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Abstract

Using the explicit description given in [9] we prove that a good egg of
PG(4n — 1,q), q odd, is isomorphic to an ovoid of PG(3,¢™) seen over GF(q)
if and only if there exists a (3n — 1)-space skew from the good element and
containing at least 5 egg elements. There are only 3 classes of known examples
of eggs in PG(4n—1, q), which are not elementary. For each of these classes we
obtain strong restraints on the intersection of egg elements with (3n—1)-spaces
spanned by three different egg elements.

1. Introduction and the model

An egg E(n,m,q) in PG(2n +m — 1,q) is a partial (n — 1)-spread of size ¢"™ + 1
such that every 3 egg elements span a (3n — 1)-space and for every egg element E
there exists an (n + m — 1)-space, denoted by Tk and called the tangent space of
& at E, containing E but disjoint from every other egg element. The idea of eggs
was introduced by Thas in 1971 [13] and it turned out later, see Payne and Thas
[11], that the theory of eggs is equivalent to the theory of translation generalized
quadrangles (TGQ’s). If n = m then £(n,m, q) is called a pseudo-oval and if 2n = m
then £(n,m, q) is called a pseudo-ovoid. If we take an oval in PG(2, ¢™), respectively
an ovoid in PG(3,¢"™), and consider the ambient space over GF(g), then we obtain
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a pseudo-oval, respectively a pseudo-ovoid, and hence the motivation to use that
name. The examples constructed in this way are called elementary. In this article
we concentrate on the case where ¢ is odd, 2n = m, and the egg in PG(4n — 1,q)
is good at some element, which means that every (3n — 1)-space containing that
element and two other egg elements contains exactly ¢" + 1 egg elements. The
following lemma follows from Thas [16].

Lemma 1.1 If q is odd and £ is a good egg in PG(4n — 1, q) then every pseudo-oval
contained in £ and containing the good element is elementary.

Good eggs of PG(4n — 1,q), ¢ odd, can be constructed from semifield flocks of a
quadratic cone in PG(3, ¢™) and we will recall the geometric link between these two
objects from [7] in section 2. For a recent survey of eggs we refer to Chapter 3
of [7] where we included results of Bader, Ball, Bloemen, Blokhuis, Casse, Kantor,
Lunardon, Payne, Penttila, Pinneri, Thas, Van Maldeghem, and Wild. For g even
we refer to [2] and [3].

Let F' = GF(¢™), ¢ odd and let £ be a good egg of PG(4n —1,¢q). In [9] it was shown
that there exist a;, b;,¢; € F, for i € {0,...,n — 1}, such that the elements of £ can
be written as

E(y) = {({=g:(v),t, =vt)ll t € F*}, ¥y € F?,
E(o0) = {(t,0,(0,0)[| t € F*},
and the tangent spaces can be written as
Tr(y) = {(h(7,0) + g:(7), t,0)|| (¢,6) € F x F2\ {(0,0)}}, Yy € F?,
Tr(c0) = {(t,0,8)| (t,6) € F x F?\ {(0,0)}},

with X
gi(a,b) = Z(aicﬁ + bjab + cib2)1/qitl/qi,
i=0
and 1
h((a,b), (c,d)) = Z(Zaiac + b;(ad + be) + 2c,~bd)1/‘1i,
=0

and with this notation the egg is good at the element E(co0). Sometimes we will
denote this egg by £(a,b,c), where a = (ag,...,a,-1), b = (bg,-..,bp_1), ¢ =
(CO7 sty Cnfl)'

Theorem 1.2 The set £ defined as above forms a good egg of PG(4n — 1,q) if and
only if gi(a,b) = 0 impliest =0 ora=b=0.

Proof: If there exist a,b,t € F with ¢t # 0 and (a, b) # (0,0) such that g;(a,b) =0,
then (0,t, —at, —bt) € Tr(c0) N E(a,b), a contradiction. Conversely suppose that
the condition g;(a,b) = 0 implies ¢t = 0 or a = b = 0 is satisfied. It follows from
Chapter 3 in [7] (p. 62-66) that the conditions for £ to be an egg of PG(4n — 1, q)
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are satisfied. Theorem 3.2 in [9] implies that £(c0) is a good element of £. This
concludes the proof. O

All the known examples of eggs have a good element or the dual egg has a good
element.

We now list (a,b,c) representing the four classes of known examples of eggs in
PG(4n —1,q).

Elementary pseudo-ovoids

Any ovoid in PG(3, ¢") gives rise to an egg in PG(4n —1, ¢). If the ovoid is an elliptic
quadric, which is always the case when ¢ is odd, then we may assume the egg is of
the form £(a, b, c) with

(a,b,c) =((1,0,...,0),0,(—m,0,...,0)),
where m is a non-square in GF(¢™).

Pseudo-ovoids of Kantor type

If ¢ is odd, m a non-square in GF(¢™), and
(aﬂbﬂc) = ((1705' "70)307 (03 _m703 ""0))7

then £(a, b, c) is an egg in PG(4n — 1,¢). This class of examples is connected with
the Kantor-Knuth semifield flock and the corresponding GQ was first discovered by
Kantor [6] in 1986.

Pseudo-ovoids of Cohen-Ganley type
If ¢ = 3, m a non-square in GF(q™), and
(a7b7c) = ((1707 - '70)7 (07 1707 - '70)7 (_m_1707 _m707 - 70))

then £(a, b, c) is an egg in PG(4n — 1,q). This class of examples is connected with
the semifields discovered by Cohen and Ganley [5].

Pseudo-ovoids of Penttila-Williams type
Ifg=3,n=5,and
(a7 b7 c) = ((17 07 07 07 0)7 (07 07 07 _17 0)7 (07 17 07 07 0))

then £(a,b,c) is an egg in PG(4n — 1,¢). This sometimes called sporadic (see
[1]) class of examples is connected with the ovoid of Q(4,q) discovered by Penttila
and Williams [12], where (4, ¢) denotes the generalized quadrangle arising from a
parabolic quadric in 4-dimensional projective space.

Remark 1.3 In all the examples we see that a = (1,0,...,0). This is nothing else
than a choice we made in the representation, some kind of normalisation. That we
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are allowed to do that can be seen in many ways. If we consider the subspace spanned
by the good element and two other egg elements, let’s say (E(o0), E(0,0), E(1,0)),
there arises an elementary pseudo-oval O (see Lemma 1.1). Since q is odd, O arises
from a conic C in PG(2,q™). Applying a collineation of PG(4n — 1,q) mapping O
to the pseudo-oval arising from the conic with equation XoX; + X2 = 0, we obtain
that a = (1,0,...,0).

In Payne [10] the author calculates automorphisms of the translation generalized
quadrangles corresponding with the pseudo-ovoids of Cohen-Ganley type. These
collineations induce an automorphism of the pseudo-ovoid of Cohen-Ganley type
(see Lemma 1 in [1]). Using the model from [9] one can generalise some of these
automorphisms to any good egg in PG(4n — 1,q), ¢ odd, and prove the following
lemma.

Lemma 1.4 Let £ be a good egg in PG(4n — 1,q), q odd. The stabiliser of the
good element in the automorphism group of the egg acts transitively on the other egg
elements.

Proof : Consider the map ¢, : PG(4n —1,9) — PG(4n —1,q)
<T7 S, t7 U) = <T + h((t, u)7 (G‘J b)) - gs(a7 b)7 S,t — sa, t— Sb)

It is straightforward to check that 1,5 induces a collineation of PG(4n — 1, ¢) fixing
E(o0) point-wise and mapping E(c,d) to E(c+ a,d + b). O

2. The geometric connection between semifield flocks and
good eggs

In this section we give a brief description of the geometric connection between a
good egg of PG(4n — 1, ¢) and a semifield flock of a quadratic cone in PG(3,¢"), ¢
odd, from [8].

Starting from a semifield flock we obtain every pseudo-oval on the good element
contained in the egg and every intersection of the space containing such a pseudo-
oval and the tangent space at an egg element not contained in that pseudo-oval in the
following way. First we dualise the flock with respect to a duality in PG(3,¢™). The
set of points corresponding with the planes of the flock induce an (n—1)-dimensional
subspace U over GF(q) (since the flock is a semifield flock) contained in the set of
internal points of the conic (corresponding with the generators of the quadratic
cone) in the plane corresponding with the vertex. Dualising the (3n — 1)-space
corresponding to the plane containing the conic, U becomes a (2n—1)-space W skew
from the elements of an elementary pseudo-oval O. Applying the right collineations
in each of these steps (see [8] for details), W is the subspace Tg(c,d) N 7g 5, and O
is the elementary pseudo-oval determined by E(o0), E(0,0), and E(a,b).

Starting from any pseudo-oval contained in a good egg in PG(4n — 1, ¢) and contain-
ing the good element we can reverse each of the steps and obtain a semifield flock of
a quadratic cone in PG(3, ¢"™). Every two flocks obtained in this way are equivalent
(see [8] for details).
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3. Two characterisations of elementary eggs

Theorem 3.1 ([7])
Let € be an egg of PG(4n — 1,q), q odd, which is good at an element E. Then the
following properties are equivalent.

o & is an elementary pseudo-ovoid.

e There exists a triple (F, Ey, Ey), where F is not contained in the pseudo-conic
C induced by the elements Ey and Ey in the (3n — 1)-space (E, Ey, Es), such
that the tangent space at F' contains two elements of the Desarguesian spread
induced by C.

o All triples (F, E1, Es), where F' is not contained in the pseudo-conic C induced
by the elements E; and Es in the (3n —1)-space (E, E1, Es), are such that the
tangent space at F' contains two elements of the Desarguesian spread induced
by C.

Proof : The proof follows immediately from the geometric connection with semi-
field flocks explained in the previous section and the fact that all the planes of a
linear flock contain a common line. O

Theorem 3.2 If £ is a non-elementary good egg in PG(4n—1,q), q odd, and 7 is a
(3n — 1)-space spanned by three egg elements, then w contains the good element and
hence contains exactly g™ + 1 elements or m contains at most four egg elements.

Proof : Since € is a good egg in PG(4n — 1, q), ¢ odd, we may assume its elements
can be represented as above. Let 7 be a (3n—1)-space spanned by three egg elements.
Since & is good at E(00), we know that if 7 contains E(00), then 7 contains exactly
g™ + 1 egg elements. Assume that 7 does not contain F(c0). Since the stabiliser of
E(o0) in the automorphism group of the egg is transitive on the other egg elements
(Lemma 1.4), we may assume that = = (E(0,0), E(a,b), E(c,d)), where ad —bec # 0,
since E(o0) is not contained in 7. An egg element E(e, f) is contained in 7 if and
only if Vu € F,3r;s,t € F':

(_gu(ea f)a U, —eu, _fu) = (Oa T, 03 0)+(_gs(aa b)a s, —as, _b8)+(_gt(ca d)a t,—ct, _dt)-
Equating coordinates gives us the equations Yu € F,3r,s,t € F :

—gule, f) = —gs(a,b) — gi(c,d)

u =r+s+t
—eu = —as—ct
—fu = —-bs—dt

Solving for r, s and t gives

_ _ de —cf _ af — be
r=u—s-—t, S_U(ad—bc)’t_u(ad—bc)'
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Substituting these values in the first equation we may obtain that the egg element
E(e, f) is contained in 7 if and only if Vu € F

—gule, ) = —gu(%)(a: b) — gu(ﬂ)(c, d).

ad—be
Using the formula for g we get that Yu € F

n—1

Z[(aiez + bef + cifz)u]l/q" —

=0

n—1 _ _ 1/q*
5 ot (52) et ()

if and only if

n—1
z:[(aie2 +bief +cif)u]?
i=0
n—1 n—i
de — cf af —be\]?
= a4+ b; ib? —_— i+ bied + ¢;d? nC A
;[(aa +bab+cb)u<ad_bc>+(ac+ cd + ¢;d*)u i b ,
with (ag,a1,...,an—1) = (1,0,...,0). Seen as an equality of two polynomials in u

of degree at most ¢" ! it follows that we must have a polynomial identity. Hence
E(e, f) is contained in 7 if and only if

(ad—be)(ae® +bief +cif?) = (de—cf)(a;a®+biab+c;b?) +(af —be)(a;c* +bicd+c;d*)

for all i € {0,...,n—1}, if and only if the point (e, f, 1) is a point of the intersection
of the conics C;, 1 =0,...,n — 1, where C; is the conic in PG(2, ¢") with equation

(ad —be)(a; X? + b; XY +¢;Y?) =
(dX Z — c¢Y Z)(a;a® + biab + ¢;b*) + (aY Z — bX Z)(a;c* + bicd + ¢;d?),

i € {0,...,n —1}. Let 7 denote the intersection of these conics. Note that Z
contains no point on the line Z = 0 since that would imply that there exists a
pair (e, f) # (0,0), with g1 (e, f) = 0, in contradiction with Theorem 1.2. Since we
may take (ag,a1,...,an—1) = (1,0,...,0) (see Remark 1.3), the conic Cy is different
from all other conics and if this is the only non-trivial equation then the egg is
elementary. Hence we have at least two different conics with a non-trivial equation.
If Cy is non-degenerate then 7 contains at most 4 points. If Cy is degenerate but
has no components in common with all the other conics, then again 7 contains at
most 4 points. On the other hand if Cy is degenerate and one of its components is
common to all other conics then 7 contains a line, and hence contains a point on
the line Z = 0, a contradiction. This concludes the proof. O

Remark 3.3 From the above proof it follows that if E(e, f) intersects 1 = {(E(0,0),
E(a,b), E(c,d)), with ad — bc # 0 in a subspace of dimension k — 1, then there are
exactly ¢* values u € F for which the condition

n—1

2:[(%62 + bief + cif2)u]1/‘1"

=0
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n—1 1/q
de — cf af — be
2 2 2 2
= i i i i i i 1
;:0 [(aa + b;ab + ¢;b )u(ad—bc> + (aic® + bicd + ¢;d M(ad—bc)] (1)

is satisfied.

4. Pseudo-ovoids of Kantor type

Theorem 4.1 ([7])
Let £ be a non-elementary egg of PG(4n — 1,q), ¢ odd, which is good at an element
E. Then the following properties are equivalent.

o & is a Kantor pseudo-ovoid.

o There exists a triple (F, Ey, E>), where F' is not contained in the pseudo-conic
C induced by the elements Ey and Es in the (3n — 1)-space (E, E1, Es), such
that the tangent space at F' contains an element of the Desarguesian spread
induced by C.

o All triples (F, Ey, E»), where F' is not contained in the pseudo-conic C induced
by the elements E; and Es in the (3n — 1)-space (E, E1, Es), are such that the
tangent space at F' contains an element of the Desarguesian spread induced by
C.

Proof : The proof follows from the fact that the planes of the corresponding
semifield flock all contain a common point (see Thas [15]) and the geometry between
semifield flocks and good eggs as explained in Section 2. m|

Theorem 4.2 Let £ be a non-elementary good egg in PG(4n — 1,q), ¢ odd. Then
& is of Kantor type if and only if there exists a subspace m spanned by three egg
elements containing exactly four egg elements.

Proof: Let & be a pseudo ovoid of Kantor type and 7 the (3n—1)-space generated
by E(0,0), E(a,b) and E(c,d), with ad — bc # 0. From the proof of Theorem 3.2
it follows that E(e, f) will be contained in 7 if and only if {e, f,1) is a point of the
intersection of the conics C;, ¢ = 0,...,n — 1, where C; is the conic with equation

(ad — be)(a; X? + b; XY +¢;Y?) =

(dXZ — cY Z)(a;a® + biab + c;b*) + (aY Z — bX Z)(a;c? + bicd + c;d?).

Since & is of Kantor type we may assume (ag,a1,-.-,a,-1) = (1,0,...,0), (bo, b1,
ceisbp_1) = (0,...,0), and (co,---,¢n_1) = (0,—m,0,...,0), where m is a non-
square in GF(g"). For i = 0 we get the conic Cp : (ad — bc)X? = (dXZ — cY Z)a? +
(aYZ — bX Z)c? and for i = 1 the conic C; : (ad — be)Y? = (dXZ — cY Z)b? +
(aYZ —bX Z)d?. If (c,d) ¢ {(0,2b),(2a,0)} then these conics also contain the point
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{(a —¢)(ad + be) /(ad — be), —(b— d)(ad + be) / (ad — be), 1), and hence 7 contains the
corresponding fourth element.

Conversely suppose that £ is a non-elementary good egg of PG(4n—1,q), g odd. Let
m be a (3n —1)-space generated by E(0,0), E(a,b) and E(c,d), with ad—bc # 0, and
suppose that 7 contains a fourth egg element E(e, f). From the proof of Theorem 3.2
it follows that {e, f, 1) is a point of the intersection Z of the conics C;, 4 =0,...,n—1,
where C; is the conic with equation

(ad —be)(a;: X2 + b; XY +¢;Y?) =
(dX Z — cY Z)(a;a® + biab + c;b*) + (aY Z — bX Z)(aic® + bicd + c;d?).

Since we may assume that (a1,...,a,-1)=(1,0,...,0) (see Remark 1.3) the coef-
ficient of the X2 term in the equation of the conic Cgy is ad — bc # 0, while the
coefficient of the X2 term in the equation of the conic C;, with ¢ > 1, is zero. Let
A be the set of integers i # 0 for which the conic C; has non-trivial equation. Since
£ is non-elementary A is non-empty. Moreover, since Z contains the four points
{0,0,1), {a,b, 1), {c,d,1) and (e, f, 1), and every conic C;, i € A, contains the point
(1,0, 0), all the conics C;, i € A, coincide. From the coefficients of the XY term and
the Y2 term it then follows that for every i,j € A there exists a v;; € F such that
(bi,c;) = vij(bj,cj). Consider the elementary pseudo-oval induced by the elements
E(0), E(0,0), and E(1,0) in the (3n — 1)-space m1 9. The elements contained in
7\ Tg(o0) of the normal spread induced by the elements of the elementary pseudo-
oval in 7 o are of the form

{(st,t,rt,0) : t € F*},
with r,s € F. We will show that the (2n — 1)-space Tg(0,1) N 710

n—1

= {(Q s +cit]V" ,5,0) = (r,5) € F2\ {(0,0)}}

=0

contains an element of this normal spread. If there exist an i € A for which b; #
0 # ¢; then the above implies that there exists a v € F* such that (by,...,b, 1) =
v(e1,- .., ¢n—1) and then Tg(0,1) N7y ¢ contains the normal spread element

{{(bo(=7") + co)t, t, —y7't,0) : t € F*}.
If b; = 0 for all 4 € A then Tr(0,1) N o contains the normal spread element
{{bos,0,5) : s€ F*}.
If ¢; =0 for all i € A then Tr(0,1) N o contains the normal spread element
{{cot,t,0) : t € F*}.
Applying Theorem 4.1 it follows that the egg is of Kantor type. |
Theorem 4.3 Let £ be a pseudo-ovoid of Kantor type in PG(4n — 1,q), q odd,

n > 2, and let w be the subspace spanned by three eqg elements. Then an egg element
E € & is either contained in 7 or intersects w in at most a point.
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Proof: Let 7 be a subspace spanned by three different egg elements. If 7 contains
the good element then 7 contains exactly ¢" + 1 egg elements, forming an elementary
pseudo-conic in 7. Since the secants of a conic in a plane of odd order cover the
plane, all other egg elements are skew from 7. Now suppose that 7 does not contain
the good element. As before we may assume without loss of generality that « is
the (3n — 1)-space spanned by the E(0,0), E(a,b) and E(c,d), with ad — bc #
0. Since &£ is of Kantor type we may assume that a = (1,0,...,0), b = 0 and
¢ = (0,—m,0,...,0), where m is a non-square in F. The condition in Remark 3.3
becomes as follows. If there is an egg element E(e, f) intersecting m in a subspace
of dimension k — 1 then there are exactly ¢* values u € F for which the condition

eu — (mfu)'/? =

de — cf 5 (be—af 5 (de —cf be —af L4
2 2 _ 2 2

“ (ad—bc>u+c (ad—bc)u [mb (ad—bc u+md ad—bc )"

is satisfied. Raising both sides to the exponent ¢ we obtain a polynomial of degree
q in u. If there are more than g solutions then the above must be a polynomial

identity or in other words if E(e, f) intersects 7 in more than a point then E(e, f)
is contained in 7. This concludes the proof. |

5. Pseudo-ovoids of Cohen-Ganley type

Theorem 5.1 Let £ be a pseudo-ovoid of Cohen-Ganley type in PG(4dn — 1,3),
n > 3, and let w be the subspace spanned by three egg elements. Then an egg element
E € & is either contained in 7 or intersects w in at most a line.

Proof: The proof is similar as above. In this case we have ¢ = 3,a = (1,0,...,0),
b = (0,1,0,...,0) and ¢ = (—m1,0,—m,0,...,0), and the polynomials in the
condition (1) in Remark 3.3 have degree 9, after taking the 9th power. We may
conclude that if E(e, f) intersects 7 in more than a line then E(e, f) is contained in
. O

6. Pseudo-ovoids of Penttila-Williams type

Theorem 6.1 Let £ be a pseudo-ovoid of Penttila-Williams type, and let = be the
subspace spanned by three egg elements. Then an egg element E € & is either
contained in w or intersects w in at most a line.

Proof : In this case we have ¢ = 3, n =5, a = (1,0,...,0), b = (0,0,0,—1,0)
and ¢ = (0,1,0,0,0). The same argument as in the previous proof turns condition
(1) into a condition of the form au + fu'/® + yu'/?" = 0 for ¢* values of u €
F where k — 1 is the dimension of the intersection of E(e, f) with m. Suppose
a #0# 5 If au+ Bul/? + yul/?" = 0, then o®"u®” + f2"u® + v*'u = 0, and
hence By2Tul/3 4+ 428u1/27 — 28427 — aB?"u? = 0. Taking the 9th root we get
B2 v2u® 4+ 430U — a®%u® — a?"B3%u = 0, for 3% values of u € F. If k > 3 then this
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must be a polynomial identity, which implies that a = 0, a contradiction. Hence
a =0 or v = 0. But then the equation au + fu'/? + yu'/?" = 0 can be reduced
to an equation du + eu® = 0, with i at most 2. We may conclude that if E(e, f)
intersects 7 in more than a line then E(e, f) is contained in 7. O

Final remark Theorem 3.2 was independently proved by M. R. Brown and J. A.
Thas [4] in a completely different way using the connection with Veronesean varieties
in PG(5,¢") (see Thas [17]). Theorem 4.2 was first obtained by M. R. Brown and J.
A. Thas, and after private communications with J. A. Thas, we extended the proof
of Theorem 3.2 to prove the result using the model from [9].
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