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Abstract

In this article we consider the connection between semifield flocks of a
quadratic cone in PG(3, qn), eggs in PG(4n−1, q) and ovoids of Q(4, qn), when
q is odd. Starting from a semifield flock of a quadratic cone in PG(3, qn), q odd,
F one can obtain an ovoid O(F) of Q(4, qn) using the construction of Thas
[9]. With a semifield flock there also corresponds a good egg E of PG(4n−1, q)
(see, e.g., [2]) and the TGQ T (E) contains at least q3n + q2n subquadrangles
all isomorphic to Q(4, qn) (Thas [7]). Hence by subtending one can obtain
ovoids of Q(4, qn) (consider the set of points in the subquadrangle collinear
with a point not in the subquadrangle). Here we prove that all the ovoids
subtended from points of type (ii) are isomorphic to O(F), and that in at least
2qn subGQ’s the ovoids subtended from points of type (i) are isomorphic to
the ovoids subtended from points of type (ii).

1. Definitions and motivation

Throughout the article we assume that q is an odd prime power. With PG(m, q)
we denote the m-dimensional projective space arising from the (m+ 1)-dimensional
vectorspace over the finite field GF(q) of order q. A flock of a quadratic cone K of
PG(3, q) with vertex v is a partition of K \ {v} into irreducible conics. The planes
containing the conics of the flock are called the planes of the flock.

∗This research has been supported by a Marie Curie Fellowship of the European Community
programme ”Improving the Human Research Potential and the Socio-Economic Knowledge Base”
under the contract number HMPF-CT-2001-01386.
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Put F = GF(qn) and consider the quadratic cone K in PG(3, qn) with vertex v =
〈0, 0, 0, 1〉 and base the conic C with equation X0X1 = X2

2 . The planes of a flock
of K can be written as πt : tX0 + f(t)X1 + g(t)X2 + X3 = 0, t ∈ F , for some
f, g : F → F . We denote this flock with F(f, g). If f and g are linear over a
subfield of GF(qn) then the flock is called a semifield flock. The maximal subfield
with this property is called the kernel of the flock.

An egg E of PG(2n + m − 1, q) is a partial (n − 1)-spread of size qm + 1 such that
every 3 different egg elements span a (3n − 1)-dimensional space and such that for
every egg element E there is an (n+m−1)-dimensional space TE , called the tangent
space of E at the element E, containing E and skew from all the other egg elements.

If n = m then E is called a pseudo-oval or a generalized oval. The only known
examples of pseudo-ovals are ovals of PG(2, qn), seen over GF(q). If 2n = m then
E is called a pseudo-ovoid or a generalized ovoid. An ovoid of PG(3, qn) seen over
GF(q) is an example of a pseudo-ovoid. In this case more examples are known, see
[2]. We call the examples of eggs which are ovals of PG(2, qn) or ovoids of PG(3, qn)
seen over GF(q) elementary. In case the oval is a conic or the ovoid is an elliptic
quadric, the egg is called classical.

A pseudo-ovoid is said to be good at an element E if every (3n − 1)-space on that
element containing at least two other egg elements contains exactly qn + 1 egg
elements. A pseudo-ovoid E is called good if there exists at least one egg element E
such that E is good at E.

A generalized quadrangle of order (s, t) (GQ(s, t)), s > 1, t > 1, is an incidence
structure of points and lines with the properties that any two points are incident
with at most one common line, any two lines are incident with at most one common
point, every line is incident with s+ 1 points, every point is incident with t+ 1 lines,
and given a line l and a point P not incident with l, there is a unique line m and
a unique point Q, such that m is incident with P and Q and Q is incident with
l. If s = t then we speak of a generalized quadrangle of order s (GQ(s)). From
a GQ(s, t) we get a GQ(t, s) by interchanging the labels point and line, called the
point-line dual of the generalized quadrangle of order (s, t). For more on generalized
quadrangles we refer to [5].

A translation generalized quadrangle (TGQ) with base point P is a generalized quad-
rangle for which there is an abelian group T acting regularly on the points not
collinear with P , while fixing every line through P .

Let E be an egg of PG(2n+m−1, q). Now embed PG(2n+m−1, q) in a PG(2n+m, q)
and construct an incidence structure T (E) as follows. Points are of three types: (i)
the points of PG(2n + m, q) − PG(2n + m − 1, q); (ii) the (n + m)-dimensional
subspaces of PG(2n + m, q) which intersect PG(2n + m − 1, q) in a tangent space
of E ; (iii) the symbol (∞). Lines are of two types: (a) the n-dimensional subspaces
of PG(2n+m, q) which intersect PG(2n+m− 1, q) in an egg element; (b) the egg
elements. Incidence is defined as follows: lines of type (b) are incident with points of
type (ii) which contain them and with the point (∞); lines of type (a) are incident
with points of type (i) contained in it and with the point of type (ii) that contains
it.
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Theorem 1.1 ([5, 8.7.1])
The incidence structure T (E) is a translation generalized quadrangle of order (qn, qm)
with base point (∞). Conversely, every TGQ is isomorphic to a T (E) for some egg
E of PG(2n+m−1, q). It follows that the theory of TGQ is equivalent to the theory
of eggs.

An ovoid of a generalized quadrangle Γ is a set of points such that every line of the
Γ contains exactly one of these points. An ovoid O is called a translation ovoid or
semifield ovoid if there is a group G of collineations of Γ fixing O, and a point P in O
such that G fixes P and every line incident with P , and G acts regular on the points
not collinear with P . In 1997 Thas [9] gave a method of constructing a translation
ovoid O(F) of Q(4, qn) from a semifield flock F , and conversely. Lunardon [3] proved
that two semifield flocks are isomorphic if and only if the ovoids are isomorphic. In
[1] the authors construct the semifield flock corresponding with the translation ovoid
of Q(4, 35) found with the help of a computer in 1999 by Penttila and Williams [6].

If a GQ of order (s, t) contains a subGQ of order (s′, t′) then the set of points in the
subGQ collinear with a point not on a line of the subGQ has the property that no
two of these points are collinear. If s = s′ then every line of the subGQ contains
one of these points, i.e., these points form an ovoid of the subGQ. Such an ovoid is
called subtended.

By 8.7.2 of [5] the q2n+1 tangent spaces of an egg E in PG(4n−1, q) form an egg ED
in the dual space to PG(4n − 1, q), called the dual egg of E . With a semifield flock
there corresponds a pseudo-ovoid E , such that the dual egg ED is good at an element,
[8], see also [2]. So there are at least q2n + qn pseudo-ovals on that good element,
contained in the pseudo-ovoid E . This implies that in the corresponding translation
generalized quadrangle T ∗(E) = T (ED), i.e., the translation dual of the TGQ T (E),
we have at least q3n + q2n subquadrangles of order qn, see [7]. Thas [7] proved
that every such subquadrangle is isomorphic to the classical GQ Q(4, qn). Hence by
the method of subtending there arise many ovoids of Q(4, qn). In 1994 Thas and
Payne [10] used this method to construct a new ovoid of Q(4, qn), using the so-called
Roman GQ, [4], arising from the Cohen-Ganley semifield flock, by using one subGQ.
The question remained if by using different subGQ’s, new ovoids of Q(4, qn) could
be obtained. For the translation ovoid of Q(4, 35) found in 1999 by Penttila and
Williams [6] it was an open question if new ovoids of Q(4, 35) could be obtained by
subtending in the corresponding TGQ. In this paper we solve both of these questions
for all ovoids subtended by points of type (ii) and in at least q2n subGQ’s for all
ovoids subtended by points of type (i). They are isomorphic to the translation ovoid
O(F) which arises from the semifield flock F using the construction of Thas [9].

2. The classical generalized quadrangle Q(4, q)

Theorem 2.1 (Payne and Thas [5, 3.2.2])
If O is an oval in PG(2, q), then the GQ T (O) is isomorphic to the classical GQ
Q(4, q) if and only if O is an irreducible conic.
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Let us take a closer look at the isomorphism between these two generalized quad-
rangles T (O) and Q(4, q). To find the isomorphism we have to let the point (∞)
of T (O) correspond with a point of Q(4, q). Since the collineation group of Q(4, q)
acts transitively on the points of Q(4, q), we may choose any point P . The lines
incident with P should correspond with the lines incident with (∞), i.e., the points
of a conic. Intersecting the polar space of P with Q(4, q) we get a quadratic cone
K with vertex P . The base of the cone K is a conic C and hence there arises a
natural way of making the necessary correspondence between the lines incident with
P and the points of a conic, by projecting the cone K onto its base C. Let π be the
plane containing the conic C. Take a hyperplane H of PG(4, q), containing π but
not incident with P . Now we have the setting to construct the TGQ T (C) in the
hyperplane H. Again a natural correspondence arises between the q3 points of H
not in π, i.e., the points of type (i) of T (C), and the q3 points of Q(4, q) not collinear
with P , by projecting Q(4, q) from P onto H. The lines incident with a point Q not
collinear with P meet the cone K in a point, and hence they are projected from P
onto a line of H meeting the plane π in a point of C, this is a line of type (a) of T (C).
The points collinear with P now have to correspond with planes of H intersecting π
in a tangent line to the conic C. We can deduce this by considering the lines not on
P and incident with a point Q collinear with P . All these lines are projected onto
lines of H intersecting π in the same point of C, and contained in a plane, namely
the intersection of the polar space of Q with H. This plane is a point of type (ii) of
T (C), and hence by the above we obtained a bijection between the points collinear
with P and the points of type (ii) of T (C). It is straightforward to prove that the
deduced correspondence defines an isomorphism φ between Q(4, q) and T (C).

Now we introduce coordinates, in order to give this isomorphism explicitly. For
Q(4, q) we take the non-degenerate quadric with equation X2

2 = X0X1 +X3X4, for
P we take the point 〈0, 0, 0, 0, 1〉, and for the hyperplane H we choose the hyper-
plane defined by the equation X4 = 0. Then the plane π has equation X3 = X4 = 0
and the conic C has equation X2

2 = X0X1. We denote the tangent line at the point
〈x0, x1, x2, x3, x4〉 of the conic C by TC(x0, x1, x2, x3, x4). Then the isomorphism
φ : Q(4, q) → T (C) can be defined by its action on the points of Q(4, q):

〈0, 0, 0, 0, 1〉 7→ (∞),
〈a, b, c, 1, c2 − ab〉 7→ 〈a, b, c, 1, 0〉,
〈a2, 1, a, 0, b〉 7→ 〈TC(a2, 1, a, 0, 0), (−b, 0, 0, 1, 0)〉,
〈1, 0, 0, 0, a〉 7→ 〈TC(1, 0, 0, 0, 0), (0,−a, 0, 1, 0)〉.

Theorem 2.1 can be extended to TGQs corresponding with classical pseudo-ovals, in
the case where q is odd. The pseudo-oval then arises from a conic of PG(2, qn), and
the corresponding TGQ is isomorphic to Q(4, qn). It is clear that the isomorphism
can easily be deduced from the isomorphism φ between Q(4, q) and T (C).

In the following section we need this isomorphism in detail. Suppose F(f, g) is
a semifield flock. Then we can write f and g as

f(t) =
n−1∑
i=0

cit
qi , and g(t) =

n−1∑
i=0

bit
qi ,
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for some bi, ci ∈ F , i = 0, 1, . . . , n− 1. In [2] it was shown that the elements of the
good egg E corresponding with the semifield flock F(f, g), can be written as

E(γ) = {〈−gt(γ), t,−γt〉‖ t ∈ F ∗}, ∀γ ∈ F 2,

E(∞) = {〈t, 0, (0, 0)〉‖ t ∈ F ∗},

TE(γ) = {〈h(γ, δ) + gt(γ), t, δ〉‖ (t, δ) ∈ F × F 2 \ {(0, 0)}}, ∀γ ∈ F 2,

TE(∞) = {〈t, 0, δ〉‖ (t, δ) ∈ F × F 2 \ {(0, 0)}},

with

gt(a, b) = a2t+
n−1∑
i=0

(biab+ cib
2)1/qit1/q

i

,

and

h((a, b), (c, d)) = 2ac+
n−1∑
i=0

(bi(ad+ bc) + 2cibd)1/qi .

With these notations the pseudo-ovoid E is good at its element E(∞).

Remark 2.2 In [4] Payne calculates the 4-gonal family for the so called Roman GQ
(see also [10, 5.1]) and in [10, 5.2,5.3] the authors use this 4-gonal family to study
certain collineations of these GQ’s. Because of the form of the model of good eggs
corresponding to a semifield flock from [2] as stated above, it is immediate that the
results obtained in [10, 5.2,5.3] can be generalised to every good egg presented in
this model. We note that the collineations (ii) in [10, 5.2] imply that the stabilizer
of the good element acts transitively on the other egg elements. When we use some
of these collineations we will refer to this remark and [10]

Consider the pseudo-oval O determined by the triple (E(∞), E(0, 0), E(1, 0)). So O
consists of the elements E(γ), with γ ∈ {(a, 0)‖ a ∈ F}∪{∞}. From the coordinates
we see that this pseudo-oval is classical. It is the conic with equation X0X1 +X2

2 = 0
seen over GF(q).

Consider the projective space PG(4n, q) = {〈r, s, t, u, x4n〉‖ (r, s, t, u, x4n) ∈ (F 4 ×
GF(q)) \ {(0, 0, 0, 0, 0)}}, and suppose that the good egg is contained in the hy-
perplane with equation X4n = 0. The pseudo-oval O is then contained in the
(3n − 1)-dimensional subspace ρ = {〈r, s, t, 0, 0〉‖ (r, s, t) ∈ F 3 \ {(0, 0, 0)}}. We
construct T (O) in the 3n-dimensional subspace G = {〈r, s, t, 0, x4n〉‖ (r, s, t, x4n) ∈
(F 3×GF(q)) \ {(0, 0, 0, 0)}}. Now we can define, in a similar way as we defined the
isomorphism φ : Q(4, qn) → T (C), an isomorphism ψ : Q(4, qn)→ T (O):

〈0, 0, 0, 0, 1〉 7→ (∞),
〈a, b, c, 1, c2 − ab〉 7→ 〈−a, b,−c, 0, 1〉,
〈a2, 1, a, 0, b〉 7→ 〈TE(a, 0) ∩ ρ, (b, 0, 0, 0, 1)〉,
〈1, 0, 0, 0, a〉 7→ 〈TE(∞) ∩ ρ, (0,−a, 0, 0, 1)〉.
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So points collinear with x are mapped onto points of type (ii) of T (O), i.e., the span
of a tangent space of O with a point of G \ ρ, and points not collinear with x are
mapped onto points of type (i) of T (O), i.e., points of G \ ρ.

3. Semifield flocks and translation ovoids

In this section we will give the connection between a semifield flock F of a quadratic
cone in PG(3, qn) and a translation ovoid O(F) of Q(4, qn), first explained by Thas
in [9] in 1997, and later on by Lunardon [3] in more detail. We will need the following
lemma.

Lemma 3.1 (see [2])
Let tr be the trace map from F to GF(q), and αi ∈ F , i = 0, . . . , n− 1. Then

tr(
n−1∑
i=0

αit
qi) = 0,

for all t ∈ F if and only if
n−1∑
i=0

αq
n−1−i

i = 0.

Consider the semifield flock F(f, g) as before. Now we look at the dual space of
PG(3, qn) with respect to the standard inner product, i.e., a point 〈a, b, c, d〉 gets
mapped to the plane with equation aX0 + bX1 + cX2 + dX3 = 0. The lines of
the cone K become lines of (the dual space of) PG(3, qn) all contained in the plane
π : X3 = 0 corresponding with the vertex of K. In PG(3, qn), they had the property
that no three of them were contained in a plane, so now they form a dual oval of
π. Since q is odd, this dual oval is a dual conic, i.e., the set of lines of the cone
corresponds with the set of tangents of some conic C′. The equation of the conic C′
in π is 4X0X1 −X2

2 = 0. Two planes πt and πs of the flock F correspond with the
points 〈t, f(t), g(t), 1〉 and 〈s, f(s), g(s), 1〉. Since πt and πs do not intersect on the
cone K, the line 〈〈t, f(t), g(t), 1〉, 〈s, f(s), g(s), 1〉〉 intersects π in an internal point
〈t − s, f(t) − f(s), g(t) − g(s), 0〉 of C′. Since f and g are additive, we obtain a set
{〈t, f(t), g(t), 0〉 ‖ t ∈ F} of internal points of C′. Over GF(q) the plane π becomes
a (3n − 1)-dimensional space, the conic C′ becomes a classical pseudo-oval O and
the set of internal points, becomes an (n− 1)- space skew to all the tangent spaces
of O.

In the dual space, this (n−1)-space becomes a (2n−1)-space U skew to the elements
of the pseudo-oval which is the dual of O, and isomorphic to it. To find U we use
the inner product corresponding with the polarity defined by the conic C′:

((x, y, z), (u, v, w)) 7→ tr(4xu+ 4yv − 2zw),

where tr is the trace map from GF(qn) to GF(q). So the point 〈u, v, w〉 ∈ U if
tr(2uf(t) + 2vt + wg(t)) = 0, for all t ∈ F . Using the expressions for f and g we

6



semifield flocks . . .

obtain the condition

tr

[
(2v + 2uc0 + wb0)t+

n−1∑
i=1

(2ciu+ biw)tq
i

]
= 0, for all t ∈ F.

Using Lemma 3.1, it follows that we can write U as {〈u,−F̃ (u,w), w〉‖ (u,w) ∈
F 2 \ {0}}, with

F̃ (u,w) =
n−1∑
i=0

(ciu+
1
2
biw)1/qi .

Let ρ be the (3n− 1)-space containing O and consider the construction of T (O) in
PG(3n, q). If we extend U with a point not contained in ρ and we apply the isomor-
phism ψ−1, then we get a 2n-dimensional space containing q2n points of type (i) of
T (O). Because U is skew to the pseudo-oval O, no two of these points are collinear
in T (O). Adding the point (∞) we get an ovoid of T (O). Since O is a classical
pseudo-oval this gives us an ovoid of Q(4, qn). In order to give the coordinates of
the points of the ovoid of Q(4, qn), we have to apply a coordinate transformation
such that the conic C′ with equation 4X0X1 − X2

2 = 0 is mapped onto the conic
with equation X0X1 + X2

2 = 0, and then apply the isomorphism ψ−1. After this
transformation U becomes the subspace {〈u, F (u,w), w〉‖ (u,w) ∈ F 2 \ {0}}, with

F (u,w) =
n−1∑
i=0

(ciu+ biw)1/qi .

If we extend U with the point 〈0, . . . , 0, 1〉, we can write the ovoid as the set of points
of PG(4, qn)

{〈−u, F (u, v),−v, 1, v2 − uF (u, v)〉‖ u, v ∈ F} ∪ {〈0, 0, 0, 0, 1〉}.

After a coordinate transformation fixing Q(4, qn), we get the ovoid O(F)

{〈u,−F (u, v), v, 1, v2 − uF (u, v)〉‖ u, v ∈ F} ∪ {〈0, 0, 0, 0, 1〉}.

This construction also works starting with a translation ovoid of Q(4, qn) to obtain
a semifield flock of a quadratic cone in PG(3, qn).

4. Subtended ovoids

Theorem 4.1 Let E be a good egg of PG(4n − 1, q), q odd, represented as above.
Then all the ovoids of any subquadrangle S determined by the elements E(∞),
E(0, 0), and E(1, 0) of the good egg E, obtained by subtending from points of T (E)\S,
are isomorphic translation ovoids of Q(4, qn). Moreover, these ovoids are isomor-
phic to the ovoid of Q(4, qn) arising from the semifield flock which corresponds with
the good egg E.

Proof : Suppose the good egg E of PG(4n − 1, q) is contained in the hyperplane
with equation X4n = 0 as before. We construct the TGQ T (E) in PG(4n, q). Let O

7



semifield flocks . . .

be the pseudo-oval {E(a, 0)‖ a ∈ F} ∪ {E(∞)}, let ρ denote the (3n − 1)-space
{〈r, s, t, 0, 0〉‖ (r, s, t) ∈ F 3 \ {0}} and G the 3n-space {〈r, s, t, 0, x4n〉‖ r, s, t ∈
F, x4n ∈ GF(q), (r, s, t, x4n) 6= 0}. We construct T (O) in G. We see T (O) as a
subGQ of T (E), i.e., we identify the points 〈TE(a, 0)∩ρ, x〉 of type (ii) of T (O) with
the points 〈TE(a, 0), x〉 of type (ii) of T (E). Since T (E) has order (qn, q2n) and T (O)
has order (qn, qn), the above method yields subtended ovoids of T (O).

First we consider the ovoids subtended from a point of type (ii) of T (E). The ob-
tained ovoids are translation ovoids determined by a (2n−1)-space which is skew to
the elements of the pseudo-oval O. Let Q = 〈TE(a, b), 〈x0, . . . , x4n−1, 1〉〉 be a point
of type (ii) of T (E) not contained in T (O). It follows that b 6= 0. We may assume
that a = 0, since there is a collineation of T (E) mapping E(a, b) to E((a, b)+d(1, 0))
for all d ∈ F , and fixing T (O), see [10, 5.3] and Remark 2.2. Then

TE(0, b) ∩ ρ = {〈
n−1∑
i=0

(bibc+ cib
2t)1/qi , t, c, 0〉‖ (t, c) ∈ F 2 \ {0}}

is a (2n−1)-space skew to the classical pseudo-oval arising from the conic of PG(2, qn)
with equation X0X1+X2

2 = 0. From the previous section it follows that the semifield
flock corresponding with this ovoid is F(f̃ , g̃), with

f̃(t) = b2
n−1∑
i=0

cit
qi , and g̃(t) = b

n−1∑
i=0

bit
qi .

In PG(3, qn) we can apply a coordinate transformation fixing the cone K such that
the planes of the flock F(f̃ , g̃) are mapped onto the planes of the flock F(f, g). The
matrix 

1 0 0 0
0 d2 0 0
0 0 d 0
0 0 0 1


induces such a coordinate transformation. It follows that the subtended ovoids ob-
tained by subtending from points of type (ii) are isomorphic to the translation ovoid
O(F).

Next we consider the ovoids subtended from a point Q of type (i) of T (E). We
may assume that Q = 〈0, 0, 0, d, 1〉, with d ∈ F ∗, since we can apply a translation
fixing T (O) if necessary, see [10, 5.3] and Remark 2.2. Points of type (i) of T (O)
collinear with Q are 〈E(a, b), Q〉 ∩ G, with b 6= 0. We get the following q2n − qn
points

〈−gt(a, b), t,−at, 0, 1〉, a ∈ F, b ∈ F ∗, t =
d

b

of type (i). Points of type (ii) collinear with Q are 〈TE(a, 0) ∩ ρ,Q〉, a ∈ F and
〈TE(∞) ∩ ρ,Q〉. We want to use the isomorphism ψ given earlier between Q(4, qn)
and T (O). First we remark that 〈TE(a, 0) ∩ ρ,Q〉 = 〈TE(a, 0) ∩ρ, 〈h((a, 0), (0,−d))
, 0, 0, 0, 1〉〉, and 〈TE(∞) ∩ ρ,Q〉 = 〈TE(∞) ∩ ρ, 〈0, 0, 0, 0, 1〉〉. So applying ψ−1 we
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obtain the qn points

〈a2, 1, a, 0,−
n−1∑
i=0

(biad)1/qi〉, a ∈ F,

and the point 〈1, 0, 0, 0, 0〉 of Q(4, qn). Applying ψ−1 to the q2n − qn points of type
(i) we obtain the points

〈g d
b
(a, b),

a

b
,
ad

b
, 1, (

ad

b
)2 − d

b
g d
b
(a, b)〉

= 〈a2 +
b

d

n−1∑
i=0

(biad+ cibd)1/qi , 1, a,
b

d
,−

n−1∑
i=0

(biad+ cibd)1/qi〉

for a ∈ F , and b ∈ F ∗ of Q(4, qn). So the ovoid can be written as the set of points
of PG(4, qn){

〈a2 + b

n−1∑
i=0

(bida+ cid
2b)1/qi , 1, a, b,−

n−1∑
i=0

(bida+ cid
2b)1/qi〉 ‖ a, b ∈ F

}
∪{〈1, 0, 0, 0, 0〉}.

It follows that the subtended ovoid of Q(4, qn) is the translation ovoid corresponding
with the semifield flock determined by the functions

f̃(t) = d2
n−1∑
i=0

cit
qi , and g̃(t) = d

n−1∑
i=0

bit
qi .

From the previous section together with the above it follows that the ovoid is a
translation ovoid and the corresponding semifield flock is isomorphic to the semifield
flock F(f, g) we started with.

So for every d ∈ F ∗ we obtain an ovoid of Q(4, qn), by subtending from a point
〈0, 0, 0, d, 1〉 of type (i). Also for every b ∈ F ∗ we obtained an ovoid by subtending
from a point 〈TE(0, b), 〈0, 0, 0, 0, 1〉〉 of type (ii), and in the above we have shown
that all these ovoids are isomorphic translation ovoids of Q(4, qn).

We have now proved the theorem for one particular subGQ determined by the el-
ements E(∞), E(0, 0), E(1, 0) (by choosing the 3n-space in which we construct the
subGQ). By considering the translation group of the TGQ it is clear the same
holds for every such subGQ (constructed in a 3n-space intersecting PG(4n− 1, q) in
〈E(∞), E(0, 0), E(1, 0)〉). 2

Remark Note that it now follows easily that the above holds for at least 2qn

subGQ’s, since we could have chosen the egg element E(0, 1) instead of E(1, 0), and
we could have chosen another 3n-dimensional subspace containing the pseudo-oval
determined by the three egg elements.

Next we will show that the ovoids subtended from points of type (ii) in all the
subGQs induced by the good element are equivalent. They all arise from the same
semifield flock F(f, g).
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Theorem 4.2 Let E be a good egg of PG(4n − 1, q), q odd, represented as above.
Then all the ovoids of a subquadrangle S, determined by a pseudo-oval on E(∞)
contained in E, obtained by subtending from points of type (ii) of T (E) \ S are
isomorphic translation ovoids of Q(4, qn). Moreover, these ovoids are isomorphic to
the ovoid of Q(4, qn) arising from the semifield flock which corresponds with the good
egg E.

Proof : Consider the egg E of PG(4n−1, q) from above and let ρa,b be the (3n−1)-
space spanned by the elements E(∞), E(0, 0) and E(a, b) and put ρ = ρ1,0. We will
construct the (2n − 1)-space TE(c, d) ∩ ρa,b, where E(c, d) is not contained in ρa,b,
i.e., (c, d) is not a multiple of (a, b), or ad− bc 6= 0. This condition implies that the
matrix 

a2 c2 2ac 0
b2 d2 2bd 0
ab cd ad+ bc 0
0 0 0 1


induces a collineation of PG(3, qn) fixing the cone K. Applying to the planes of the
flock we get the planes with equations

(a2t+ b2f(t) + abg(t)) X0 + (c2t+ d2f(t) + cdg(t)) X1

+ (2act+ 2bdf(t) + (ad+ bc)g(t)) X2 + X3 = 0, t ∈ F.

In the dual flock model we get the (n− 1)-space (over GF(q))

{〈a2t+ b2f(t) + abg(t), c2t+ d2f(t) + cdg(t),

2act+ 2bdf(t) + (ad+ bc)g(t), 0〉 ‖ t ∈ F ∗}

which is skew to the tangent spaces of the pseudo-oval corresponding with the conic
C with equation 4X0X1 −X2

2 = 0 in the plane with equation X3 = 0. Let A be the
bijection mapping t 7→ a2t+ b2f(t) + abg(t) (this is a bijection since the functions f
and g induce a flock), and let ρ be the (3n− 1)-space corresponding with the plane
with equation X3 = 0. Applying the collineation induced by the matrix A−1 0 0

0 In 0
0 0 In

 ,
to ρ the pseudo-oval corresponding with the conic C is mapped onto the pseudo-oval
with elements {{〈A−1t, r2t, 2rt, 0 〉 ‖ t ∈ F ∗} ‖ r ∈ F} ∪ {〈0, t, 0, 0〉 ‖ t ∈ F ∗} or
rewriting the coordinates we obtain the pseudo-oval with elements

{{〈t, r2At, 2rAt, 0 〉 ‖ t ∈ F ∗} ‖ r ∈ F} ∪ {〈0, t, 0, 0〉 ‖ t ∈ F ∗}.

The (n−1)-space skew to the tangent spaces of this pseudo-oval becomes the (n−1)-
space

{〈t, c2t+ d2f(t) + cdg(t), 2act+ 2bdf(t) + (ad+ cb)g(t), 0〉 ‖ t ∈ F ∗}.

10
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Now we dualise with respect to the inproduct

((x, y, z), (u, v, w)) = tr(xu+ yv + zw),

where tr is the trace map from F → GF(q). The dual space of the pseudo-oval
element {〈t, r2At, 2rAt, 0 〉 ‖ t ∈ F ∗} becomes

{〈−
n−1∑
i=0

[
(aia2 + biab+ cib

2)(r2v + 2rw)
]1/qi

, v, w, 0〉 ‖ (v, w) ∈ F 2 \ {0}},

where we introduced (a0, . . . , an−1) = (1, 0, . . . , 0) for convenience of notation. The
dual of the (n− 1)-space skew to the tangent spaces of the pseudo-oval becomes

{〈−
n−1∑
i=0

[(2aiac+ bi(ad+ cb) + 2cibd)w

+(aic2 + bicd+ cid
2)v
]1/qi

, v, w, 0〉 ‖ (v, w) ∈ F 2 \ {0}}

skew to the elements of the new pseudo-oval in ρ. Now we apply the coordinate
transformation mapping ρ to the (3n − 1)-space ρa,b = {〈r, s, at, bt〉 ‖ (r, s, t) ∈
F 3 \ {0}}. This transformation maps the tangent space

{〈−
n−1∑
i=0

[
(aia2 + biab+ cib

2)(r2v + 2rw)
]1/qi

, v, w, 0〉 ‖ (v, w) ∈ F 2 \ {0}}.

of the pseudo-oval to the space

{〈
n−1∑
i=0

[
(aia2 + biab+ cib

2)(r2v + 2rw)
]1/qi

, v, wa,wb〉 ‖ (v, w) ∈ F 2 \ {0}},

which is the tangent space TE(ra, rb)∩ ρa,b of the pseudo-oval in ρa,b at the element
E(ra, rb). (Note that we applied an extra coordinate transformation X0 7→ −X0 to
get rid of the minus sign in the first coordinate.) The (2n − 1)-space skew to the
pseudo-oval in ρ is mapped to the (2n−1)-space TE(c, d)∩ρa,b, i.e., the (2n−1)-space
which induces the translation ovoid subtended from a point of type (ii) on the tangent
space TE(c, d) of the egg E . Since the elements of a pseudo-oval are determined by the
tangent spaces it follows that the obtained pseudo-oval is the one determined by the
elements E(∞), E(0, 0) and E(a, b) of the good egg corresponding with the semifield
flock. We have shown that all the ovoids of Q(4, qn) obtained by subtending from
points of type (ii) in the subquadrangles induced by the egg elements E(∞), E(0, 0)
and one other egg element are isomorphic to the ovoid arising from the semifield flock
corresponding with the good egg. Since the stabilizer of E(∞) in the automorphism
group of the egg E acts transitively on the elements of E \{E(∞)} (see Remark 2.2),
we have proved the theorem. 2

Remark 4.3 After the writing of this paper was completed, in [11] it was shown
that there exists a symmetry about a line on the point (∞) (of the form calculated in
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[4, 5.4]), from which it then follows that every point of the line E(∞) is a translation
point of T (E), and hence that for a fixed subGQ S and a fixed point of type (i) z of
T (E)\S, there exists an automorphism of T (E) fixing S and mapping the point z to
a point of type (ii). This implies that the ovoid of S subtended from z is isomophic
to an ovoid subtended from a point of type (ii). In this way the solution of the
isormophism problem was completed in [11].
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