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Abstract

A projective plane is called a translation plane if there exists a line L such that the group of elations
with axis L acts transitively on the points not on L. A translation plane whose dual plane is also a trans-
lation plane is called a semifield plane. The ternary ring corresponding to a semifield plane can be made
into a non-associative algebra called a semifield, and two semifield planes are isomorphic if and only if the
corresponding semifields are isotopic. In [S. Ball, G. Ebert, M. Lavrauw, A geometric construction of finite
semifields, J. Algebra 311 (1) (2007) 117–129] it was shown that each finite semifield gives rise to a par-
ticular configuration of two subspaces with respect to a Desarguesian spread, called a BEL-configuration,
and vice versa that each BEL-configuration gives rise to a semifield. In this manuscript we investigate the
question when two BEL-configurations determine isotopic semifields. We show that there is a one-to-one
correspondence between the isotopism classes of finite semifields and the orbits of the action a subgroup
of index two of the automorphism group of a Segre variety on subspaces of maximum dimension skew to
a determinantal hypersurface.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

By results of Hilbert [9] and Hall [8], it is well known that to each frame of a projective
plane there corresponds a ternary ring, obtained by coordinationisation. If the projective plane
is non-Desarguesian and both a translation plane and a dual translation plane, then the ternary
ring, associated to a frame which shares two points with the translation line, becomes a non-
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associative algebra, called a semifield. In the earlier literature (predating 1965) these algebras
were also called division algebras or distributive quasifields. The study of semifields was initiated
about a century ago by Dickson [6], shortly after the classification of finite fields, taking a purely
algebraic point of view. By now, the theory of semifields has become of considerable interest
in many different areas of mathematics. Besides the numerous links with finite geometry (e.g.
translation planes, generalised quadrangles, . . . ), semifields arise in the context of difference sets,
coding theory and group theory. In this paper we will only consider finite structures.

A finite semifield S is an algebra with at least two elements, and two binary operations +
and ◦, satisfying the following axioms:

(S1) (S,+) is a group with identity element 0.
(S2) x ◦ (y + z) = x ◦ y + x ◦ z and (x + y) ◦ z = x ◦ z + y ◦ z, for all x, y, z ∈ S.
(S3) x ◦ y = 0 implies x = 0 or y = 0.
(S4) ∃1 ∈ S such that 1 ◦ x = x ◦ 1 = x, for all x ∈ S.

A finite field is a trivial example of a semifield. The first non-trivial examples were constructed
by Dickson in [6]. One easily shows that the additive group of a semifield is elementary abelian,
and the additive order of the elements of S is called the characteristic of S. Non-isomorphic
semifields can coordinatise isomorphic planes. Albert [1] proved that two semifields coordinatise
isomorphic planes if and only if there exists three maps (t1, t2, t3), linear over some subfield of
the semifields, that map elements of S1 to S2 and that satisfy, for all x, y ∈ S1,

t1(x) ◦ t2(x) = t3(x · y),

where · is multiplication in S1 and ◦ is multiplication in S2. If such maps exist then we say that
the semifields S1 and S2 are isotopic. For further definitions of the nucleus, the left, middle, and
right nucleus of S, etc., we refer to the excellent paper [16] (or [5, Chapter 5], [11, Chapter 8]).
For an overview of the known semifields and the number of semifields of a given order up to
isotopism, we refer to [14] or [12]. Recently many new semifields have been constructed, see
e.g. [15,13,7,19].

In [3] a geometric construction method was given for semifields, starting from a particular
configuration of subspaces in a vector space, and it was shown that all semifields can be con-
structed that way. One of the remarks in that paper [3, Remark 4.4] points out the problem of
determining whether two such configurations give isotopic semifields or not (except when the
semifield is two-dimensional over its left nucleus, in which case the BEL-configuration can be
reduced to a subgeometry skew to a hyperbolic quadric [3, Final Remarks], and then the question
is answered by [4, Theorem 2.1]). In other words, when considering the isotopism classes of finite
semifields (or equivalently, the isomorphism classes of semifield planes), it was not clear how to
determine the set of configurations corresponding to that isotopism class. We settle this question
by showing that there is a one-to-one correspondence between the isotopism classes of finite
semifields and the orbits of the action of a subgroup of index two of the automorphism group of
a determinantal hypersurface on subspaces of maximum dimension skew to that hypersurface.

The details of the construction for finite semifields given in [3] will be recalled in Section 3.
In Section 2 we establish the necessary connections between determinantal hypersurfaces, Segre
varieties and Desarguesian spreads, with some interesting corollaries, in order to prove the crucial
Theorem 11. Finally, in Section 4 we prove the main theorem.
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We end this section with a few definitions and some notation that will be used throughout the
paper.

Let PG(V ) denote the projective space induced by the vector space V . If we want to specify
the dimension d and the field F of scalars of a vector space, then we write V (d,F) (or V (d, q) if
F = Fq , the finite field of order q), and similarly for the corresponding projective space PG(V ),
we write PG(d − 1,F) (or PG(d − 1, q)).

A spread of V = V (d, q) is a set S of subspaces of V , all of the same dimension d ′, 1 �
d ′ � d , such that every non-zero vector of V is contained in exactly one of the elements of S . It
follows that d ′ divides d and that |S| = (qd −1)/(qd ′ −1) (see [5]). A trivial example of a spread
of V is the set of all subspaces of dimension 1 of V . In the case that d is even and d ′ = d/2 we
call a spread of V a semifield spread if there exists an element S of this spread and a group G of
semilinear automorphisms of V with the property that G fixes S pointwise and acts transitively
on the other elements of the spread. Spreads play a key role in the theory of translation planes
due to the André–Bruck–Bose construction (see [5]).

Assume n � 2, consider V (d, qn) as a vector space V (dn,q) of dimension dn over Fq and
consider the spread of subspaces of dimension n over Fq in V (dn,q) arising from the spread
of subspaces of dimension 1 over Fqn in V (d, qn). Such a spread (i.e., arising from a spread of
subspaces of dimension 1 over some extension field) is called a Desarguesian spread. A Desar-
guesian spread has the property that it induces a spread in every subspace spanned by elements
of the spread.

It should be clear to the reader that all of the above notions, defined in terms of vector spaces,
can also be defined in terms of projective spaces. In this paper we will use the same terminology
for both points of view.

2. Higher secant varieties to Segre varieties and Desarguesian spreads

Let V2 denote the n2-dimensional vector space of (n × n)-matrices (n � 2) over Fq , and
consider the set Sn,n of points in PG(V2) corresponding to all the (n × n)-matrices of rank
one. The set Sn,n is called the Segre variety, see e.g. [10, Theorem 25.5.7]. The study of these
varieties dates back (at least) to Segre (1891) [21], where a completely different and more general
definition was given (using coordinates) (see also [10]). For our purposes the above definition
suffices. Let us summarize a few well-known facts, restricted to Sn,n. The proofs can be found
in [10].

Theorem 1. The Segre variety Sn,n is the intersection of quadrics of PG(n2 − 1, q).

Theorem 2. There are two systems Σ1 and Σ2 of maximal subspaces contained in Sn,n, and
each point of Sn,n is contained in exactly one element of each Σi . Also, each element of Σ1 has
exactly one point in common with each element of Σ2, the elements of Σi have dimension n − 1,
and each subspace contained in Sn,n of dimension s > 0 is contained in a unique element of
Σ1 ∪ Σ2.

Theorem 3. The subgroup H(Sn,n) of PGL(n2, q) fixing both systems Σ1 and Σ2 of Sn,n is iso-
morphic to PGL(n, q) × PGL(n, q). If G(Sn,n) denotes the subgroup of PGL(n2, q) fixing Sn,n,
then H(Sn,n) has index two in G(Sn,n).
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The set of points of PG(V2) that are contained in a line generated by points of Sn,n is called
the secant variety Ω1 of Sn,n, and corresponds to the matrices of rank at most two. Similarly, one
defines the kth secant variety Ωk for all 1 � k � n − 1 corresponding to matrices of rank at most
k + 1. In this way the (n − 1)th secant variety of Sn,n consists of all the points of PG(V2), while
the (n − 2)th secant variety corresponds to the singular matrices, i.e., Ωn−2 is the determinantal
hypersurface in PG(V2). Also note that Ω0 = Sn,n.

Theorem 4. The points of the Segre variety are the points of a determinantal hypersurface in
PG(V2) with multiplicity n − 1.

Proof. If n = 2, then the theorem states that the Segre variety in PG(3, q) has no singular points,
which is well known, since it is a non-singular hyperbolic quadric in PG(3, q). Assume n � 3.
The points of Ωn−2 are the points of the algebraic variety V (F (X0, . . . ,Xn2−1)), with

F(X0, . . . ,Xn2−1) := det

⎛
⎜⎜⎝

X0 X1 · · · Xn−1
Xn Xn+1 · · · X2n−1
...

...
...

Xn2−n Xn2−n+1 · · · Xn2−1

⎞
⎟⎟⎠ .

The singular points of Ωn−2 are those points that vanish on all partial derivatives ∂F/∂Xi , i =
0, . . . , n2 − 1. Denote the above matrix by X. In order to calculate the derivatives ∂F/∂Xi ,
i = 0, . . . , n2 − 1, we use Jacobi’s formula for the differential of the determinant

∂F

∂Xi

= ∂det X
∂Xi

= (det X) trace

(
X−1 ∂X

∂Xi

)
.

Since ∂X/∂Xi is the matrix with a zero in every entry except on the (�i/n� + 1)th row and the
((i mod n) + 1)th column (where the entry is one), we obtain

∂F

∂Xi

= (det X)
(
X−1)

kl
= (−1)k+lXlk,

where k := i (mod n) + 1, and l := �i/n� + 1, and Xlk denotes the lkth minor of X. Since

{(
i (mod n) + 1, �i/n� + 1

)
: i ∈ {

0,1, . . . , n2 − 1
}} = {1, . . . , n}2,

it follows that the set of singular points of Ωn−2 is the set of points contained in each of the
hypersurfaces V (Xij ), 1 � i, j � n. By definition this set of points equals Ωn−3. In the same
way one easily verifies that the singular points of Ωn−3 (if n � 4) correspond to the (n × n)-
matrices with all (n − 2) × (n − 2) minors equal to zero, which proves that the points of Ωn−4
are the singular points of Ωn−3, and the double points of Ωn−2. Continuing this process we
may conclude that the points of Ω0, i.e., the Segre variety Sn,n, are the points of Ωn−2 with
multiplicity n − 1. �

The following corollary is an easy consequence from the last part of the proof of Theorem 4.

Corollary 5. The points of the kth secant variety Ωk of the Segre variety are the points of a
determinantal hypersurface Ωn−2 with multiplicity n − k.
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Corollary 6. Each secant variety Ωk−1, 2 � k � n, has the same automorphism group in
P�L(n2, q), namely, the automorphism group of the Segre variety Sn,n.

Proof. Denote the subgroup of P�L(n2, q) fixing a set of points U by Aut(U). That each auto-
morphism of Ωk−1, 1 � k � n, induces an automorphism of the Segre variety Ω0 follows from
Theorem 4 and the fact that an automorphism of an algebraic variety leaves invariant the set of
points on that variety with given multiplicity. Hence we have a well-defined morphism

ρ : Aut(Ωk−1) → Aut(Ω0).

That ρ is an epimorphism can be seen geometrically, since each point P on Ωk−1 is contained in
the subspace spanned by k points P1, . . . ,Pk of Ω0. This geometric interpretation also implies
that the kernel of ρ consists only of the identity. This implies that Aut(Ωk−1) ∼= Aut(Ω0). �

The following theorem concerns the structure of the secant varieties and the subspaces lying
on these varieties.

Theorem 7. Each secant variety Ωk−1, 2 � k � n, can be partitioned by elements of a Desar-
guesian spread of PG(V2).

Proof. Consider the tensor product Fqn ⊗q Fqn as a vector space over Fq , and the isomorphism ζ

between vectorspaces

ζ : Fqn ⊗q Fqn → V2

v =
n−1∑
i,j

xij (vi ⊗ vj ) �→ vζ = (xij ), xij ∈ Fq,

where {v0, . . . , vn−1} is some fixed basis for Fqn over Fq . If, for each v ∈ Fqn ⊗q Fqn , we define
the following subspace of Fqn ⊗q Fqn

Sn(v) := {av | a ∈ Fqn},

where multiplication by a ∈ Fqn is defined by

av :=
n−1∑
i,j

xij

(
(avi) ⊗ vj

)
,

then it is straightforward (see e.g. [17]) that the set

Σ := {
Sn(v)ζ

∣∣ v ∈ Fqn ⊗q Fqn

}
is a Desarguesian spread of V2. Since the image under ζ of each two tensors contained in a given
element Sn(v) of Σ have the same rank, it follows that the kth secant variety in PG(V2) either
contains the subspace PG(Sn(v)ζ ), or intersects it trivially. Since Σ is a spread, the theorem
follows. �
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Let V1 denote the n2-dimensional vector space of (Fqn)n over Fq . For any point P ∈ PG(V1)

with coordinates (x0, x1, . . . , xn−1) define the (n − 1)-dimensional subspace

B(P ) := {
(ax0, ax1, . . . , axn−1): a ∈ Fqn

}
, (1)

and extend this notation to any subspace T of PG(V1), i.e., put B(T ) := {B(P ): P ∈ T }. Define
the set

D := {
B(P ): P ∈ PG(V1)

}
. (2)

Lemma 8. The set D is a Desarguesian spread of PG(V1).

Proof. This is the standard construction of a Desarguesian spread. �
The following lemma provides us with an explicit bijection for the well-known one-to-one

correspondence between the set of linear transformations of a vector space V (n, q) (represented
as matrices) and the set of q-polynomials over Fqn . For a proof we refer to [20] (or [18, pp. 361–
362]).

Lemma 9. The matrix of the linear transformation induced by the q-polynomial

L(x) :=
n−1∑
i=0

αix
qi

, αi ∈ Fqn,

on the n-dimensional vector space V (n, q) over Fq , with respect to the basis {u0, . . . , un−1} of
V (n, q) is given by

ML := U−1AαU,

where U and Aα are defined by

U :=

⎛
⎜⎜⎜⎝

u0 u1 · · · un−1
u

q

0 u
q

1 · · · u
q

n−1
...

...
...

u
qn−1

0 u
qn−1

1 · · · u
qn−1

n−1

⎞
⎟⎟⎟⎠ (3)

and

Aα :=

⎛
⎜⎜⎜⎝

α0 α1 · · · αn−1
α

q

n−1 α
q

0 · · · α
q

n−2
...

...
...

α
qn−1

1 α
qn−1

2 · · · α
qn−1

0

⎞
⎟⎟⎟⎠ (

α := (α0, . . . , αn−1)
)
. (4)

This allows us to construct the following explicit isomorphism between V1 and V2.
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Lemma 10. The map V1 → V2 that maps the vector (x0, x1, . . . , xn−1) to the matrix
U−1A

(x0,x
q
1 ,...,x

qn−1

n−1 )
U defines an isomorphism between V1 and V2.

Proof. One easily verifies that

U−1A
(ax0,(ax1)

q ,...,(axn−1)
qn−1

)
U = aU−1A

(x0,x
q
1 ,...,x

qn−1

n−1 )
U,

∀a ∈ Fq , ∀x0, . . . , xn−1 ∈ Fqn , and

U−1A
(x0,x

q
1 ,...,x

qn−1

n−1 )
U + U−1A

(y0,y
q
1 ,...,y

qn−1

n−1 )
U

= U−1A
(x0+y0,(x1+y1)

q ,...,(xn−1+yn−1)
qn−1

)
U,

∀x0, . . . , xn−1, y0, . . . , yn−1 ∈ Fqn . �
The next theorem links the subspace W used in [3] to the Segre variety.

Theorem 11. The set of points contained in the spread elements of the Desarguesian spread D
intersecting

W :=
{〈(

−
n−1∑
i=1

z
qi

i , z1, z2, . . . , zn−1

)〉
: zi ∈ Fqn

}
⊂ PG(V1) (5)

is projectively equivalent to the set of points of the (n − 2)th secant variety Ωn−2 to a Segre
variety.

Proof. Consider the collineation Ψ between the corresponding projective spaces

Ψ : PG(V1) → PG(V2), (6)

induced by the isomorphism from Lemma 10

V1 → V2: (x0, x1, . . . , xn−1) �→ U−1AαU, α = (
x0, x

q

1 , . . . , x
qn−1

n−1

)
.

Let P = 〈(x0, . . . , xn−1)〉 be a point of PG(V1). It follows from Lemma 9 that P Ψ corresponds
to the matrix ML, where L(Y ) is the q-polynomial given by

L(Y ) :=
n−1∑
i=0

x
qi

i Y qi

. (7)

This implies that P Ψ is a point of Ωn−2 if and only if ML is singular if and only if there exists
an a ∈ F

∗
n such that
q
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n−1∑
i=0

(xia)q
i = 0,

or equivalently, there exists an a ∈ F
∗
qn such that

〈
(ax0, ax1, . . . , axn−1)

〉 ∈ W .

It follows that the matrix corresponding to P Ψ is singular if and only if B(P ) ∈ B(W ). This
provides us with a one-to-one correspondence between the set of points

{
P ∈ PG

(
n2 − 1, q

)
: B(P ) ∈ B(W )

}
and the points of the secant variety Ωn−2. �

An immediate corollary of the proof of Theorem 11 and Lemma 9 is the following.

Corollary 12. The secant variety Ωk , 1 � k � n − 2, can be partitioned by elements of B(W )Ψ ,
where Ψ is defined by (6). In particular, the elements of D intersecting W partition the pointset
of a determinantal hypersurface in PG(V1).

Proof. In order to show that the elements of B(W ) partition Ωk , 1 � k � n − 2, as in the proof
of Theorem 7, it suffices to show that any two points of an arbitrary B(P )Ψ have the same rank.
Let P have coordinates (x0, x1, . . . , xn−1) and consider a second point P ′ in B(P ), say with
coordinates (ax0, ax1, . . . , axn−1) for some a ∈ F

∗
qn . By Lemma 9, the rank of P Ψ equals the

codimension of the solution space of the linear transformation given by the q-polynomial L(Y )

defined in (7). Similarly the rank of P ′Ψ equals the codimension of the solution space of the
linear transformation given by the q-polynomial

n−1∑
i=0

(axi)
qi

Y qi

.

Since these solution spaces have the same dimension (use the substitution Y �→ a−1Y ), it follows
that P Ψ and P ′Ψ have the same rank. �
3. Finite semifields and the BEL-construction

The geometric construction method for finite semifields given in [3] gives a correspondence
between finite semifields and particular configurations of subspaces with respect to a Desargue-
sian spread of a projective space (which we will refer to as a BEL-configuration). In the original
BEL-configuration of a semifield of order qn, apart from q and n, there is an extra parameter r

involved. In particular, starting from a Desarguesian (n − 1)-spread D, and any two subspaces
U and W of PG(rn − 1, q), r � 2, of dimension n − 1 and rn − n − 1, respectively, such that
B(U) ∩ B(W) = ∅, one obtains a semifield S(U,W) of order qn. As before, we use the notation
B(T ) to denote the set of elements of the Desarguesian spread that intersect the subspace (or
subset) T . The construction goes as follows:
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• Embed PG(rn − 1, q) in PG(rn + n − 1, q) and extend D to a Desarguesian spread D′ of
PG(rn + n − 1, q).

• Let A be an n-dimensional subspace of PG(rn + n − 1, q) which intersects PG(rn − 1, q)

in U .
• Let S(U,W) be the set of subspaces defined by B(A) in the quotient geometry PG(2n−1, q)

of W , i.e.,

S(U,W) = {〈R,W 〉/W : R ∈ B(A)
}
.

In [3, Theorem 2.2] it was shown that S(U,W) is a semifield spread of PG(2n − 1, q). The cor-
responding semifield is denoted by S(U,W). Also in [3] it was proved that each finite semifield
can be obtained this way.

Theorem 13. (See [3, Theorem 4.1].) For every finite semifield S, there exist n � 1, a prime p

and subspaces U and W in PG(n2 − 1,p), of dimension n− 1 and n2 −n− 1, respectively, such
that S is isotopic to S(U,W).

4. Isotopism and the BEL-construction

When dealing with semifields, one is often confronted with the problem of determining
whether two semifields are isotopic, or equivalently (by [1]), when the corresponding projective
planes are isomorphic, or equivalently when the corresponding spreads are isomorphic (by [2])
(sometimes called equivalent). In [3] the following theorem was proved.

Theorem 14. Let S(U,W) and S(U ′,W ′) be two semifields constructed from subspaces U , U ′,
W , W ′ of PG(rn − 1, q). If there exists an element ϕ of P�L(rn, q), fixing the Desarguesian
spread D, and such that Uϕ = U ′ and Wϕ = W ′, then S(U,W) and S(U ′,W ′) are isotopic
semifields.

This theorem still leaves open the possibility for two BEL-configurations to give isotopic
semifields, although they do not allow a semilinear collineation of PG(rn − 1, q) as in Theo-
rem 14. That this also happens, was one of the problems unresolved in the original paper, see [3,
Remark 4.4]. We investigate this problem here.

Although the parameter r might be useful to construct new examples (by keeping it small), it
is an obstacle when we want to deal with the isotopism issue. Let us illustrate the second part of
this statement.

Suppose we have a BEL-configuration (U,W) in Λrn−1 := PG(rn − 1, q). Denote the
(rn + n − 1)-dimensional space used to construct the semifield spread S(U,W) by Λrn+n−1; so
D′ is a Desarguesian spread of Λrn+n−1. Let Λ′

rn+n−1 denote a PG(rn+n− 1, q) that intersects
Λrn+n−1 in Λrn−1, and denote 〈Λrn+n−1,Λ

′
rn+n−1〉 by Λrn+2n−1. Extend D′ to a Desargue-

sian spread Drn+2n−1 of Λrn+2n−1 in such a way that Λ′
rn+n−1 is partitioned by elements of

Drn+2n−1.
Now define W ′ = 〈W,T 〉, for some T ∈ Drn+2n−1 \ D, with T ⊂ Λ′

rn+n−1.

Theorem 15. The pair (U,W ′) forms a BEL-configuration in Λ′
rn+n−1 and the semifields

S(U,W) and S(U,W ′) are isotopic.
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Proof. Clearly we obtain a BEL-configuration (U,W ′) in Λ′
rn+n−1: each element of B(U) is

skew to each element of B(W ′), since an element of B(W ′) is either in B(W) or skew to Λrn−1.
In order two show that the semifields S(U,W) and S(U,W ′) are isotopic, consider the map
defined on the points of Λrn+2n−1/W ′:

γ :Λrn+2n−1/W ′ → Λrn+n−1/W

P̄ = 〈P,W ′〉/W ′ �→ (〈P,W ′〉 ∩ Λrn+n−1
)
/W.

The map γ is well defined since each subspace 〈P,W ′〉, for a point P ∈ Λrn+2n−1 \ W , meets
Λrn+n−1 in a subspace of dimension rn − n which contains W . Next, suppose P̄ γ = Q̄γ , i.e.,

(〈P,W ′〉 ∩ Λrn+n−1
)
/W = (〈Q,W ′〉 ∩ Λrn+n−1

)
/W,

for some P and Q in Λrn+2n−1 \ W . This implies that

〈(〈P,W ′〉 ∩ Λrn+n−1
)
,W

〉 = 〈(〈Q,W ′〉 ∩ Λrn+n−1
)
,W

〉
,

and hence

〈(〈P,W ′〉 ∩ Λrn+n−1
)
,W ′〉 = 〈(〈Q,W ′〉 ∩ Λrn+n−1

)
,W ′〉.

Since

〈(〈P,W ′〉 ∩ Λrn+n−1
)
,W ′〉 = 〈P,W ′〉,

for each point P ∈ Λrn+2n−1 \ W , it follows that 〈P,W ′〉 = 〈Q,W ′〉, and hence P̄ = Q̄. This
shows that γ is injective. It follows that γ is a bijection between the (2n − 1)-dimensional pro-
jective spaces Λrn+2n−1/W ′ and Λrn+n−1/W . In order to show that γ is a collineation, consider
three collinear points P̄1, P̄2, and P̄3 in Λrn+2n−1/W ′. The subspace spanned by P1, P2, and W ′
then contains 〈P3,W

′〉, and this means that

〈P3,W
′〉 ∩ Λrn+n−1 ⊂ 〈〈P1,W

′〉 ∩ Λrn+n−1, 〈P2,W
′〉 ∩ Λrn+n−1

〉
.

This is equivalent to saying that P̄
γ

1 , P̄
γ

2 and P̄
γ

3 are collinear points. It follows that γ is a
bijection between the (2n − 1)-dimensional projective spaces Λrn+2n−1/W ′ and Λrn+n−1/W

mapping collinear points to collinear points, i.e., a collineation. It is easy to see that γ maps the
spread S(U,W ′) onto the spread S(U,W), i.e., S(U,W) and S(U,W ′) are isotopic. �

Note that increasing the parameter r without changing the isotopism class of the semifield, as
illustrated by Theorem 15, can also be reversed until we reach a W that equals 〈B(U)〉 ∩ W . We
know that 〈B(U)〉 is partitioned by spread elements, and so if W is larger than 〈B(U)〉 ∩ W , we
can continue picking a T from the elements of B(W) which do not belong to 〈B(U)〉, and reverse
the arguments used in Theorem 15, in order to obtain a BEL-configuration with a W satisfying
W = 〈B(U)〉 ∩ W .

Theorem 15 shows that it is impossible to give a satisfactory solution to the isotopism problem
for BEL-configurations without specifying the parameter r . In fact, even for a specific r , there
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are too many parameters in the BEL-configuration in order to solve the isotopism problem as
illustrated by [3, Remark 4.4] (also pointed out in [15]).

We can remove the excess of freedom as follows. As mentioned before, in [3] it was proved
that a finite semifield can be constructed from a BEL-configuration (U,W) with r = n. Also,
the parameters q and n are effectively only one parameter (namely the order of the semifield),
since two semifields can only be isotopic if they have the same order qn and hence the same
characteristic p. Together with the proof of Theorem 4.1 in [3] this guaranties us that it suffices
to restrict ourselves to BEL-configurations (U, W ) in a projective space PG(n2 − 1,p), where p

is prime, and where W is defined by (5) (with q = p).
It should be noted that we could have made a different choice here. Instead of restricting

ourselves to BEL-configurations in PG(n2 − 1,p), p prime, when dealing with an isotopism
problem for semifields of order pn, we could have restricted ourselves to BEL-configurations
(U, W ) in PG(n2 − 1, q), where Fq is contained in the nucleus of the semifields of order qn.
The reason for this is that if one replaces the characteristic p of the semifield S in the proof of
Theorem 4.1 in [3] by the size of the nucleus of S, one obtains a proof for the following theorem.

Theorem 16. For every semifield S, there exist subspaces U and W of PG(n2 − 1, q), where Fq

is contained in the nucleus of S, such that S(U,W) is isotopic to S.

Proof. Replace p by q in the proof of Theorem 4.1 of [3], and start with the multiplication given
by

y ◦ x =
n−1∑
i,j=0

cij x
qi

yqj =
n−1∑
j=0

cj (x)yqj

,

with ci,j ∈ Fqn . �
The following theorem solves the isotopism-problem for BEL-configurations in PG(n2 −

1, q), with W given by (5).

Theorem 17. Two semifields S(U , W ) and S(U ′, W ), with W defined by (5), are isotopic if and
only if there exists a collineation φ of PG(V1) fixing B(W ) with U φ = U ′.

Proof. Suppose S = S(U , W ) and S
′ = S(U ′, W ), with W defined by (5), are isotopic semifields,

with multiplication given by

y ◦ x =
n−1∑
i,j=0

cij x
qi

yqj =
n−1∑
j=0

cj (x)yqj

and

y ◦′ x =
n−1∑
i,j=0

c′
ij x

qi

yqj =
n−1∑
j=0

c′
j (x)yqj

,

x, y ∈ Fqn , respectively. The subspaces U and U ′ corresponding to the semifields S and S
′, as in

the BEL-construction, are given by
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U := {〈(
c0(x), c1(x)1/q, . . . , cn−1(x)1/qn−1)〉

: x ∈ F
∗
qn

}
and

U ′ := {〈(
c′

0(x), c′
1(x)1/q, . . . , c′

n−1(x)1/qn−1)〉
: x ∈ F

∗
qn

}
,

respectively. The corresponding semifield spreads of PG(2n − 1, q), S and S ′, consist of the
subspace

S∞ = S′∞ = {
(0, y)

∣∣ y ∈ F
∗
qn

}
,

together with the subspaces

Sx = {
(y, y ◦ x)

∣∣ y ∈ F
∗
qn

}
and

S′
x = {

(y, y ◦′ x)
∣∣ y ∈ F

∗
qn

}
,

respectively. The image of U , respectively U ′, under the collineation Ψ : PG(V1) → PG(V2) de-
fined by (6), is given by

U Ψ = PG
({

Rx

∣∣ x ∈ F
∗
qn

}) ⊂ PG(V2),

with Rx = U−1AαU , α = (c0(x), . . . , cn−1(x)), and

U ′Ψ = PG
({

R′
x

∣∣ x ∈ F
∗
qn

}) ⊂ PG(V2),

with R′
x = U−1A′

αU , α′ = (c′
0(x), . . . , c′

n−1(x)). The matrices Rx , respectively R′
x , are the ma-

trices induced by right multiplication in the semifield S, respectively S
′. Since the semifields S

and S
′ are isotopic if and only if the spreads are isomorphic, and since the automorphism group

of a semifield spread (if the semifield is not a field), fixes one special element (in this case the el-
ement S∞, see [5]) and acts transitively on the other elements of the spread, we may assume that
the isomorphism β between the two spreads S and S ′, induced by the isotopy between S and S

′,
also fixes S0 = S′

0. With the representation of the semifield spreads S and S ′ of PG(2n− 1, q) as
above, it follows that β is of the form

(x, y) �→ (
Axσ ,Byσ

)
, (8)

where A and B are elements of GL(n, q), and σ ∈ Aut(Fq). It follows that the image of Sx

under β can be written as

Sβ
x = {(

Ayσ ,B(y ◦ x)σ
) ∣∣ y ∈ F

∗
qn

} = {(
z,B

((
A−σ−1

zσ−1) ◦ x
)σ ) ∣∣ z ∈ F

∗
qn

}
.

If S
β
x = S′

y for some y ∈ Fqn , then R′
y = BRσ

x A−1, which shows that the two semifields S and
S

′ are isotopic if and only if there exist non-singular matrices C (corresponding to B) and D

(corresponding to A−1) such that the two sets of matrices Rx and R′
x , are related by

{
R′

x

∣∣ x ∈ F
∗
qn

} = {
CRσ

x D
∣∣ x ∈ F

∗
qn

}
.
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This is if and only if there exists a collineation ϕ of PG(V2) such that U Ψ ϕ = U ′Ψ (where ϕ

is induced by the isomorphism X �→ CXσ D of V2), if and only if there exists a collineation
φ = Ψ ϕΨ −1 of PG(V1) such that U φ = U ′. Since C,D are both non-singular, X and CXσ D

have the same rank, which implies that ϕ fixes the kth secant variety, 1 � k � n− 2. In particular
ϕ fixes both families of maximal subspaces of the Segre variety, and hence, by Corollary 12,
φ fixes B(W ).

Conversely, suppose φ is a collineation of PG(V1) fixing B(W ), such that U φ = U ′. By The-
orem 11, Ψ −1φΨ fixes the determinantal hypersurface Ωn−2, and in particular Ψ −1φΨ fixes
the Segre variety, by Corollary 6. Moreover, since φ not only fixes the set of points contained
in the elements of B(W ), but also the elements of B(W ), Ψ −1φΨ also will fix both families
of maximal subspaces of the Segre variety (by Corollary 12). By [10] we find an automorphism
σ ∈ Aut(Fq), and non-singular (n × n)-matrices C and D over Fq which relate the sets of matri-
ces Rx and R′

x as in the first part of the proof. This is equivalent to an isotopy between the two
semifields S(U , W ) and S(U ′, W ). �

We denote the subgroup of P�L(n2, q) fixing both systems Σ1 and Σ2 of a Segre variety Sn,n

by H(Sn,n).

Theorem 18. There is a one-to-one correspondence between the isotopism classes of finite semi-
fields of order qn, with nucleus containing Fq , and the orbits of the action of H(Sn,n) on the
(n − 1)-dimensional subspaces of PG(n2 − 1, q) skew to the (n − 2)th secant variety Ωn−2
of Sn,n.

Proof. Combine Theorems 17 and 11. �
Theorem 19. There is a one-to-one correspondence between the isotopism classes of finite semi-
fields of order qn, with nucleus containing Fq , and the orbits of the action of a subgroup of index
two of the automorphism group of a determinantal hypersurface V on the subspaces of maximum
dimension skew to V .

Proof. It follows from Theorems 3 and 11 that the group H(Sn,n) is a subgroup of index two of
the automorphism group of a determinantal hypersurface V in PG(n2 − 1, q). That a subspace
skew to V has dimension � n − 1 follows from Theorem 11 and dim(W ) = n2 − n − 1. Now
apply Theorem 18. �

Note that the involution corresponding to this subgroup of index two is induced by matrix
transposition in V2. The following theorem determines the H(Sn,n)-orbit corresponding to the
isotopy class of a finite field.

Theorem 20. The H(Sn,n)-orbit corresponding the isotopy class of a finite field is the orbit of a

subspace T skew to the (n − 2)th secant variety Ωn−2 of Sn,n, where T Ψ −1
is an element of the

Desarguesian spread D.

Proof. Put U = T Ψ −1
and apply the BEL-construction with the notation as in Section 3. Since U

is an element of D, the elements of the Desarguesian spread D′ of PG(n2 +n−1, q), intersecting
the n-dimensional subspace A are the elements of D′ contained in 〈U,R〉, with R is an arbitrary
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element of B(A) \ {U}. This implies that the spread S(U,W) is Desarguesian. Consequently the
semifield S(U, W ) is a field. Combining Theorems 17 and 11 concludes the proof. �
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