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Motivated by applications in cryptography, a lot of research has been done to
construct vectorial boolean functions functions which are “as nonlinear as pos-
sible” (see e.g. [1, 2]). One class of such functions are almost perfect nonlinear
(APN) functions.

Definition 1. A function f : Fn
2 → Fn

2 is called APN if and only if for all
a ∈ Fn

2 \ {0} and b ∈ Fn
2 the equation f(x + a) + f(x) = b has at most two

solutions.

APN functions have links to other mathematical objects. An APN function
is equivalent to a binary error correcting [2n, 2n − 2n − 1, 6]2 code, which is
contained in the dual of the first order Reed-Muller code. Quadratic APN func-
tions are equivalent to a certain subclass of dual hyperovals in the projective
geometry [3]. Also there are several ways to construct semibiplanes from APN
functions.

In this talk we will present these links in more detail.
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