

Let k > 2. Denote the (n — k + 1)-spaces through 7, different from H;, by
K;,j=1,...,z It follows from Lemma 15 that z < 2¢** =4+ (g3 -1)/(¢3-1).
There are at least (¢3* =3 —2¢3¢=* —1)/¢® different (n — k + 2)-spaces (Hy, H,),
1 <j<s. Ifall (n—k+2)-spaces (Hy, H;), contain at least 5¢* — 49 of the
spaces K;, then z > (5¢% — 49)(¢** 2 — 2¢®*~* —1)/¢3, a contradiction if ¢ > 7.
Let (Hy, Hs) be an (n — k + 2)-spaces containing less than 5¢% — 49 spaces K;.

Suppose by induction that for any 1 < ¢ < k, there is an (n — k + i)-space
(Hy, Ho, ..., H;) containing at most 5¢3*~* —49¢% 6 of the spaces K; such that
B((m,...,m))gB. )

There are at least qgk%_2q3k74;,(iq31_1)/(q3_1) different (n — k + i+ 1)-spaces
(H1,Hy,...,H;,H), H ¢ (Hy,Hs,...,H;). If all of these contain at least
5¢3 1 — 49¢3 =3 of the spaces K;, then

2> (5% — 49¢%3 — pgdi ¢ 49q3i—6)q3’“’3—2q3’“’4—:))(_q3i—1)/(q3—1)
53— 4936 1

a contradiction if ¢ > 7. Let (Hy,...,H;11) be an (n — k + ¢ + 1)-space
containing less than 5¢3~! — 49¢% 3 spaces K;. We still need to prove that
B({(m1,...,mi+1)) € B. Since B({m;j+1,m)) C B, with 7 a 3-space in (my,...,mT;)
for which B(w) is not contained in one of the spaces K;, there are at most
5q3=*—49¢3 =6 6-dimensional spaces (1, p) for which B({m;11, i)) is not nec-
essarily contained in B, giving rise to at most (5¢%~* — 49¢%=)(¢% + ¢® + ¢*)
points ¢t for which B(t) is not necessarily contained in B. Let u be a point
of such a space (m;41,1). Suppose that each of the (¢>*3 —1)/(¢ — 1) lines
through w in (my,...,m41) contains at least ¢ — 2 of the points ¢ for which
B(t) is not in B. Then there are at least (¢ — 3)(¢**2 —1)/(¢ — 1) +1 >
(5¢34 — 49637 (¢% + ¢° + ¢*) such points ¢, if ¢ > 7, a contradiction. Hence,
there is a line N through ¢ for which for at least 4 points v € N, B(v) € B.
Result 5 yields that B(t) € B. This implies that B({m1,...,m1)) C B.

Hence, the space (Hy, Ha, ..., Hy.), which spans the space PG(n, ¢®), is such
that B({(m1,...,m)) C B. But B((m, ..., )) corresponds to a linear k-blocking
set B’ in PG(n,¢%). Since B is minimal, B = B’. O

Corollary 18. A small minimal k-blocking set in PG(n,p3), p prime, p > 7,
is Fp-linear.

Proof. This follows from Results 2 and Theorem 17. O

3.2 Case 2: there are (¢,/q + 1)-secants to B

In this subsection, we will use induction on k to prove that small minimal k-
blocking sets in PG (n, ¢), intersecting every (n — k)-space in 1 (mod ¢) points
and containing a ¢,/q+1-secant, are Fy gz-linear. The induction basis is Theorem
8. We continue with assumptions (Hz) and



(B2) B is small minimal k-blocking set in PG(n, ¢%) intersecting every (n — k)-
space in 1 (mod ¢) points, containing a (¢,/q + 1)-secant.

In this case, S maps PG(n, ¢?) onto PG(2n + 1, ¢/q) and the Desarguesian
spread consists of lines.

Lemma 19. If B is non-trivial, there ezist a point P € B, a tangent (n — k)-
space m at P and small (n — k + 1)-spaces H; through w, such that there is a
(qy/q + 1)-secant through P in H;, i =1,...,¢% 3 — ¢34 — 2, /g¢3+—>.

Proof. There is a (¢,/q + 1)-secant M. Lemma 10(1) shows that there is an
(n — k)-space mps through M such that BN M = BNmyy.
3k
Lemma 12(3) shows that there are at least q;g—__ll — %% —5¢%~6 1+ 1 small

(n — k + 1)-spaces through mp;. Moreover, the intersections of these small
(n — k 4 1)-spaces with B are Baer subplanes PG(2,¢,/q), since there is a
(q4/q + 1)-secant M. Let P be a point of M N B.

Since in any of these intersections, P lies on ¢,/q other (¢./q + 1)-secants,

3k_q

a point P of M N B lies in total on at least q\/c}(qul — ?F 5 — 53k 6 1)

other (q,/q + 1)-secants. Since any of the q;:__ll — ¢?F5 — 5¢3%76 1 1 small
(n — k + 1)-spaces through 7, contains ¢* points of B not in w7, and |B| <
¢F + PR 4 372 £ 3¢3 73 (see Lemma 7), there are less than ¢3¢ ! 4 4¢3k 2
points of B left in the other (n — k + 1)-spaces through 7. Hence, P lies on
less than ¢%*~* + 4¢3%=5 full lines.

Since B is minimal, there is a tangent (n — k)-space 7 through P. There are
at most ¢** % +4¢>*=6 — 1 large (n — k + 1)-spaces through 7 (Lemma 12(1)).
Moreover, since at least q;:__ll —(*F % + 4¢3 6 — 1) — (¢®* 4 4¢3*®) small
(n — k + 1)-spaces through 7 contain ¢* + q\/q + 1 points of B, and at most
¢*F=* 4 4¢%*=5 of the small (n — k + 1)-spaces through 7 contain exactly ¢* + 1
points of B, there are at most ¢3*~1 — q3k—2\/cj—i—4q?’k_2 points of B left. Hence,
P lies on at most (q3k_1—q3k_2\/§+4q3k_2)/(q\/§+1) different (¢./q+1)-secants
of the large (n — k + 1)-spaces through 7. This implies that there are at least

a/a( q;:—_11 PP 56 1) (¢3R! _q3k72\/a+4q3k72)/(q\/§+1) different
(q4/q+ 1)-secants left through P in small (n — k4 1)-spaces through 7. Since in
a small (n —k+1)-space through =, there lie ¢,/q+1 different (¢,/q+ 1)-secants
through P, this implies that there are certainly at least ¢** = — ¢34 -2, /gg**—5
small (n — k + 1)-spaces H; through 7 such that P lies on a (g,/q + 1)-secant in

i O

H;.

Lemma 20. Let w be an (n—k)-dimensional tangent space of B at the point P.
Let Hy and Hy be two (n — k + 1)-spaces through © for which BN H; = B(m;),
for some plane m; through x € S(P), B(z) Nm = {z} (i =1,2) and B(m;) not
contained in a line of PG(n,q*). Then B({(mr,m2)) C B.

Proof. Let M be a line through x in 7, let s # x be a point of ma.

We claim that there is a line T' through s, not through x, in 72 and an
(n—2)-space mys through (B(AM)) such that there are at least ¢,/q —q— 2 points
t; € T, such that (mas, B(t;)) is small and hence has a linear intersection with
B, with BNmy = M if k=2 and B N7y is a small minimal (k — 2)-blocking
set if kK > 2. From Lemma 12(1), we know that there are at most ¢ + 3 large
hyperplanes through 7y, if £ =2, and at most ¢ — 5 if k¥ > 2 (see Lemma 14).
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Let T be a line through s in w9, not through z. The existence of my; follows
from Lemma 10(1) if ¥ = 2, and Lemma 10(2) if ¥ > 2. Since B(T') contains
q,/q + 1 spread elements, there are at least ¢q,/q — g — 2 points ¢; € T such that
(mar, B(t;)) is small. This proves our claim.

Since B N (B(t;), mpr) is linear, also the intersection of (B(t;), B(M)) with
B is linear, i.e., there exist subspaces 7;, 7 N S(P) = {z}, such that B(r;) =
(B(t;), B(M)) N B. Since 7; N (B(M)) and M are both transversals through x
to the same regulus B(M), they coincide, hence M C 7;. The same holds for
7 N (B(t;), S(P)), implying ¢; € 7;. We conclude that B((M,t;)) C B(r;) C B.

We show that B((M,T)) C B. Let L’ be a line of (M, T), not intersecting
M. The line L' intersects the planes (M, ;) in points p; such that B(p;) C B.
Since B(L') is a subline intersecting B in at least ¢,/q — ¢ — 2 points, Result 6
shows that B(L’) C B. Since every point of the space (M, T) lies on such a line
L', B{M,T)) C B.

Hence, B({M,s)) C B for all lines M through z in 7, and all points s #
x € mo. We conclude that B({m,m2)) C B. O

Theorem 21. The set B is Fqﬁ—lmear,

Proof. Lemma 19 shows that there exists a point P of B, a tangent (n — k)-
space m at the point P and at least ¢3%—3 — ¢34 Q\fq?’k 5(n—k —|— 1)-
spaces H; through 7 for which B N H; is a Baer subplane, i = 1,. s >
@ = ?F = 2,/q¢3 . Let BN H; = B(m),i=1,...,s, with m; a plane.

Lemma 20 shows that B({(m;,7;)) C B, 0<i#j <s.

If kK = 2, the set B({m,m)) corresponds to a linear 2-blocking set B’ in
PG(n,¢?). Since B is minimal, B = B’, and the Theorem is proven.

Let k > 2. Denote the (n — k + 1)-spaces trough = different from H; by K
j =1,...,2. There are at least (¢**% — ¢**=* — 2,/g¢® > — 1)/¢® different
(n—Fk+2)-spaces (Hq,H;),1 < j <s. Ifall (n k+2)-spaces (Hq, H; ) contain
at least 2¢% of the spaces K;, then z > 2¢%(¢% 3 — ¢?F—4 Z\fq?’k 1)/¢%,
a contradiction if ¢ > 49. Let (Hy, Ho) be an (n — k —|— 2)-spaces contalnlng less
than 2¢> spaces K;.

Suppose, by induction, that for any 1 < ¢ < k, there is an (n — k + 9)-
space (Hy, Ho,..., H;) containing at most 2¢*~* of the spaces K;, such that
B(<7T1,...,7Ti>) Q B.

There are at least q3k73_q3k74_2\/§q:3i75_(q31_1)/(q3_1) different (n—k+i+1)-
spaces <.H'17 HQ, e ,HZ', H>, H Z <H1,H2, ceey Hl>

If all of these contain at least 2¢%*~! of the spaces K;, then

3k—3 __ q3k74 _ 2\/aq3k75 _ (qBi _ 1)/((]3 _ 1)
qSi

2> (2431 - 2q3i—4)q 4 24% 4,
a contradiction if ¢ > 49. Let (Hy, ..., Hi41) be an (n—k+i+1)-space containing
less than 2¢%~! spaces K;. We still need to prove that B(m1,...,m.1) C B.

Since B({(m;+1, 7)) C B, with 7 a plane in (mq,...,m;) for which B(r) is not
contained in one of the spaces K;, there are at most 2¢>'~* 4-dimensional spaces
(mig1, p) for which B({m;4+1, 1)) is not necessarily contained in B, giving rise to
at most 2¢*~*(¢% + ¢*,/q) points @Q; for which B(Q;) is not necessarily in B.
Let @ be a point of such a space (w1, 1).

There are ((¢,/7)*"% — 1)/(q\/q — 1) lines through @ in (my,...,mi41) =
PG(2i + 2,¢,/q), and there are at most 2¢*~*(¢® + ¢*\/q) points Q; for which
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B(Q;) is not necessarily in B. Suppose all lines through @ in (71, ..., mi1) =
PG(2i+2,q,/q) contain at least ¢,/q — ¢ — /q points Q; for which B(Q;) is not
necessarily in B, then there are at least (¢,/g—q—+/q—1)((q/0)*%-1)/(¢\/q—
1)+1 > 2¢%~4(¢° + ¢*\/q) points Q; for which B(Q;) is not necessarily in B, a
contradiction.

Hence, there is a line N through @Q in (7, ..., m;11) with at most ¢,/ — ¢ —
V/q — 1 points @Q; for which B(Q;) is not necessarily contained in B, hence, for
at least ¢ + ,/q + 2 points R € N, B(R) € B. Result 6 yields that B(Q) € B.
This implies that B({m1,...,m+1)) C B.

Hence, the space B({(Hy, Ha, ..., Hy)) is such that B({(my,...,m)) C B. But
B({(ry,...,m)) corresponds to a linear k-blocking set B’ in PG(n, ¢?). Since B
is minimal, B = B’. O
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