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Abstract. In [2] a geometric construction was given of a finite
semifield from a certain configuration of two subspaces with re-
spect to a Desarguesian spread in a finite-dimensional vector space
over a finite field. Moreover, it was proved that any finite semifield
can be obtained in this way. In [7] we proved that the configura-
tion needed for the geometric construction given in [2] for finite
semifields is equivalent with an (n− 1)-dimensional subspace skew
to a determinantal hypersurface in PG(n2− 1, q), and provided an
answer to the isotopism problem in [2]. In this paper we give a
generalisation of the BEL-construction using linear sets, and then
concentrate on this configuration and the isotopism problem for
semifields with nuclei that are larger than its center.

1. Finite semifields

A finite semifield S is a finite division algebra, which is not necessarily
associative, i.e., an algebra with at least two elements, and two binary
operations + and ◦, satisfying the following axioms:

(S1) (S,+) is a group with identity element 0;
(S2) x ◦ (y + z) = x ◦ y + x ◦ z and (x+ y) ◦ z = x ◦ z + y ◦ z, for all

x, y, z ∈ S;
(S3) x ◦ y = 0 implies x = 0 or y = 0;
(S4) ∃1 ∈ S such that 1 ◦ x = x ◦ 1 = x, for all x ∈ S;

A finite field is of course a trivial example of a semifield. The first non-
trivial examples of semifields were constructed by Dickon in [5]. One
easily shows that the additive group of a semifield is elementary abelian,
and the additive order of the elements of S is called the characteristic of
S. Contained in a semifield are the following important substructures,
all of which are isomorphic to a finite field. The left nucleus Nl(S),
the middle nucleus Nm(S), and the right nucleus Nr(S) are defined as
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follows:

Nl(S) := {x : x ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀y, z ∈ S}(1)

Nm(S) := {y : y ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, z ∈ S}(2)

Nr(S) := {z : z ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, y ∈ S}(3)

The intersection of the associative center N(S) (the intersection of the
three nuclei) and the commutative center is called the center of S and
denoted by C(S).

If S is an n-dimensional algebra over the field F, and {e1, . . . , en}
is an F-basis for S, then the multiplication can be written in terms
of the multiplication of the ei, i.e., if x = x1e1 + . . . + xnen and y =
y1e1 + . . .+ ynen, with xi, yi ∈ F, then

x ◦ y =
n∑

i,j=1

xiyjei ◦ ej =
n∑

i,j=1

xiyj

(
n∑
k=1

aijkek

)
(4)

for certain aijk ∈ F, called the structure constants of S with respect
to the basis {e1, . . . , en}. In [6] Knuth noted that the action, of the
symmetric group S3, on the indices of the structure constants gives
rise to another five semifields starting from one semifield S. This set
of at most six semifields is called the S3-orbit of S, and consists of the
semifields {S, S(12),S(13),S(23),S(123),S(132)}.

The study of semifields was stimulated by the connection with pro-
jective planes and in this context the following notion of isotopism
arose. An isotopism between the two semifields S and Ŝ is a triple
(F,G,H) of non-singular linear transformations from S to Ŝ such that

xF ◦̂yG = (x ◦ y)H , for all x, y ∈ S. In this case the semifields S and Ŝ
are called isotopic. The set of semifields isotopic to a given semifield
S is called the isotopism class of S and is denoted by [S]. In the next
section we give the necessary preliminaries needed for Section 3, where
we generalise the geometric construction given in [2].

2. Semifield spreads, Desarguesian spreads and linear
sets

Let PG(V ) denote the projective space induced by the vector space
V . If we want to specify the dimension d and the field F of scalars,
then we write V (d,F) (or V (d, q) if F = Fq, the finite field of order q),
and similarly for the corresponding projective space PG(V ), we write
PG(d − 1,F) (or PG(d − 1, q)). We denote the colleation group of a
projective space PG(d− 1,F) (resp. Σ) by PΓL(d,F) (resp. PΓL(Σ)).
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A spread of V = V (d, q) is a set S of subspaces of V , all of the
same dimension d′, 1 ≤ d′ ≤ d, such that every non-zero vector of
V is contained in exactly one of the elements of S. It follows that d′

divides d and that |S| = (qd − 1)/(qd
′ − 1). A trivial example of a

spread of V is the set of all subspaces of dimension 1 of V . In the case
that d is even and d′ = d/2 we call a spread of V a semifield spread if
there exists an element S of this spread and a group G of semilinear
automorphisms of V with the property that G fixes S pointwise and
acts transitively on the other elements of the spread. Spreads play a
key role in the theory of translation planes due to the André-Bruck-
Bose construction. The translation planes corresponding to semifield
spreads are called semifield planes.

The semifield spread S(S) of PG(2n − 1, q) corresponding to the
semifield S of order qn, with multiplication given by x ◦ y and left
nucleus Fq, consists of the subspace S∞ = {(0, y) : y ∈ F∗qn}, together
with the subspaces

Sx = {(y, y ◦ x) : y ∈ F∗qn}, x ∈ Fqn .

Let Fqn be the finite field of qn elements, let Fq be the subfield of
q elements and assume n ≥ 2. Consider V (d, qn) as a vector space
of dimension dn over Fq and consider the spread of subspaces of di-
mension n over Fq arising from the spread of subspaces of dimension
1 over Fqn . Such a spread (i.e. arising from a spread of subspaces of
dimension 1 over some extension field) is called a Desarguesian spread.
A Desarguesian spread has the property that it induces a spread in
every subspace spanned by elements of the spread. All of the above
notions, defined in terms of vector spaces, can also be defined in terms
of projective spaces. In this paper we will use the same terminology
for both points of view.

The correspondence between the points of the projective space over
Fqn and the elements of the Desarguesian (n−1)-spread D in PG(dn−
1, q) is sometimes referred to as field reduction. Once this correspon-
dence is established we will often consider the set of spreadelements
intersecting a given subspace or subset U , and we use the following
notation:

BD(U) := {R ∈ D : R ∩ U 6= ∅}.
If there is no confusion possible we write B(U) instead of BD(U), and
we will often identify the elements of D with the points of PG(d−1, q).
By doing so, each subset U of PG(dn − 1, qn) induces a set B(U) of
points in PG(d− 1, qn).

A set of points L in PG(r − 1, q0) is called a linear set if there
exists a subspace U in PG(rt − 1, q), for some t ≥ 1, qt = q0, such
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that L = B(U) is the set of points corresponding to the elements of a
Desarguesian (t−1)-spread of PG(rt−1, q) intersecting U . If we want
to specify the field over which L is linear we call L an Fq-linear set.
The same notation and terminology is used when U is a subspace of
the vector space V (rt, q) instead of a projective subspace. If moreover
we want to mention the dimension of U , we call B(U) a linear set of
rank d or of dimension d− 1, if U is a (d− 1)-dimensional subspace of
PG(rt− 1, q). Lunardon [8] was one of the first to give importance to
these linear sets, and in the last ten years linear sets have played an
important role in Finite Geometry, for an overview of applications and
connections we refer to [11]. The algebraic connection between linear
sets and finite semifields has been succesfully used in recent years, see
e.g. [4], [10]. In the next section we will give a geometric construction
of finite semifields starting from a linear set.

3. A generalisation of the BEL-construction

In this section we generalise the geometric construction for semifields
given in [2] starting from a configuration of two subspaces with respect
to a Desarguesian spread to a geometric construction starting from
a linear set and a subspace. Another difference with the construction
given in [2] is that now we do not start with a fixed Desarguesian spread
D. We only use geometric properties of D in the proof and different
choices of D may give different semifields. Because of this approach the
spread D should be included in the notation of the obtained semifield
and of the semifield spread. This is why in what follows we write
S(D, U,W ) instead of the notation S(U,W ) used in [2].

First we recall the BEL-construction as given in [2]. Let U be a
subspace of dimension n− 1, W a subspace of dimension rn− n− 1 in
Σ := PG(rn − 1, q), and D a Desarguesian (n − 1)-spread in Σ, such
that no element of D intersects both W and U . In [2] it was shown that
this configuration of subspaces gives rise to a semifield S(D, U,W ) of
order qn, corresponding to the semifield spread S(D, U,W ) constructed
as follows.

(a) Embed Σ in Λ ∼= PG(rn + n − 1, q) and extend D to a Desar-
guesian spread D1 of Λ.

(b) Let A be a n-dimensional subspace of Λ intersecting Σ in U .
(c) Let S(U,W ) be the set of subspaces in the quotient space Λ/W

defined by A in the following way:

S(D, U,W ) := {〈R,W 〉/W : R ∈ D1, R ∩ A 6= ∅}.
4



Now we extend this to a geometric construction of a semifield spread
starting from a linear set L and subspace W instead of two subspaces
U and W . Let L = B(U) be an Fq-linear set of Σ1 := PG(rn−1, qs) of
rank ns, s ≥ 1, r ≥ 2, and let W be a subspace of Σ1 of dimension rn−
n−1, and D a Desarguesian (n−1)-spread of Σ1, such that no element
of D intersects both L and W . We will show that this configuration
gives rise to a semifield of order qns. For future reference we call a
triple (D, U,W ) satisfying the above properties a BEL-configuration.
The construction of the semifield spread goes as follows

(i) Embed Σ1 in Λ1
∼= PG(rn + n − 1, qs) and extend D to a

Desarguesian (n− 1)-spread D1 of Λ1.
(ii) Let L′ = B(U ′), U ⊂ U ′, be an Fq-linear set of Λ1 of rank ns+1,

such that L′ ∩ Σ1 = L.
(iii) Let S(D, U,W ) be the set of subspaces defined by L′ in the quo-

tient geometry Λ1/W ∼= PG(2n − 1, qs) of W , in the following
way:

S(D, U,W ) = {〈R,W 〉/W : R ∈ D1, R ∩ L′ 6= ∅}.

Theorem 3.1. The set S(D, U,W ) is a semifield spread of PG(2n −
1, qs).

Proof. Consider the Desarguesian (s− 1)-spread D2 of Λ2
∼= PG(rns+

ns − 1, q), obtained by considering the points of Λ1 as subspaces over
Fq (i.e. by field reduction). Recall that if T is a subset of Λi, then

BDi
(T ) := {R ∈ Di : R ∩ T 6= ∅},

If there is no confusion, then we identify the elements of D2 with the
points of Λ1, and the elements of D1 with the points of PG(r, qns). Let
Σ2 denote the (rns − 1)-dimensional subspace of Λ2 corresponding to
Σ1, i.e., BD2(Σ2) = Σ1. For any subset T of Λ1, we denote the set of
elements of D2 corresponding to T by SD2(T ), i.e.

SD2(T ) := {X ∈ D2 : BD2(X) ∈ T}.(5)

Note that SD2(Λ1) = D2.
First we show that two different elements of S(D, U,W ) are skew.

Suppose by way of contradiction that two different elements 〈R1,W 〉/W
and 〈R2,W 〉/W of S(D, U,W ), have a nontrivial intersection. Note
that this clearly implies that not both R1 and R2 are contained in Σ1.
Also, if one of R1 and R2 is contained in Σ1, then W , R1 and R2 span
the whole of Λ1, and hence 〈R1,W 〉/W and 〈R2,W 〉/W cannot have a
point in common, contradicting our hypothesis. So the only possibility
that is left is the case were both R1 and R2 are skew to Σ1, since an
element of D1 either intersects Σ1 trivially, or is contained in Σ1. By
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the hypothesis the dimension of the subspace spanned by R1, R2 and
W can be at most rn + n − 2, and hence the subspace 〈R1, R2〉 (of
dimension 2n − 1) must intersect the subspace W in at least a point,
say the point x ∈ 〈R1, R2〉 ∩W . It follows that

〈R1, R2〉 ∩ Σ1 = BD1(x) ∈ BD1(W ).

Applying SD2 we obtain

SD2(〈R1, R2〉 ∩ Σ1) = SD2(BD1(x)),

and since each of the arguments of SD2 in the above equality, is either
an element of D1 or spanned by elements of D1, it follows that

〈SD2(R1), SD2(R2)〉 ∩ Σ2 = 〈SD2(BD1(x))〉.(6)

By construction we know that Ri (i = 1, 2) meets BD2(U
′) non triv-

ially. Also, since U ′ has rank ns + 1, is not contained in Σ1 but con-
tains U , it is clear that any subspace of Λ2 which is skew to Σ2, in-
tersects U ′ in at most one point. In particular, 〈SD2(Ri)〉 intersects
U ′ in exactly one point, say ti (i = 1, 2). Since the line 〈t1, t2〉 is con-
tained in U ′ it must intersect U in a point, say u ∈ U , and hence
BD2(u) ⊂ 〈BD2(t1), BD2(t2)〉. But then by (6) it follows that

BD2(u) ⊂ 〈BD2(t1), BD2(t2)〉 ∩ Σ2

⊂ 〈SD2(R1), SD2(R2)〉 ∩ Σ2 = 〈SD2(BD1(x))〉,
and hence BD1(x) contains a point of BD2(U). This contradicts our
assumption that no element of D1 intersects both W and L = BD2(U).
We conclude that each pair of elements of S(D, U,W ) intersect trivially.

Counting the number of elements of S(D, U,W ), taking into account
the previous remark that any subspace of Λ2 which is skew to Σ2,
intersects A in at most one point, we obtain qsn different elements of
S(D, U,W ), induced by elements of D1 that intersect L′ \ L. Since
for each element R ∈ D1, intersecting L, we have that 〈R,W 〉/W =
Σ1/W , we conclude that the set S(D, U,W ) consists of qns + 1 skew
(n − 1)-spaces. In other words S(D, U,W ) is an (n − 1)-spread of
Λ1/W ∼= PG(2n− 1, qs).

Let S∞ denote the element Σ1/W ∈ S(D, U,W ). To finish the proof
we still need to show that S(D, U,W ) is a semifield spread, i.e., that
there is a subgroup G ≤ PΓL(2n, qs), fixing S∞ pointwise such that G
acts transitively on the other elements of S(D, U,W ).

Note that each element of D1 induces an (ns−1)-space in Λ2, which is
partitioned by elements of D2. Denote the set of these (ns− 1)-spaces
induced by the elements of D1, by D3. Since D1 is a Desarguesian
(n − 1)-spread of Λ1, it follows that D3 is a Desarguesian (ns − 1)-
spread of Λ2. Again, note that each element of D3 intersects U ′ in at
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most one point, and hence also each element of D1 intersects BD2(U
′)

in at most one point. Let H denote the stabiliser of D1 in PΓL(Λ1),
and note that H contains a subgroup isomorphic to PΓL(r + 1, qns).
Take any two elements X and Y in BD1(BD2(U

′)) ⊂ D1, and suppose
that X∩BD2(U

′) = 〈x〉 and Y ∩BD2(U
′) = 〈y〉, with x, y ∈ Frn+n

qs \Frnqs .
Let ψ be an isomorphism

ψ : Frn+n
qs → Fr+1

qsn

such that
(Frnqs )ψ = Frqns .

Since the pointwise stabiliserH ′ of Frqns in ΓL(r+1, qns) acts transitively

on the vectors of Fr+1
qns \Frqns , it follows that H ′ contains an element φxy

such that (xψ)φxy = yψ, and since X and Y were arbitrary, it follows
that the group H ′ acts transitively on {xψ : 〈x〉 ∈ BD2(U

′)\BD2(U)}.
This implies that the group ψ−1H ′ψ induces a subgroup of H, fixing
Σ1 pointwise, that acts transitively on the elements of BD1(BD2(U

′)).
Finally, in the quotient geometry Λ1/W , this group induces a subgroup
G of order qns fixing S∞ pointwise such that G acts transitively on the
other elements of S(D, U,W ). �

The semifield corresponding to the semifield spread S(D, U,W ) is de-
noted by S(D, U,W ). The following theorem characterises those linear
sets that correspond to a finite field.

Theorem 3.2. If (D, U,W ) is a BEL-configuration where L is an ele-
ment of D, then S(D, U,W ) is a Desarguesian spread and S(D, U,W )
is a finite field.

Proof. Applying the BEL-construction to (D, U,W ) we see thatBD1(L
′)

is contained in the (2k − 1)-dimensional subspace spanned by two el-
ements L and R of D1, with R an element of BD1(L

′ \ L). Since the
restriction of a Desarguesian spread to any subspace spanned by some
of its elements is again a Desarguesian spread, it follows that BD1(L

′)
is a Desarguesian spread in 〈R,L〉. The projection of Λ1 from W onto
〈R,L〉 gives a Desarguesian spread in the quotient geometry Λ1/W .
The semifield corresponding to a Desarguesian spread is a field. �

Remark 3.3. As in [2, Remark 2.3] one shows that the semifield
S(D, U,W ) is independent of the choice of U ′ in the construction.

4. The BEL-construction for semifields with given left
nucleus

In this section we give an explicit description of a BEL-configuration
for a semifield with given multiplication. This BEL-configuration is
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different from the one in [2], depending on the size of the left nucleus.
If the left nucleus is larger than the center, then the dimension of the
ambient space of the BEL-configuration given here is much smaller
compared to [2]. We remark that the same construction can be done
with respect to the right nucleus. Since a semifield is a vector space
over each of its nuclei, the size of a nucleus is qs, with s a divisor of n.
In general, if we label the elements of S by the elements of Fqn , then
the multiplication of a semifield S, with center Fq can be written as

y ◦ x =
n−1∑
i,j=0

dijx
qi

yq
j

,

with dij ∈ Fqn .
In the following theorem we denote the points of PG(k2 − 1, qs) as
〈(x0, x1, . . . , xk−1)〉 with xi ∈ Fqn , n = ks. With this notation, the set

D = {{〈(ax0, ax1, . . . , axk−1)〉 : a ∈ F∗qn} : x ∈ Fkqn \ {0}},

is a Desarguesian (k − 1)-spread of PG(k2 − 1, qs).

Theorem 4.1. For every finite semifield S of order qn with left nu-
cleus |Nl| = qs, sk = n, there exists a BEL-configuration (D, U,W ) in
PG(k2 − 1, qs), such that S = S(D, U,W ).

Proof. Let S be a semifield of order qn with multiplication given by

y ◦ x =
n−1∑
i,j=0

dijx
qi

yq
j

,

with dij ∈ Fqn . Suppose S has a left nucleus of size qs, s = n/k, and
relabel the elements of S, such that Nl = Fqs ⊂ Fqn , and the center
is Fq. Since (l ◦ y) ◦ x = l ◦ (y ◦ x), ∀l ∈ Nl, it follows that the map
Rx : y 7→ y ◦ x is linear over Fqs , and hence the multiplication in S
may be written as

y ◦ x =
n−1∑
i=0

k−1∑
j=0

cijx
qi

yq
sj

,

with cij ∈ Fqn . Define the subspace

W = {〈(−
k−1∑
i=1

zq
is

i , z1, z2, . . . , zk−1)〉 : z ∈ Fk−1
qn \ {0}}(7)

and the Desarguesian (k − 1)-spread

D = {{〈(ax0, ax1, . . . , axk−1)〉 : a ∈ F∗qn} : x ∈ Fkqn \ {0}}(8)
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in PG(k2 − 1, qs). First we show that the triple (D, U,W) where the
Fq-linear set L = B(U) is given by

L = {〈(c0(x), c1(x)1/qs

, . . . , ck−1(x)1/qs(k−1)

)〉 : x ∈ F∗qn},

and cj(x) =
∑n−1

i=0 cijx
qi

is a BEL-configuration in PG(k2 − 1, qs). If
there is an element of D intersecting both L and W then there exist
z ∈ Fk−1

qn \ {0}, y ∈ F∗qn , and x ∈ F∗qn such that

zj = ycj(x)1/qsj

, j 6= 0

and

−
k−1∑
j=1

zq
js

j = yc0(x).

Substituting the zj in the second equation we get

y ◦ x =
n−1∑
i=0

k−1∑
j=0

cijx
qi

yq
sj

= 0,

which implies x = 0 or y = 0, a contradiction. This shows that the
triple (D, U,W) is a BEL-configuration. Now extend the Fq-linear set
L to the Fq-linear set

L′ := {{〈(t, c0(x), c1(x)1/qs

, . . . , ck−1(x)1/qs(k−1)

)〉 : (t, x) ∈ (Fq×Fqn)\{(0, 0)}},

in PG(k2 + k − 1, qs). The element of D containing the point

〈(t, c0(x), c1(x)1/qs

, . . . , ck−1(x)1/qs(k−1)

)〉

is

Dx := {〈(y, yc0(x), yc1(x)1/qs

, . . . , yck−1(x)1/qs(k−1)

)〉 : y ∈ F∗qn}.

Calculating the quotient space 〈Dx,W〉/W as a projection from W
onto the subspace with the last k − 2 coordinates equal to zero, we
obtain

〈Dx,W〉 = {〈(y, yc0(x)−
k−1∑
i=1

zq
is

i , yc1(x)1/qs

+z1, . . . , yck−1(x)1/qs(k−1)

+zk−1)〉 :

y ∈ F∗qn , z ∈ Fk−1
qn \ {0}}

and hence

〈Dx,W〉/W = {〈(y,
k−1∑
j=0

cj(x)yq
sj

)〉 : y ∈ F∗qn}
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Thus the semifield spread S(D, U,W) corresponds to a semifield with

multiplication y◦x =
∑k−1

j=0 cj(x)yq
sj

, i.e., the semifield S = S(D, L,W).
�

5. On the isotopism problem

Recall that the set of semifields isotopic to a given semifield S is
called the isotopism class of S and is denoted by [S]. It is not difficult
to see that the sizes of the nuclei of a semifield S are invariants of
[S] and hence it makes sense to speak of the size of the nuclei of an
isotopism class [S]. Generally one is interested in the isotopism classes
of semifields, since these correspond to the isomorphism classes of the
corresponding projective planes (see Albert [1]). But Knuth proved
that the action of S3 is well defined on the set of isotopism classes and
we call the set of isotopism classes of semifields corresponding to the
S3-orbit the Knuth orbit. So instead of looking at the isotopism classes
of finite semifields we might also consider the Knuth orbits of finite
semifields. In general the size of the Knuth orbit is not immediately
clear. However, it is straighforward to see that the Knuth orbit of a
finite field has size one. The size of the Knuth orbit is also known for
the semifields studied in [3], but for most other semifields its size is
not known. One of the issues of the isotopism problem is not having
a “canonical” representative for an isotopism class (see e.g. [6]), and
the same holds for the representation of a Knuth orbit. However what
concerns the Knuth orbit, we know that the sizes of the nuclei are
permuted under the action of S3. Hence, as a representative of a Knuth
orbit, we may always take a semifield whose isotopism class has our
favourite nucleus as its largest nucleus. In what follows we will assume
this largest nucleus to be the left nucleus, but the reader should keep
in mind that this is just a matter of choice.

So, we distinguish the isotopy classes of semifields of order qn by the
size of the largest nucleus, and using the action of S3 on the indices of
the structure constants, we may assume that the representative of the
Knuth orbit of S has as largest nucleus is the left nucleus, which we
denote by Nl. The isotopism classes of semifields of order qn which have
the right or middle nucleus as largest nucleus are then obtained by per-
muting the indices of the structure constants of the semifield. The fol-
lowing theorem solves the isotopism problem for semifields S(D, L,W),
with W defined by (7).

Theorem 5.1. Two semifields S(D, U1,W) and S(D, U2,W) of order
qn and left nucleus of size qs, n = sk, with W defined by (7), are
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isotopic if and only if there exists a collineation φ of PG(k2 − 1, qs)
fixing B(W) with B(U1)φ = B(U2).

Proof. Suppose S(D, U1,W) and S(D, U2,W), with W defined by (7),
are isotopic semifields with multiplication given by

y ◦ x =
n−1∑
i=0

k−1∑
j=0

cijx
qi

yq
sj

=
k−1∑
j=0

cj(x)yq
sj

and

y ◦′ x =
n−1∑
i=0

k−1∑
j=0

c′ijx
qi

yq
sj

=
k−1∑
j=0

c′j(x)yq
sj

.

The spreads of PG(2k − 1, qs), S and S ′, corresponding to S and S′,
consist of the subspace S∞ = S ′∞ = {(0, y) : y ∈ F∗qn}, together with
the subspaces

Sx = {(y, y ◦ x) : y ∈ F∗qn}, x ∈ Fqn , and

S ′x = {(y, y ◦′ x) : y ∈ F∗qn}, x ∈ Fqn ,

respectively. The corresponding Fq-linear sets L1 and L2 in PG(k2 −
1, qs), as in the proof of Theorem 4.1 are given by

L1 = {〈(c0(x), c1(x)1/qs

, . . . , ck−1(x)1/qs(k−1)

)〉 : x ∈ F∗qn}, and

L2 = {〈(c′0(x), c′1(x)1/qs

, . . . , c′k−1(x)1/qs(k−1)

)〉 : x ∈ F∗qn},
respectively. As in the proof of [7, Theorem 17], we use the collineation
Ψ between PG(k2−1, qs) and PG(Mk(Fqs)) induced by the isomorphism
between V (k2, qs) and Mk(Fqs) defined by

(x0, x1, . . . , xk−1) 7→ U−1A
(x0,x

qs

1 ,...,xqsk−1

k−1 )
U,

with

U :=


u0 u1 . . . uk−1

uq
s

0 uq
s

1 . . . uq
s

k−1
...

...
...

uq
sk−1

0 uq
sk−1

1 . . . uq
sk−1

k−1

 , and

A(y0,y1,...,yk−1) :=


y0 y1 . . . yk−1

yq
s

k−1 yq
s

0 . . . yq
s

k−2
...

...
...

yq
sk−1

1 yq
sk−1

2 . . . yq
sk−1

0

 .

To conclude the proof, apply exactly the same reasoning as in the proof
of [7, Theorem 17]. �

11



The following theorem is a refinement of two results proved in [7]
and links the set of points of BD(W) to the Segre variety Sk,k(qs).

Theorem 5.2. The set of points BD(W) with D and W as in (8) and
(7), respectively, is projectively equivalent to the set of points of the
(k−2)th secant variety to a Segre variety Sk,k(qs) in PG(k2−1, qs), and
the elements of BD(W) contain a subset that is projectively equivalent
to one of the two families of maximal subspaces contained in Sk,k(qs).

Proof. The first part of the statement is [7, Theorem 11]. Let Ψ denote
the associated collineation, i.e. BD(W)Ψ covers the (k − 2)th secant
variety to a Segre variety Sk,k(qs) in PG(k2 − 1, qs). Let F1 and F2

denote the two families of maximal subspaces contained in Sk,k(qs). It
follows from the proof of [7, Corollary 12] that a (k−1)-space RΨ with
R ∈ BD(W) is either contained in Sk,k(qs) or is skew to Sk,k(qs). Since
BD(W)Ψ consists of (k − 1)-dimensional subspaces and each two ele-
ments of BD(W)Ψ are skew, BD(W)Ψ contains a subset that coincides
with one of the two families F1 or F2. �

We denote the subgroup of PΓL(k2, qs) fixing both families of max-
imal subspaces contained in Sk,k(qs) by H(Sk,k(qs)). The above link
between the set of points of BD(W) to the Segre variety Sk,k(qs) gives
the equivalence between the algebraic and geometric approach to the
isotopism problem for finite semifields. In case the semifield is symplec-
tic, the Segre variety in this equivalence becomes a Veronesean variety,
because of the extra symmetry; for more on the symplectic case we
refer to [9].

Corollary 5.3. There is a one-to-one correspondence between the
isotopism classes of finite semifields of order qn, with center Fq and left
nucleus of order qs, n = ks, and the orbits of the action of H(Sk,k(qs))
on the Fq-linear sets of rank n in PG(k2 − 1, qs) skew to the (k − 2)th
secant variety Ωk−2(qs) of Sk,k(qs).

Proof. Combine Theorem 5.1 and Theorem 5.2. �

As an application of the BEL-construction we have the following
characterisation of the isotopism class of a finite field.

Theorem 5.4. The H(Sk,k(qs))-orbit, corresponding to the isotopism
class of a finite field, is the orbit of a (k − 1)-dimensional subspace,
skew to the (k−2)th secant variety Ωk−2(qs) of Sk,k(qs), that belongs to
a Desarguesian spread, containing one of the two families of maximal
subspaces of Sk,k(qs).

12



Proof. Let L = B(U) be a (k − 1)-dimensional subspace belonging to
the Desarguesian spread D containing one of the two families of maxi-
mal subspaces of Sk,k(qs), and let W be any (k2 − k − 1)-dimensional
subspace contained in the (k − 2)th secant variety to a Segre variety
Sk,k(qs). This subspace exists because of Theorem 5.2. Then (D, U,W )
is a BEL-configuration with B(U) ∈ D. It follows from Theorem 3.2
that S(D, U,W ) is a field. �
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