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Abstract

In [2] it was shown that if ¢ > 4n®—8n+2 then there are no subplanes of
order ¢ contained in the set of internal points of a conic in PG(2, ¢™), ¢
odd, n > 3. In this article we improve this bound in the case where g is
prime to ¢ > 2n%—(4—2v/3)n+(3—2+/3), and prove a stronger theorem
by considering sublines instead of subplanes. We also explain how one
can apply this result to flocks of a quadratic cone in PG(3, ¢"), ovoids of
Q(4,q"), rank two commutative semifields, and eggs in PG(4n — 1, q).

1 Introduction

Consider a non-degenerate conic C in a projective plane PG(2, q) of order q.
If ¢ is even, then all the tangents of the conic meet in a common point, called
the nucleus, and hence every other point of the plane is contained in exactly
one tangent line to C. If ¢ is odd then a point of the plane not contained in C
is either contained in two tangent lines of C, in which case the point is called
an external point, or is not contained in a tangent line of C, and we call such
a point an internal point. We denote the set of internal points of C by Z(C).
If Q(X,Y, Z) is the quadratic form defining the conic C in PG(2,q), ¢ odd,
then either Z(C) is the set of points of PG(2, ¢) defined by the vectors (z,y, )
for which Q(z,y, z) is a non-zero square in GF(q) or the set of points defined
by the vectors (z,y, z) for which Q(z,y, #) is a non-square in GF(q), see [10].

Let C be a non-degenerate conic of PG(2,¢"), ¢ odd, n > 3, defined by
the quadratic form Q(X,Y, Z). If Z(C) contains a subplane 7 isomorphic to
PG(2, q), then without loss of generality we may assume that the subplane is
the set of points defined by all non-zero vectors (z,y, z) with z,y, z € GF(q),
and that Q(z,y, z) is a non-zero square for all z,y, z € GF(g). In particular,
f(X) = Q(X,1,0) will only take non-zero square values for all z € GF(q).
In [2] such polynomials f(X) were characterised and as a corollary it was
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shown that such subplanes cannot exist if ¢ > 4n? — 8n + 2. We will show
that if ¢ is a prime, then this bound can be improved (roughly by a factor
1/2), using the same techniques and an estimate on the sum of the Legendre
symbols of polynomials by Mit’kin [11]. In fact we will show that in that case
there does not exist an external line containing a subline contained in Z(C)
or contained in the set of external points of C, and show that this implies the
non-existence of such a subplane. This result has immediate implications for
the existence of semifield flocks of a quadratic cone in PG(3, ¢"), translation
ovoids of Q(4,q"), eggs of PG(4n, 1,q) and translation generalized quadran-
gles. However, because of the weaker hypotheses, it turns that the result can
also be applied to flocks different from semifield flocks, and ovoids different
from translation ovoids. These applications will be explained in section 3.

2 On the existence of sublines contained in Z(C)

In this section we prove the main theorem. We start with a result on the
estimate of the sum of the Legendre symbol of polynomials over a finite field
of odd prime order. If ¢ is even then every element of GF(q) is a square in
GF(q). If q is odd, this is not the case and if ¢ = p is prime, we use the so

called Legendre symbol (%) defined by

a\ _ 1 if a is a square mod p,
p) | —1 ifa isa non-square mod p,

to indicate if a is a square in GF(p) or not. In 1973 Mit’kin improved Weil’s
estimate for the Hasse invariant.

Theorem 2.1 (D. A. Mit’kin [11]) Let n > 4 be even, p > (n?>—n)/2 simple
odd, f(X)=ap+a1X+...+a,X" be a polynomial with integral coefficients
that is not quadratic over GF(p), (an,p) = 1. Then the following estimate

holds:
3 (1) <o a1 20

4
=1

We now apply this estimate to characterise polynomials of GF(p™)[X] of
degree two, which always give a non-zero square when evaluated at elements
of GF(p). The proof is similar to the proof of [2, Lemma 2.2].

Lemma 2.2 Suppose f(X) = aX?+bX +c € GF(p")[X], a # 0, p an
odd prime, n > 2, f(z) is a non-zero square for all x € GF(p), and p >
2n? — (4 — 2v/3)n + (3 — 2v/3). Then one of the following holds.

1. f is the square of a linear polynomial in X over GF(p").
2. n is even and f has two distinct roots in GF (p™/?).

3. The roots of f are a and o for some GF(p)- automorphism of GF(p™)
o, and « in GF(p").



Sublines of internal points of a conic 3

Proof. Let f;(X) denote the polynomial obtained from f(X) by raising all
coefficients to the power p’. The roots of f;(X) are the roots of f(X) raised
to the power p’. For all z € GF(p) we have that f(z) is a square in GF (p")
precisely when

o(x) = [[ filx)
1=0

is a square in GF(p). Then ¢g(X) € GF(p)[X], which implies that the equa-
tion Y2 — g(X) = 0 has 2p solutions in GF(p)2. Suppose g(X) is not a
square in GF(p)[X]. Since p > 2n2 — (4 — 2v/3)n + (3 — 2/3) > 2n? — 2n,
and the degree of g(X) is 2n > 4, we can apply Theorem 2.1 and obtain

Zp: (g(w)>
=1 p

It follows that (p — 1) — (2n — 2)%(p — (n? — 2n — 1)) < 0, contradicting
p > 2n? — (4 —2v/3)n + (3 — 2v/3). Hence g(X) is a square of a polynomial
in GF(p)[X]. The rest of the proof is exactly the same as in the proof of [2,
Lemma 2.2]. [

<@n—-2)vp+1-n24+2n+1.

Remark 2.3 In [2, Lemma 2.2] the X2-term in f(X) has coefficient 1.
Howewver it is easily seen that the arguments used in the proof also work for
an arbitrary coefficient a € GF(g™)*.

We are now ready to prove the following theorem.

Theorem 2.4 Let C be a non-degenerate conic in PG(2,q™), q odd, n > 2.
Let L be an external line with respect to C containing a subline Lof order q.
If £ is contained in the set of internal points of C, or contained in the set of
external points of C then ¢ < 4n?> —8n+2, and ¢ < 2n?> — (4—2v3)n+ (3 —
2v/3), if q is prime.

Proof. Suppose £ is a subline of PG(2, ¢") isomorphic to PG(1, ¢) contained
in the external line L : Z = 0 with respect to the non-degenerate conic C
with equation

QX,Y,Z) =aX? +bXY + Y2 +dXZ+eYZ + fZ2=0

and contained in the set of internal points or the set of external points of
C. Without loss of generality we may assume that £ consists of the points
{{z,y,0) : (z,y) € (GF(g)?)*}. Then g(X) := Q(X,1,0) is a polynomial
in GF(¢")[X] of the form aX? + bX + ¢ with a,b,c € GF(¢"), which has
no roots in GF(¢"), since L is an external line with respect to C. If ¢ is a
non-zero square in GF(q") then g(z) is a non-zero square in GF(¢") for all
z € GF(q), since £ is contained in the set of internal points or the set of
external points of C. But then [2, Lemma 2.2] implies that ¢ < 4n% —8n+2,
and Lemma 2.2 implies that ¢ < 2n2 — (4 —2v/3)n + (3 —2v/3), if ¢ is prime.
If ¢ is a non-square then consider the polynomial cg(X). [



4 Michel Lavrauw

Using Theorem 2.4 we can now prove Theorem 3.1 in [2] in a less complicated
way and avoiding the problem which occurs in the original proof when n = 3.
In the case when ¢ is prime, we obtain a better bound.

Theorem 2.5 If there is a subplane of order q contained in the set of in-
ternal points of a non-degenerate conic C in PG(2,q"), q odd, n > 3, then
q<4n? —8n+2 and ¢ < 2n? — (4 — 2/3)n+ (3 — 2V/3), if q is prime.

Proof. Tt follows from Theorem 2.4 that if a line of PG(2,¢") generated
by two points of the subplane is external with respect to the conic, then
g < 4n? —8n +2, and ¢ < 2n? — (4 — 2V/3)n + (3 — 2V/3), if ¢ is prime.
Suppose that every line generated by two points of the subplane is a bisecant
with respect to the conic. Let P be a point of the subplane and consider
the g + 1 lines 4y,...,#¢, of the subplane through P. Let v denote the
polarity induced by the conic C. Then P is an external line containing the

subline isomorphic to PG(1,¢q) consisting of the external points £g, ..., ¢y
with respect to the conic. Theorem 2.4 implies that ¢ < 4n? — 8n + 2 and
q < 2n? — (4 — 2V/3)n + (3 — 2V/3), if ¢ is prime. [ |

3 Applications

Assume for the rest of the paper that ¢ is an odd prime power, and W
is an (n — 1)-space over GF(g) contained in the set of internal points of a
non-degenerate conic C of PG(2,¢™). In this section we explain some of the
consequences of the (non-) existence of such a subspace W. It follows that
our result has many corollaries.

We will start with the connection with flocks of a quadratic cone. Although
it is not the oldest mathematical object related to W, it is probably the
most straightforward one, see Section 3.1 for the construction. It is part of
a construction due to Thas [19] (see Lunardon [14] for more details) who ob-
served the equivalence of semifield flocks of a quadratic cone and translation
ovoids of Q(4,q) (see Section 3.2). However, it will turn out that Theorem
2.4 does not only imply restrictions for the existence of semifield flocks, resp.
translation ovoids, see Theorem 3.2, resp. Theorem 3.5.

3.1 Flocks

Consider the set U of affine points of an n-dimensional space contained in
PG(3,¢™) and intersecting PG(2,4¢™) in W. In the dual space of PG(3,¢")
the set of tangents of C becomes the set of lines on a quadratic cone in
PG(3,4"), and the set of points U becomes a set of ¢" planes not through
the vertex of the cone, such that each point of the cone minus the vertex is
on at most one of these planes, and hence defining a partition of the cone
minus its vertex into ¢" conics. Such a set of conics is called a flock of a
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quadratic cone in PG(3,¢"). The planes containing the conics are called the
planes of the flock. If all planes of the flock share a line then the flock is
called linear. Conversely one can start with a flock of a quadratic cone in
PG(3,¢™), and obtain a set of ¢" affine points & with the property that the
line joining any two of these points meets the plane corresponding to the
vertex of the cone in an internal point w.r.t. a non-degenerate conic. If
the set W' of internal points obtained in this way forms a projective space
over some subfield GF(q’) of GF(g") then the flock we started with is called
a semifield flock, and the maximal subfield with this property is called the
kernel of the semifield flock. Hence the flock we obtained from W is a semi-
field flock with kernel containing GF(q).

Let v be the point (0, 0,0, 1) and let the conic C’ in the plane 7 with equation
X3 = 0 be the base of the cone K. The planes of the flock can be written as

T tXo — f(t)X1 + g(t)Xg +X3=0

where t € GF(¢") and f, g : GF(¢") — GF(q") and this flock is denoted
F(f,g9). X F(f,g) is a semifield flock then f and g are linear over the kernel
of F(f,g)- The known semifield flocks of K where the conic C’ is defined by
the equation Xy X, = X22 are the following.

1. The linear flock where f(t) = mt and g(t) = 0, m is a non-square in
GF(q").

2. The Kantor-Knuth semifield flock ([9] or [19]) where f(t) = mt?,
g(t) = 0, m is a non-square in GF(¢") and o is an GF(g)-automorphism
of GF(q").

3. The Cohen-Ganley semifield flock (from [6], see [15]) where ¢" = 37,
f(t) =m 't +mt® and g(t) = 3 with m a non-square in GF(g").

4. The semifield flock ([1]) arising from the Penttila-Williams ovoid ([17])
in Q(4,¢") where ¢" = 3%, f(t) = t° and g(t) = t*".

We will often use the following theorem. The first part is trivial, the second
part follows from Thas [19].

Theorem 3.1 (From [5]) If F(f,g) is a semifield flock of a quadratic cone
in PG(3,q™), q odd, with kernel GF(q). If n =1 then F(f,g) is linear, and
if n =2 then F(f,g) is of Kantor-Knuth type.

If there exists an external line w.r.t. C intersecting V' in a subline over
GF(q), then we can apply Theorem 2.4, and this does not require that W'
is an (n — 1)-space over GF(q). It follows that our result does not only
apply to semifield flocks, but to all flocks with the property that in the dual
flock model the set of points W' contains a subline of order ¢ contained in
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an external line w.r.t. the conic C. Before we state the next theorem we
introduce the following notation. Let £(F) denote the set of lines contained
in at least two planes of the flock F of a quadratic cone K, and let P(F)
denote the set of planes through the vertex of the cone and containing a line
of L(F).

Theorem 3.2 If F is a flock of a quadratic cone K in PG(3,q"), q odd, and
P(F) contains a dual subline of order q on a line not contained in a tangent
plane to K then ¢ < 4n? —8n +2 and ¢ < 2n? — (4 — 2/3)n + (3 — 2V/3) if
q 18 prime.

Proof. Suppose LP is a dual subline of order g not on a tangent plane to K.
Then in the dual flock model L is a subline of order ¢ consisting of internal
points of a non-degenerate conic C contained in an external line w.r.t. C.
Applying Theorem 2.4 concludes the proof. |

Remark 3.3 Note that if F is a linear flock then |L(F)| =1 and hence F
does not satisfy the hypotheses of Theorem 3.2. If F is the Kantor-Knuth
semifield flock, then P(F) is contained in a dual line of order q". Since
these flocks exist for any odd prime power q, n > 2, it must follow that the
dual line is on a line contained in some tangent plane to the cone. One
easily verifies this using the explicit description of the Kantor-Knuth flocks
given before.

If F is a semifield flock we obtain the following.

Corollary 3.4 If F is a non-linear semifield flock of a quadratic cone K
in PG(3,q"), q odd, with kernel GF(q), and F is not of Kantor-Knuth type
then q < 4n®> —8n+2, and q < 2n% — (4 — 2v/3)n + (3 — 2V/3) if q is prime.

Proof. Since F is not linear and not of Kantor-Knuth type, it follows that
n > 3 and F induces a subplane of order ¢ contained in the set of internal

points of a non-degenerate conic. The result follows from Theorem 2.5.
[ |

3.2 Ovoids of Q(4,q")

The generalized quadrangle Q(4,q") is the incidence structure of points and
lines of a non-degenerate quadratic form over PG(4, ¢") (see [16]). An ovoid
of Q(4,¢") is a set of ¢>" + 1 points no two of which are collinear in Q(4, ¢").
As usual we denote the generalized quadrangle constructed from a conic C
by Tits (see [16]) by T5(C). It is well known that T5(C) = Q(4, ¢"), see [16],
or [13, Section 3.5] for more details.

Dualising PG(2,¢") w.r.t. C over GF(q) one obtains a (2n — 1)-space WP
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over GF(q) skew from C. Consider T5(C) in PG(3,¢") and let V be the set
of affine points of a 2n-space over GF(q) of PG(3, ¢") intersecting PG(2, ¢")
in WP. Then VU {(00)} (where (co0) denotes as usual the translation point
of Ty(C), see [16]) is a set of ¢> + 1 points of T>(C) no two points of which
are collinear, and hence defines an ovoid of (4, ¢"™). Conversely suppose O
is an ovoid of Q(4,¢"). Then for every point P; (i = 1,...,¢°® + 1) of O
we might consider the 75(C;) model of Q(4,4"), where C; is the base of the
cone K; obtained by intersecting Q(4,¢") with the polar space of P;, and in
every one of these @ induces a set V; of ¢®" affine points, such that every
line containing two of these points is skew from C;. Let WP denote the set
of points of the plane m; containing the conic C; obtained in this way. If one
of the sets V; is the set of affine points of a projective space over a subfield
of GF(¢"), then the ovoid is called a translation ovoid; the point P; is called
the translation point of the ovoid, and the maximal subfield of GF(¢™) with
this property is called the kernel of the translation ovoid. If this is the case
and if GF(q) is the kernel of the ovoid then the set WP is a (2n — 1)-space
over GF(q), skew from C; and induces an (n — 1)-space W; contained in the
set of internal points of C;.

The list of known translation ovoids follows from the list of known semi-
field flocks; the linear flock corresponds to an elliptic quadric of PG(3,¢")
contained in Q(4,49™). We call an ovoid corresponding to a Kantor-Knuth
semifield flock, an ovoid of Kantor-Knuth type.

If there exists an external line w.r.t. C; intersecting W; in a subline of
order ¢, then we can apply Theorem 2.4. If follows that our result does
not only apply to translation ovoids, but to all ovoids of Q(4,¢™) with the
property that one of the sets W;P contains a dual subline of order ¢ on an
internal point of C;. We have proved the following theorem.

Theorem 3.5 If O is an ovoid of Q(4,q"), q odd, and W;P contains a dual
subline of order q on an internal point of C;, for some i € {1,...,¢*" + 1}
then q < 4n®> —8n+2, and q < 2n% — (4 — 2V/3)n + (3 — 2V/3) if q is prime.

If O is a translation ovoid of Q(4,¢™) we obtain the following.

Corollary 3.6 If O is a translation ovoid of Q(4,q"), q odd, with kernel
GF(q), and O is not an elliptic quadric and not of Kantor-Knuth type then
qg<4n? —8n+2 and ¢ < 2n? — (4 — 2/3)n + (3 — 2v/3) if q is prime.

Proof. Since O is not an elliptic quadric and not of Kantor-Knuth type, it
follows that n > 3 and O induces a subplane contained in the set of internal
points of a conic. Applying Theorem 2.5 concludes the proof. |
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3.3 Semifields

A semifield is an algebra satisfying the axioms for a skew field except (pos-
sibly) associativity. The study of finite semifields was initiated almost a
century ago by Dickson in [8]. Their relevance in the theory of translation
planes (class V.1 in the Lenz-Barlotti classification) is well known and can
be found in Dembowski [7], where the properties of the collineation group
of the plane correspond to the properties of the ternary ring obtained by
coordinatising the plane. The middle nucleus of a semifield S is the set
{r € § || a(zb) = (ax)b Va,b € S}. If a semifield is commutative and of
rank two over its middle nucleus then S is called a rank two commutative
semifield. These are the kind of semifields which are connected with a sub-
space contained in the set of internal points of a conic, see e.g. [4], [3].

For more on semifields and the connections with the previous two sections
we refer to [4], [2], [3]. Here we only state the following corollary. It improves
[2, Theorem 1.1] in the case ¢ is a prime.

Corollary 3.7 Let S be a commutative semifield of rank 2n over GF(p),
p an odd prime, and of rank 2 over its middle nucleus GF(p"). If p >
2n% — (4 —2/3)n+ (3 —2+/3) then S is either a Dickson semifield or a field.

Proof. Completely analogous to the proof of [2, Theorem 1.1]. [ |

3.4 Eggs and Translation Generalized Quadrangles

An egg E(n,m,q) in PG(2n + m — 1,q) is a partial (n — 1)-spread of size
g™ + 1 such that every 3 egg elements span a (3n — 1)-space and for every
egg element F there exists an (n + m — 1)-space, denoted by Tg and called
the tangent space of £ at E, containing F but disjoint from every other egg
element. The idea of eggs was introduced by Thas in 1971 [18] and it turned
out later, see Payne and Thas [16], that the theory of eggs is equivalent to
the theory of translation generalized quadrangles (TGQ’s). If n = m then
E(n,m,q) is called a pseudo-oval and if 2n = m then £(n,m,q) is called
a pseudo-ovoid. If we take an oval in PG(2,¢™), respectively an ovoid in
PG(3,¢™), and consider the ambient space over GF(q), then we obtain a
pseudo-oval, respectively a pseudo-ovoid, and hence the motivation to use
that name. The examples constructed in this way are called elementary. In
a similar way one can construct an egg £(n',m/,q') from an egg £(n,m,q)
for every ¢' dividing g. We assume from now on that the notation & (n,m, q)
implies that £ can not be constructed from an egg £(n',m',¢'), with ¢ < ¢,
and in this case we say that GF(q) is the kernel of the egg E(n,m,q). A
pseudo-ovoid is called good at an element E if every (3n — 1)-space contain-
ing F and two other egg elements contains exactly ¢ + 1 egg elements, and
in that case F is called the good element.
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It follows from [20] that good eggs of PG(4n — 1,q), ¢ odd, are equiva-
lent to semifield flocks (see also [12]). In [13, Section 3.7] a geometrical
construction was given of a good egg of PG(4n — 1, g) starting from a semi-
field flock, in particular from W. It follows that we can list the known
examples as we did for semifield flocks. The linear flock corresponds to an
elementary egg arising from an elliptic quadric of PG(3,¢"); we call an egg
corresponding to a Kantor-Knuth semifield flock, and egg of Kantor-Knuth
type. We immediately have the following.

Corollary 3.8 If€ is a good egg of PG(4n—1, q), with kernel GF(q), q odd,
and & is not elementary and not of Kantor-Knuth type then q¢ < 4n? —8n+2
and g < 2n? — (4 — 2v/3)n + (3 — 2V/3) if q is prime.

Without assuming that the egg has a good element we get the following.

Corollary 3.9 Let & be an egg of PG(4n — 1,q), q odd. If there exists
a (3n — 1)-space p containing an elementary pseudo-oval Oy contained in
&, corresponding to an oval O of PG(2,q"), and there is a tangent space
intersecting p in a (2n — 1)-space U containing a dual subline of order q on
an internal point w.r.t. O then ¢ < 4n? —8n+2 and q < 2n? — (4—2v/3)n+
(3 — 2v/3) if q is prime.

Proof. First note that £ cannot be elementary nor of Kantor-Knuth type
since in these cases U does not contain a dual subline of order ¢ on an
internal point w.r.t. @. This follows from Remark 3.3 and the geometric
between semifield flocks and good eggs from [13, Section 3.7]. Suppose
Oy is an elementary pseudo-oval contained in £. Then since ¢ is odd, the
corresponding oval O of PG(2,4¢™") is a conic of PG(2,¢™). If there is a
tangent space intersecting p in a (2n — 1)-space U containing a dual subline
of order ¢ on an internal point w.r.t. O then it follows from the definition of
an egg that U is skew from O, and hence we obtained a (2n — 1)-space over
GF(q) skew from a conic O of PG(2,4¢"), containing a dual subline of order
g on an internal point w.r.t. O. After dualising w.r.t. O over GF(q) we
get an external line of PG(2,¢™) containing a subline of order ¢ contained
in the set of internal points of a conic in PG(2,¢"). Applying Theorem 2.4
concludes the proof. [ |

Remark 3.10 Since the theory of eggs is equivalent to the theory of transla-
tion generalized quadrangles (TGQ), Corollary 3.8 immediately has its con-
sequences in the theory of TGQ’s. For the definition of a TGQ we refer to

[16].
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