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Abstract

In this paper, we show that one can associate a pseudoregulus with
every scattered linear set of rank 3n in PG(2n−1, q3). We construct a
scattered linear set having a given pseudoregulus as associated pseu-
doregulus and prove that there are q − 1 different scattered linear
sets that have the same associated pseudoregulus. Finally, we give a
characterisation of reguli and pseudoreguli.

1 Motivation and preliminaries

1.1 Motivation

Linear sets in projective spaces have gained attention in recent years because
of their connection with other geometrical structures (e.g. blocking sets,
translation ovoids, . . .). For an overview of the use of linear sets in these
topics, we refer to [15]. The motivation for the study of the particular linear
sets studied in this paper arose from the relation between linear sets and
finite semifields.

In [6] it was shown that to any semifield S of order qnt, with left nucleus
containing Fqt and center containing Fq, there corresponds an Fq-linear set
of rank nt in the projective space PG(n2− 1, q), disjoint from the (n− 2)-nd
secant variety of a Segre variety, and conversely. This result was previously
proved for n = 2 by Lunardon [12], and is crucial in the classification of
semifields with n = 2, t = 2 obtained in [3]. It was applied again in [14],
where the case n = 2, t = 3 is considered, and the authors prove that there
exist eight non-isotopic families of such semifields, according to the different
configurations of the associated linear sets of PG(3, q3). Also, they prove
that to any scattered semifield, there is associated an Fq-pseudoregulus of
PG(3, q3) and they characterise the known examples of scattered semifields
in terms of the associated Fq-pseudoregulus. In this paper, we show that
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one can associate an Fq-pseudoregulus to any scattered linear set of rank 3n
in PG(2n − 1, q3). In the case that n = 3, this provides a tool to study
symplectic scattered semifields of order q9, with left nucleus containing Fq3

and center containing Fq. (See [7], for a study of such semifields when n = 2.)
For more applications of the connection between linear sets and semifields
we refer to [8] and the references contained therein.

1.2 Preliminaries

If V is a vector space, then we denote by PG(V ) the corresponding projective
space. If V has dimension n over the finite field Fq with q elements, then we
also write PG(n− 1, q).

Let V be an r-dimensional vector space over a finite field F. A set L of
points of PG(V ) is called a linear set (of rank t) if there exists a subset U of
V that forms a (t-dimensional) Fq-vector space for some Fq ⊂ F, such that
L = B(U), where

B(U) := {〈u〉F : u ∈ U \ {0}}.

If we want to specify the subfield we call L an Fq-linear set.
In other words, if F = Fqn , we have the following diagram

Fr
qn ←→ Frn

q ⊇ U

l l l

B(U) ⊆ PG(r − 1, qn) ←→ PG(rn− 1, q) ⊇ PG(U)

We also use the notation B(π) for the set of points of PG(r−1, qn) induced
by π = PG(U). Since the points of PG(r−1, qn) correspond to 1-dimensional
subspaces of Fr

qn , and by field reduction to n-dimensional subspaces of Frn
q ,

they correspond to a set D of (n − 1)-dimensional subspaces of PG(rn −
1, q), which partitions the point set of PG(rn − 1, q). The set D is called
a Desarguesian spread, and we have a one-to-one correspondence between
the points of PG(r − 1, qn) and the elements of D. This gives us a more
geometric perspective on the notion of a linear set; namely, an Fq-linear set
is a set L of points of PG(r − 1, qn) for which there exists a subspace π in
PG(rn−1, q) such that the points of L correspond to the elements of D that
have a non-empty intersection with π. Also in what follows, we will often
identify the elements of D with the points of PG(r − 1, qn), which allows us
to view B(π) as a subset of D. To avoid confusion, we denote subspaces of
PG(r − 1, qn) by capital letter and subspaces of PG(rn − 1, q) by lowercase
letters. For more on this approach to linear sets, we refer to [5] and [9].
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If the subspace π intersects each spread element in at most a point, then π
is called scattered with respect to D (see [5], [2]). In this case we also call the
associated linear set B(π) scattered. Note that if π is (t−1)-dimensional and
scattered, then the associated Fq-linear set B(π) has rank t and has exactly
qt−1
q−1 points, and conversely.

In this paper, we will make use of the following bound on the rank of a
scattered linear set, which follows from [2, Theorem 4.3].

Theorem 1. A scattered Fq-linear set in PG(r − 1, qt) has rank ≤ rt/2.

Proof. Immediate from the definition and [2, Theorem 4.3].

In this paper, we focus on scattered Fq-linear sets of rank 3n in PG(2n−
1, q3). By Theorem 1, these scattered linear sets are maximum scattered.

2 Projectively equivalent scattered linear sets

In this section, we show that all scattered Fq-linear sets of rank 3n in PG(2n−
1, q3) are projectively equivalent.

Desarguesian spreads, introduced in the previous section, are well-known
and frequently used in finite geometry. We recall another classic construction
of a Desarguesian spread based on the following lemma (see e.g. [11, Lemma
1]).

Lemma 2. A subspace of PG(hn − 1, qh) of dimension d is fixed by the
mapping x 7→ xq if and only if it intersects the subgeometry PG(hn− 1, q) in
a subspace of dimension d.

Now, let Π be an (n − 1)-space, disjoint from the subgeometry ρ =
PG(hn − 1, q) of PG(hn − 1, qh), such that 〈Π,Πq, . . . ,Πqh−1〉 is maximal,
i.e. spans PG(hn − 1, qh). Let P be a point of Π and let τ(P ) denote
the (h − 1)-dimensional subspace generated by the conjugates of P , i.e.,
τ(P ) = 〈P, P q, ..., P qh−1〉. Then τ(P ) is fixed by x 7→ xq and so, by Lemma
2, it intersects PG(hn− 1, q) in an (h− 1)-dimensional subspace over Fq. If
we do this for every point of Π we obtain a Desarguesian (h − 1)-spread of
PG(hn − 1, q) (see Segre [16]). For future reference, we denote this spread
by D(Π). Moreover, every Desarguesian spread can be constructed this way
([16]), and all Desarguesian (h− 1)-spreads in PG(hn− 1, q) are projectively
equivalent (see e.g. [1]).

In order to prove that the Desarguesian spread D(Π) determines the sub-
space Π up to conjugacy, we need to introduce the following terminology. A
setR of q+1 mutually disjoint (n−1)-dimensional subspaces of PG(2n−1, q),
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such that a line meeting 3 elements of R, meets all elements of R, is called
a regulus (or (n− 1)-regulus). A line meeting each element of a regulus R is
called a transversal of R.

Theorem 3. If D(Π1) = D(Π2), then Π1 and Π2 are conjugate.

Proof. Let Π1 and Π2 be two different (n− 1)-spaces determining the spread
D, and suppose Π2 is not conjugated to Π1. Then there exist lines L in Π1

and M in Π2 such that L and M are not conjugated and they determine the
same (h − 1)-subspread D1 ⊂ D in a (2h − 1)-space τ . Let X̄ denote the
extension of X ∈ D1 to a subspace over Fqh . Let m be minimal such that

M ⊂ 〈L,Lq, . . . , Lqm−1〉, and choose an X ∈ D1 such that {xi : i = 0, . . . ,m}
is a frame where

xi := X̄ ∩ Lqi , i = 0, . . . ,m− 1 and xm := X̄ ∩M.

Observe that xi = xq
i

0 , for i > 0, and U := 〈x0, . . . , xm〉 is the unique
(m − 1)-space through xm which intersects all lines L,Lq, . . . , Lqm−1

. Now
choose a line ` in τ disjoint from X̄, and let R denote the associated regulus
induced by the elements R0, R1, . . . , Rq of D1 that intersect `. Since x 7→ xq

preserves the regulusR, it follows that for each R ∈ R we have Rq = R (when
R∩` 6= ∅) or Rq∩R = ∅ (when R∩` = ∅). Also, the lines L,Lq, . . . , Lqm−1

,M
are transversals to the regulus, since each such line intersects the elements
R0, . . . , Rq. The uniqueness of U implies that U ⊂ R for some R ∈ R. But
then x1 = xq0 ∈ R ∩Rq and R = Rq. This implies that R ∩ ` 6= ∅, and hence
R = Rj for some j ∈ {0, . . . , q}. Since U ⊂ Rj∩X̄, this implies that R̄j = X̄,
contradicting ` ∩ X̄ = ∅.

The next theorem generalises Proposition 2.7 from [14], where the theo-
rem is proved for n = 2.

Theorem 4. All scattered Fq-linear sets of rank 3n in PG(2n− 1, q3), span-
ning the whole space, are PΓL-equivalent.

Proof. Let L1, L2 be two scattered Fq-linear sets of rank 3n in PG(2n−1, q3),
spanning the whole space. By [9, Theorem 2], for i = 1, 2, there exist a
subgeometry ρi ∼= PG(3n− 1, q) of PG(3n− 1, q3), and an (n− 1)-space Πi

in PG(3n− 1, q3), with Πi ∩ ρi = ∅, such that

αi(Li) = {〈x,Πi〉/Πi : x ∈ ρi},

for some collineation αi from PG(2n− 1, q3) to PG(3n− 1, q3)/Πi. Suppose

〈Πi,Π
q
i ,Π

q2

i 〉 is a space of dimension d. Then projecting the d-dimensional
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subspace ρi ∩ 〈Πi,Π
q
i ,Π

q2

i 〉 from Πi gives rise to a scattered linear set of rank
d+ 1 contained in a projective space ∼= PG(d− n, q3), and hence d ≥ 3n− 1
by Theorem 1.

Since all (3n−1)-dimensional Fq-subgeometries of PG(3n−1, q3) are PGL-
equivalent to the canonical subgeometry ρ = {〈(x0, x1, . . . , x3n−1)〉|xj ∈ Fq},
there is, for i = 1, 2 an element φi of PGL(3n, q3) such that φi(ρi) = ρ. The
set

{〈P, P q, P q2〉 ∩ ρ|P ∈ φi(Πi)}, i = 1, 2,

is a Desarguesian 2-spread Di of ρ. Since all Desarguesian 2-spreads of
PG(3n − 1, q) are projectively equivalent, and, by Theorem 3, the spaces

Πi,Π
q
i ,Π

q2

i determining Di are uniquely determined up to conjugacy, this im-
plies that there is an element ψ of PΓL(3n, q3) such that ψ(D1) = D2 and
ψ(φ1(Π1)) = φ2(Π2). Now ξ = φ−12 ◦ψ ◦φ1 is an element of PΓL(3n, q3), and

ξ(ρ1) = (φ−12 ◦ ψ ◦ φ1)(ρ1)

= (φ−12 ◦ ψ)(ρ)

= φ−12 (ρ) = ρ2;

ξ(Π1) = (φ−12 ◦ ψ ◦ φ1)(Π1)

= φ−12 (φ2(Π1)) = Π2.

Now ξ induces a collineation τ from PG(3n − 1, q3)/Π1 to PG(3n −
1, q3)/Π2 defined by

τ : 〈x,Π1〉/Π1 7→ 〈ξ(x), ξ(Π1)〉/ξ(Π1) = 〈ξ(x),Π2〉/Π2,

and

τ(α1(L1)) = {〈ξ(x),Π2〉/Π2 : x ∈ ρ1} = {〈y,Π2〉/Π2 : y ∈ ρ2} = α2(L2).

This shows that L1 and L2 are PΓL-equivalent.

3 Scattered linear sets of rank 3n in PG(2n−
1, q3) and the associated pseudoregulus

In this section, we show that we can associate a pseudoregulus to a scattered
linear set of rank 3n in PG(2n − 1, q3) and that there exist exactly two
transversal spaces to this pseudoregulus.
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3.1 The (q2 + q + 1)-secants to a scattered linear set

Lemma 5. Let L be a scattered Fq-linear set of rank 3n in PG(2n − 1, q3),
i.e. L = B(µ), with µ a (3n− 1)-space of PG(6n− 1, q).

(i) A line of PG(2n− 1, q3) meets L in 0, 1, q + 1 or q2 + q + 1 points.

(ii) Every point of L lies on exactly one (q2 + q + 1)-secant to L and two
different (q2 + q + 1)-secants to L are disjoint.

(iii) If |L ∩ L| = q2 + q + 1 for some line L, then L = B(π), for a unique
plane π contained in µ.

Proof. (i) Immediate, since by Theorem 1 every line of PG(2n− 1, q3) meets
a scattered Fq-linear set in a scattered Fq-linear set of rank at most 3.

(ii) By Theorem 1, µ is a maximum scattered space. This implies that if
ν is a 3n-space of PG(6n − 1, q) through µ, then there is at least one line,
say `1, contained in ν such that `1 ⊂ B(p1), for some p1 ∈ µ. Now if there
is a second line, say `2, contained in ν and B(p2) with p2 ∈ µ, then the
3-space 〈`1, `2〉 is contained in ν and meets µ in a plane π. Hence, by part
(i), 〈B(`1),B(`2)〉 meets B(µ) in exactly q2 + q + 1 points, the set B(π). If
we count the number of pairs (`, ν), where ` is a line contained in an element
of B(µ) and ν is a 3n-space through µ containing `, we get that, on average,
such a 3n-space ν contains q + 1 such lines `.

Now suppose that there is a 3n-space ν containing a set S of more than
q + 1 such lines, say S = {`1, `2, . . . , `s}. If the lines of S span a subspace of
dimension at least 5, then this subspace meets µ in a scattered space of di-
mension at least 4 with respect to a plane-spread in PG(8, q). By Theorem 1,
this is a contradiction. If the lines of S span a 4-dimensional space, then each
line of S intersects 〈l1, l2〉, and hence 〈B(`1),B(`2), . . . ,B(`s)〉 corresponds to
a line over Fq3 with q3 + q2 + q + 1 points of L, a contradiction. Hence, all
the lines of S are contained in the 3-space 〈`1, `2〉. But then by [9, Lemma
10], there are q2 + 1 lines contained in 〈`1, `2〉 inducing an Fq2-subline of
〈B(`1),B(`2)〉, and we get that 2|3, again a contradiction. This implies that
every 3n-space through µ contains exactly q + 1 lines `i with `i ∈ B(pi) for
some pi ∈ µ, i = 1 . . . q + 1.

Now let P = B(r) be a point of L = B(µ), where r ∈ µ. Let `1 be
a line through r in B(r), then the 3n-space 〈µ, `1〉 contains q + 1 lines `i
with `i ∈ B(pi), pi in µ. As seen before, this implies that there is a plane
through r, contained in 〈B(`1),B(`2)〉∩µ, hence 〈B(`1),B(`2)〉 is a (q2+q+1)-
secant to L through P . This shows that every point of L lies on at least one
(q2 + q + 1)-secant.
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Suppose that two (q2+q+1)-secants, M and N , intersect. Then the plane
〈M,N〉 meets L in a scattered linear set of rank at least 5, contradicting
Theorem 1. This concludes the proof of part (ii).

(iii) This follows from the proof of part (ii) where we have shown that
every point of µ lies on a unique plane π ⊂ µ such that B(π) = L∩L, where
L is a (q2 + q + 1)-secant.

Definition 6. Let L be a scattered linear set of rank 3n in PG(2n − 1, q3).
In the spirit of the pseudoregulus defined by Freeman in [4], and extending
the definition in [14], we define the pseudoregulus P associated with L as the

set P of q3n+3−1
q3−1 lines meeting L in q2 + q + 1 points. The set of points lying

on the lines of P is denoted by P̃.

3.2 The transversal spaces to a pseudoregulus

Let P denote the pseudoregulus associated to a scattered linear set L = B(µ)
of rank 3n in PG(2n− 1, q3).

A subspace whose point set is contained in P̃ and which intersects all lines
of P in at most a point, is called a transversal space to the pseudoregulus P .
In this section (Theorem 10) we prove that there exist exactly two (n − 1)-
dimensional transversal spaces to P .

Lemma 7. There exist two disjoint transversal (n− 1)-spaces to P.

Proof. Since L is a scattered linear set of rank 3n in PG(2n−1, q3), it can be
obtained in the quotient geometry over an (n− 1)-space Π of PG(3n− 1, q3)
by considering an appropriate subgeometry Σ = PG(3n− 1, q) disjoint from
Π (see [9, Theorem 2]). Since L is scattered, the space 〈Π,Πq,Πq2〉 is (3n−1)-
dimensional, as seen in the proof of Theorem 4. For every P ∈ Π, the plane
〈P, P q, P q2〉 meets Σ in a subplane ∼= PG(2, q). This implies that the lines
〈P, P q, P q2 ,Π〉/Π are exactly the (q2 + q + 1)-secant to L. Moreover, Π1 :=
〈Πq,Π〉/Π and Π2 := 〈Πq2 ,Π〉/Π are two disjoint (n− 1)-spaces intersecting
each of these (q2 + q + 1)-secants to L, whose point sets are contained in
P̃ .

In what follows, Π1 and Π2 denote the transversal spaces constructed in
Lemma 7.

Lemma 8. If P1, P2, P3 are three collinear points in Π1, then the intersection
points Qi of the lines of P through Pi, i = 1, 2, 3, with Π2 are collinear.
Moreover, the only points of P̃, contained in 〈P1, P2, Q1, Q2〉, are the (q3+1)2

points on the lines of P in 〈P1, P2, Q1, Q2〉.
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Proof. Let Si denote the line of P through Pi, i = 1, 2, and put T1 := 〈P1, P2〉
and T2 := 〈Q1, Q2〉. By Lemma 5(iii), the point Pi corresponds to a spread
element lying in 〈B(πi)〉, with πi a plane of µ, where L = B(µ). Since the
subspace 〈S1, S2, S3〉 has dimension at most 4 and intersects L in a scattered
linear set, it follows from the upper bound (Theorem 1) on the dimension
of the subspace 〈π1, π2, π3〉, that there exists a line ` in µ, meeting π1, π2
and π3. Hence the line L := 〈B(`)〉 meets S1, S2, and S3, and these lines are
contained in the 3-space 〈T1, L〉. Since Π1 and Π2 are disjoint, 〈T1, L〉 meets
Π2 in the line T2, and hence Q1, Q2, and Q3 are collinear.

Now, suppose that there is a point R of P , lying in the 3-space 〈T1, T2〉,
but not on a line of P in 〈T1, T2〉, then R lies on a line of P meeting Π1,
resp. Π2 in a point R1, resp R2, not lying on T1 or T2. But then the planes
〈T1, R1〉, and 〈T2, R2〉 must intersect since both are contained in the 4-space
〈T1, T2, R1, R2〉. This contradicts Π1 ∩ Π2 = ∅.

Theorem 9. All transversal lines to P lie in one of the transversal spaces
Π1 or Π2.

Proof. Suppose that there exists a transversal line L = R1R2 to P , not in Π1

or Π2. Let Si be the line of P through Ri and let Pi, resp. Qi, be the inter-
section of Si with Π1, resp. Π2. It follows from Lemma 8 that R1R2 meets
the q3 + 1 lines of P that are contained in the 3-space ρ = 〈P1, P2, Q1, Q2〉.
If R1, R2 meets Π1 or Π2, the lines of P in ρ would intersect, a contradiction.
Hence, P1P2, R1R2, Q1Q2 are three disjoint lines in ρ, defining a regulus R.
By Lemma 5(iii) the q3 + 1 lines of P contained in the 3-dimensional space ρ
correspond to q3 + 1 two by two disjoint planes contained in a 5-dimensional
subspace ζ of µ, i.e. they form a plane spread of ζ. Let P = B(r) be a point
of L on the line P1Q1 with r ∈ ζ, then connecting r with the q2 + q + 1
points of the plane π2 ⊂ ζ corresponding to the (q2 + q + 1)-secant S2 shows
that there are at least q2 + q+ 1 lines through P meeting at least q+ 1 lines
of the regulus R, a contradiction unless B(ζ) is a line, which contradicts
Theorem1.

Theorem 10. There are exactly two (n− 1)-dimensional transversal spaces
to P.

Proof. This follows immediately from Theorem 9.

3.3 The stabiliser of a pseudoregulus

Lemma 11. The stabiliser in PGL(2n, q3) of the pseudoregulus P in PG(2n−
1, q3) acts transitively on the points of a line of P that do not lie on one of
the transversal (n− 1)-spaces to P.
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Proof. Let Π1 and Π2 be the transversal spaces to the pseudoregulus P and
let P be a point on one of the lines L of P but not contained in Πi, i =
1, 2. Let P1, . . . , P2n+1 be the points of a standard frame of PG(2n − 1, q3),
chosen in such a way that P1, . . . , Pn lie in Π1, Pn+1 . . . , P2n lie in Π2 and
P = P2n+1. It follows that the intersection point Q1 of the line L with
Π1 is 〈e1 + . . . + en〉 and the intersection point Q2 of the line L with Π2 is
〈en+1 + . . . + e2n〉. If Q is a point on L, different from Q1, Q2, then Q has
coordinates 〈e1 + . . . + en + s(en + . . . + e2n)〉. It is easy to check that the
element φ of PGL(2n, q3) corresponding to the matrix A = (aij), with aij = 0
if i 6= j, aii = 1 if 1 ≤ i ≤ n and aii = s if n + 1 ≤ i ≤ 2n, stabilises P and
maps P onto Q.

4 The reconstruction of a linear set having a

fixed pseudoregulus

If L is a scattered linear set of rank 3n in PG(2n− 1, q3), then we have seen
in the previous section that there exists a unique associated pseudoregulus
P . The aim of this section is to construct a scattered linear set of rank 3n
having a given pseudoregulus P as associated pseudoregulus, and show that
there are q − 1 different scattered linear sets of rank 3n giving rise to the
same pseudoregulus P .

Theorem 12. Let L be a scattered linear set L of rank 3n in PG(2n−1, q3).

(i) A plane meets L in 0, 1, q + 1, q2 + q + 1 or q3 + q2 + q + 1 points.

(ii) A plane Γ meeting L in q3 + q2 + q+ 1 points contains exactly one line
with q2 + q + 1 points of L.

Proof. (i) Immediate, since a plane meets the scattered linear set L in a
scattered linear set of rank at most 4, by Theorem 1.

(ii) In this case, the plane Γ meets L in a set B(ρ), where ρ has dimension
3. Since a line of Γ corresponds to a 5-space in PG(8, q) and a 3-space
and 5-space always meet in PG(8, q), all lines of Γ meet L in at least one
point. If we denote the number of lines in Γ meeting L in i points by `i,
we get that

∑
i `i = q6 + q3 + 1,

∑
i i`i = (q3 + q2 + q + 1)(q3 + 1) and∑

i i(i− 1)`i = (q3 + q2 + q + 1)(q3 + q2 + q).
If we suppose that all lines meet in 1 or q+ 1 points, then we obtain that∑

i(i − 1)(i − (q + 1))`i = 0, a contradiction if we use the previously found
values for

∑
i `i,

∑
i i`i and

∑
i i(i− 1)`i. Hence, there is a line meeting L in

more than q + 1 points, which then, by Lemma 5(i), meets L in q2 + q + 1
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points. Suppose that L1 and L2 are two different lines in Π meeting L in
q2 + q + 1 points, then there would be two intersecting (q2 + q + 1)-secants
to L, a contradiction by Lemma 5(ii).

Remark 13. In the case that n = 2, every plane meets L in q2 +q+1 points
or q3 + q2 + q + 1 points. This follows also from [2, Theorem 2.4].

Let us fix some more notation. Let P denote a pseudoregulus in PG(2n−
1, q3) corresponding to the scattered linear set L of rank 3n. Let µ be a
(3n − 1)-space such that B(µ) = L. A (q2 + q + 1)-secant to L defines a
5-space in PG(6n− 1, q) meeting µ in a plane. Since every point of L lies on
a unique (q2 + q + 1)-secant by Lemma 5(ii), the (q3n − 1)/(q3 − 1) planes
defined in this way determine a spread of µ. Let us denote this spread by Σ.

Lemma 14. The spread Σ is Desarguesian.

Proof. As in the proof of Lemma 7, we see that L is the projection of a
subgeometry ρ = PG(3n − 1, q) of PG(3n − 1, q3) from an (n − 1)-space Π
onto PG(2n−1, q3), and the planes 〈P, P q, P q2〉, with P a point from Π form a
Desarguesian spreadD in ρ. If we now return to the spread representation, we
get that µ is the projection of ρ from the (3n−1)-space 〈B(Π)〉. Every plane
〈P, P q, P q2〉, with P on Π corresponds to an 8-dimensional space, meeting
ρ in a plane of D. The projection of this 8-space from 〈B(Π)〉 is a 5-space
λ, meeting µ in a plane. Since λ corresponds to a (q2 + q + 1)-secant, this
plane is an element of the spread Σ. This shows that Σ is the projection of
the Desarguesian spread D, from which the statement follows (see e.g. [5,
Theorem 1.5.4]).

Lemma 15. If π1, π2, π3 are planes of Σ defining a regulus with elements
π1, . . . , πq+1, then the 5-spaces 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉 determine the regulus
with elements 〈B(πi)〉, i = 1, . . . , q + 1.

Proof. Each plane πi, i = 1, . . . , q + 1, is contained in some element of the
regulus defined by 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉, since a line ` through π1, π2 and
π3 meets the elements of the regulus defined by π1, π2, π3, say ` ∩ πi = {pi}.
Now B(p1),B(p2) and B(p3) form a regulus of the Desarguesian spread D,
and the other spread elements in this regulus are B(pi). Since a line meeting
B(pi), i = 1, 2, 3 meets B(pi) for all i = 1, . . . , q + 1, B(pi) is contained
in some element of the regulus defined by 〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉. Since
πi and B(pi) meet in a point, 〈πi,B(pi)〉 is contained in an element of this
regulus. The same reasoning holds for a different transversal line `′, meeting
πi in a point p′i, and hence 〈πi,B(p′i)〉 is contained in an element of this
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regulus. This implies that 〈B(πi)〉 is an element of the regulus defined by
〈B(π1)〉, 〈B(π2)〉, 〈B(π3)〉.

Lemma 16. Let q > 2. A set of points S in PG(1, q3), |S| ≥ 3 such that the
subline through any 3 of them is contained in S is either a subline or a full
line.

Proof. LetD be the Desarguesian 2-spread of PG(5, q) obtained from PG(1, q3).
Suppose S has at least q+ 2 points, and let ρ1, . . . , ρq+1 be the regulus corre-
sponding to a (q+1)-secant to S and let ρq+2 be a spread element, not in this
regulus, corresponding to a point of S. Let `1 be the transversal line through
the point p1 of ρ1 to the regulus ρ1, ρ2, . . . , ρq+1. Let `2 be the transversal
line through p1 of the regulus through ρ1, ρ2 and ρq+2, then B(`2) ⊂ S by
the hypothesis. We will now show that B(〈`1, `2〉) ⊂ S. The plane 〈`1, `2〉
meets ρ2 in a line m. Now every line n in 〈`1, `2〉, not through any of the
three points `1 ∩m, `2 ∩m, `1 ∩ `2, meets `1, `2 and m in a point, and hence,
B(n) contains 3 elements of S. This implies that B(n) ⊂ S for all such
lines n. Since q > 2, all lines through one of the intersection points of m, `1
and `2 now contain at least 3 points of S, hence, this argument shows that
B(〈`1, `2〉) ⊂ S. If S = B(〈`1, `2〉), then this linear set is a linear set of size
q2 + 1 in PG(1, q3), which is not isomorphic to PG(1, q2). By Corollary 13 of
[9], through two points of such a linear set, there is exactly one subline that
is completely contained in this linear set, a contradiction by our assumption
on S. Hence, there is an element ρq+3 of S, not in B(〈`1, `2〉). Repeating the
same argument with a transversal line `3 through ρ1, ρ2 and ρq+3 and a line
of 〈`1, `2〉 shows that B(〈`1, `2, `3〉) ⊂ S, hence, S is a full line.

Theorem 17. Let q > 2. A line L in PG(2n− 1, q3) meets the point set P̃
of a pseudoregulus P in 0, 1, 2, q+ 1 or q3 + 1 points. If |L∩ P̃| = q+ 1, then
L meets P̃ in a subline.

Proof. Let L be a line meeting 3 points of P̃ , say P1, P2, P3, and suppose that
the points P1, P2, P3 are not contained in the same line of P . Let ρ1, ρ2, ρ3 be
the corresponding spread elements, then they determine 3 elements of Σ, say
π1, π2, π3, and ρi ∈ 〈B(πi)〉. A line through ρ1, ρ2, ρ3 meets 〈B(π1)〉, 〈B(π2)〉
and 〈B(π3)〉, and by Lemma 15, also 〈B(πi)〉, i = 4, . . . , q + 1. From this, it
follows that the line L meets P̃ in a set of points K such that the subline
through any 3 of them is contained in K. Such a set is either a subline, or a
full line by Lemma 16.

Lemma 18. Let q > 2. Let S̃ be the point set of a set S of q3 + 1 mutu-
ally disjoint lines in PG(3, q3) with the property that the subline through 3
collinear points of S̃ is contained in S̃. Then a plane Π through a line L of
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S contains q3 points of S̃, not on L and this set of q3 points determines a set
D of either 1 or q2 + q + 1 directions on L. Moreover, I ∪D = B(ν), where
ν is a 3-space of PG(11, q).

Proof. Since the lines of S are mutually disjoint, the plane Π meets the q3

lines of S, different from L in a point. Let I = {P1, . . . , Pq3} this set of q3

points. Let D = {D1, . . . , Dd} be the set of directions determined by the set
I. We claim that d = 1 or d = q2+q+1 and that the set I∪D is an Fq-linear
set of rank 4.

Let ρi be the spread element corresponding to Pi. If the q3 points in I
are collinear, say they lie on the line M , then we are in the first case and
B(ν) = M = I ∪ D for all 3-spaces contained in 〈ρ1, ρ2〉. Otherwise, every
line in Π, different from the line L meets S̃ in 0, 1, 2 or q+1 points by Lemma
16. The line through Pi and Pj, j 6= i, meets L, and hence, contains a third
point of S̃, say Rij. It follows that PiPj meets S̃ in q + 1 points, forming a
subline. Let `i be the transversal line through a point p1 of ρ1 to the regulus
defined by ρ1, ρi and the spread element corresponding to R1i. We claim
that B(〈`2, `3〉) ⊂ S̃. Each line m in 〈`2, `3〉, for which the points B(`2 ∩m),
B(`3 ∩ m) and 〈B(m)〉 ∩ L are different points of S̃, induces the subline
B(m) contained in S̃ and since q > 2, repeating this argument for the other
lines in 〈`2, `3〉 and m implies that B(〈`2, `3〉) ⊂ S̃. Similarly, we get that
B(〈`i, `j〉) ⊂ S̃ for all i 6= j > 1, hence ν := 〈`2, `3, `4, . . .〉 ⊂ S̃, and ν is a
3-dimensional space, since |I| = q3. If a spread element ρ would intersect ν in
more than a point, every line in Π through the point corresponding to ρ and a
point of S̃, would contain more than q+1 points of S̃, a contradiction. From
this, it follows that B(ν) is scattered, hence, there are q2 + q + 1 determined
directions.

Lemma 19. Let q > 2. A plane through a line L of a pseudoregulus P and
a point of P̃, outside L meets q3 other lines of P in a point, and this set of
q3 points determines either 1 or q2 + q + 1 directions on L.

Proof. Let Π be a plane through one of the lines L of P , and the point R of
P̃ , not on L. Let M be the line of P through R. From Lemma 8, we get that
there are exactly q3 + 1 lines of P in 〈L,M〉, and 〈L,M〉 does not contain
other points of P̃ . Hence, Π meets exactly q3 of the lines of P in a point.
The statement now follows from Lemma 18.

Lemma 20. Let q > 2. If P is a point of P̃, not on the transversal spaces Π1

and Π2, then the number of (q+1)-secants to P̃ through P is q2(q3n−3−1)/(q−
1). Moreover, if L 3 P is a linear set with P as associated pseudoregulus,
then each (q + 1)-secant of P through P is a (q + 1)-secant to L.
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Proof. By Lemma 11, we may assume that the point P is contained in the
linear set L defining P̃ . Now |L| = (q3n − 1)/(q − 1) and P lies on a unique
(q2 + q+ 1)-secant to L, namely the line S1 of P through P , hence, there are
q2(q3n−3 − 1)/(q − 1) (q + 1)-secants through P to L, which are necessarily
also (q + 1)-secants to P̃ by Theorem 9 and Theorem 17. Suppose now that
there is a (q + 1)-secant M through P to P̃ which is not a (q + 1)-secant to
L. Then a plane 〈P, S2〉, with S2 a line of P through a point of M different
from P , contains q3 points of L∩ P̃ , not on S2, and q points of M , the plane
〈P, S2〉 contains more than q3 + q2 + q + 1 points of P̃ , a contradiction by
Lemma 19.

Lemma 21. Let q > 2. Let L1 and L2 be two (q + 1)-secants to P̃ through
a point P of P̃. Then the subplane, defined by the intersection of L1 and L2

with P̃ is contained in P̃.

Proof. By Lemma 11, we may assume that the point P is contained in the
linear set L defining P , and from Lemma 20, we get that the (q+1)-secants to
L through P are the (q+1)-secants to P̃ . Hence, the subplane, defined by the
intersection of L1 and L2 with P̃ , is the subplane defined by the intersection
of L1 and L2 with the linear set L. This subplane is entirely contained in L,
hence, in P̃ .

In the following theorem, we show, given a pseudoregulus, how to con-
struct a linear set defining this pseudoregulus.

Theorem 22. Let q > 2. Let P be a pseudoregulus in PG(2n− 1, q3), let P
be a point of P̃, on the line L of P, not lying on one of the transversal spaces
to P. Let T = {L1, L2, . . .} be the set of (q + 1)-secants through P to P̃, let
P (T ) be the set of points on the lines of T in P̃. Let Πi be the plane 〈L,Li〉,
and let Di be the set of directions on L, determined by the intersection of Πi

with P̃. Then Di = D1, for all i, and P (T ), together with the points of D1

form a linear set L of rank 3n determining the pseudoregulus P.

Proof. By Lemma 20, there are q2(q3n−3−1)/(q−1) lines in T , each defining
a subline through P , that is contained in P̃ . In the spread representation,
this implies that there are q2(q3n−3 − 1)/(q − 1) lines `i through a point x
of the spread element corresponding to P , such that B(`i) ⊂ P̃ . By Lemma
21, B(〈`i, `j〉) ⊂ P̃ , and since the number of (q + 1)-secants through P is
exactly q2(q3n−3− 1)/(q− 1), this implies that ν := 〈`1, `2, . . .〉 is a subspace
of dimension 3n− 1. Then P (T ) ⊂ B(ν), by construction.

Each plane 〈L,Li〉 contains q3 points of P̃ and q2 (q+ 1)-secants 〈B(`i1)〉,
〈B(`i2)〉, . . . , 〈B(`iq2 )〉 through P , and determines a set Di of directions on
L. The lines `i1 , . . . , `iq2 span a subspace νi of ν and each direction of Di is
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of the form B(y), for some y ∈ νi, and hence each set of directions Di on
L determined by the points of P (T ) is contained in B(ν) ∩ L. Since B(ν)
intersects L in a linear set, and each Di contains at least q2 + q + 1 points,
by Lemma 19, B(ν) ∩ L is a linear set of rank at least 3. On the other
hand, since B(ν) contains the (q3n − q3)/(q − 1) points of P (T ) and ν has
dimension 3n− 1, it follows that B(ν) is a scattered linear set L of rank 3n
and L∩L = Di. The scattered linear set L of rank 3n defines a pseudoregulus
P(L), so we need to show that P = P(L). The (q3n− 1)/(q− 1) points of L
all lie on one of the lines of P , hence, a line of P has on average q2 + q + 1
points of L, and by Lemma 5(i), it is not possible that one of the lines of P
contains more than q2 + q + 1 points of L. This implies that P = P(L).

Corollary 23. Let q > 2. If P is a pseudoregulus, then there are q − 1
scattered linear sets having P as associated pseudoregulus.

Proof. Counting the number of couples (P,L), where P is a point of the
pseudoregulus, not on one of the transversal spaces and L is a scattered linear
set through P having P as pseudoregulus yields that the number of scattered
linear sets having P as pseudoregulus is equal to q3n−1

q3−1 (q3 − 1) q−1
q3n−1 .

5 A characterisation of reguli and pseudoreg-

uli in PG(3, q3)

Theorem 24. Let q > 2. Let S̃ be the point set of a set S of q3 + 1 mutually
disjoint lines in PG(3, q3) such that the subline defined by three collinear
points of S̃ is contained in S̃, then S is a regulus or pseudoregulus.

Proof. By Lemma 16, a line meets S̃ in 0, 1, 2, q + 1 or q3 + 1 points.
Case 1: Suppose first that every line meets S̃ in 0, 1, 2 or q3 + 1

points. Let L be a line of S and let Π be a plane through L. Since Π meets
all lines of S and all lines of S are disjoint, there are exactly q3 points of S̃
in Π, not on L. Let P and Q be two points of S̃ \L in Π. Since the line PQ
has to contain q3 points of S̃ \L, the q3 points of S̃ in Π are collinear. In this
way, we find a line /∈ S contained in S̃, in every of the q3 + 1 planes through
L. If two of those lines meet, then the lines of S would not be disjoint,
a contradiction. Hence, we find a set of q3 + 1 mutually disjoint lines S ′,
meeting the lines of S. This shows that S is the opposite regulus to S ′ and
vice versa.

Case 2: There is a line M meeting S̃ in exactly q+1 points. Let P
be a point of M , let L0 be the line of S through P and let L1, . . . , Lq3 be the

other lines of S. A plane 〈Li, P 〉, i = 1, . . . , q3, meets q3 points of S̃ that do
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not lie on Li. Suppose that in one of the planes, these q3 points are collinear,
say on N , then the plane 〈M,N〉 meets q lines of S in 2 different points, a
contradiction since the lines of S are mutually disjoint. By Lemma 18, this
implies that in every plane 〈P,Li〉, there are exactly q2 +q+1 (q+1)-secants
through P . Let p be a point of the spread element corresponding to P . By
Lemma 18, there is a 3-space νi such that B(νi) ⊂ 〈P,Li〉 ∩ S̃; w.l.o.g. we
may choose νi through p. Let µi be the plane νi ∩ 〈B(Li)〉. The 3-space νi
is the unique 3-space through p such that B(νi) ⊂ 〈P,Li〉 ∩ S̃ since prj, with
rj ∈ µi, is the unique transversal line to the regulus 〈P,B(rj)〉 ∩ S̃.

The q3 planes µ1, . . . , µq3 are mutually disjoint and satisfy the condition
that the line 〈p, x〉, where x is a point on one of the planes µi, corresponds
to a subline contained in S̃. We get that the 3-space 〈p, µi〉 intersects the
plane µj for all j non-trivially, and hence, since the planes µi are mutually
disjoint, 〈p, µi〉 and µj meet in a point if i 6= j. This implies that 〈p, µ1, µ2〉
is 5-dimensional.

Let µ3 be a plane, not through the line 〈p, µ1〉 ∩ 〈p, µ2〉. We will prove
that 〈p, µ1, . . . , µq3〉 is 5-dimensional.

It is clear that the space ρ := 〈p, µ1, µ2, µ3〉 is at most 6-dimensional, so
assume that ρ is 6-dimensional. Since every plane µi has to meet the spaces
〈p, µ1〉, 〈p, µ2〉, and 〈p, µ3〉, it is clear that if µi is not going through one of the
3 lines `1 := 〈p, µ1〉 ∩ 〈p, µ2〉, `2 := 〈p, µ1〉 ∩ 〈p, µ3〉 or `3 := 〈p, µ2〉 ∩ 〈p, µ3〉,
then µi is contained in 〈p, µ1, µ2, µ3〉. This means that at least q3−3q planes
µi are in ρ. Let µi be a plane, through one of the lines `j, j = 1, 2, 3.
Repeating the same argument with 3 planes in ρ such that µi is not on the
intersection lines of the cones defined by p and these 3 planes shows that all
planes µi are contained in ρ.

Now let m be a line through p, such that 〈B(m)〉 is not the line L0.
Suppose that m does not meet any of the planes µi. There are q4 + q2 + q+ 1
planes through m in ρ and there are q3(q2+q+1) points in ρ contained in one
of the planes µi. This implies that there is a plane ν through m containing at
least 3 points lying on one of the planes µi. Since m does not meet any of the
planes µi, the 3 points belong to different planes, say µ1, µ2 and µ3. Hence, in
the plane ν, there are 3 lines n1, n2, n3 through p such that B(ni) is contained
in S̃. Let n4 be a line meeting n1, n2, n3 in different points. As B(n4) is a
subline containing 3 points of S̃, B(π4) is contained in S̃. This implies that
the intersection point p′ := n4 ∩m has necessarily B(p′) contained in a line,
say L1 of S. Since we have assumed that p′ is not on one of the planes µi, p

′

does not lie on µ1 and the 3-space 〈p′, µ〉 is contained in 〈B(L1)〉 ∩ ρ, which
means that L1 is entirely contained in B(ρ). Repeating the same argument
for a line meeting n1, n2, n3 in three distinct points and meeting n4 in a point
p′′, different from p′ shows that, if p′′ is not on µi, there is a second line of S,
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say L2 contained in B(ρ). But then L1 ∩B(ρ) = σ1 and L2 ∩B(ρ) = σ2 with
σ1 and σ2 three-spaces in the 6-space ρ. Since σ1 and σ2 necessarily meet in
a point, the lines L1 and L2 meet in a point, a contradiction. This implies
that every line through p in ρ such that 〈B(m)〉 is not the line L0, meets one
of the planes µi. There are at least q5 + q4 + q3 such lines, but as there are
only q3 planes and every line through a point of p and a point of a plane µi

contains q points, lying on a plane µi, the number of these lines is exactly
q2(q2 + q + 1), a contradiction. Hence, ρ is 5-dimensional.

Let r be a point of the 5-space ρ, not on one of the q3 planes µi, then there
is a line through r meeting at least 3 different planes of {µi|i = 1, . . . , q3}.
This gives rise to a subline meeting 3 points of S̃, hence, contained in S̃,
which implies that B(r) is on the line L0. We conclude that ρ meets the
space 〈B(L0)〉 in a plane.

Now ρ is scattered: suppose that there is a spread element B(π) meeting
ρ in a subspace π of dimension at least one, then every line through B(π)
would contain q2 + 1 points of S̃, a contradiction. As seen in Lemma 5, the
scattered linear set ρ of rank 6 defines a pseudoregulus in PG(3, q3) and the
lines of S are the (q2 + q + 1)-secants to B(ρ), hence, S is the associated
pseudoregulus.
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