A characterization of quadrics by intersection numbers

J. Schillewaert
Department of Pure Mathematics and Computer Algebra, Ghent University Krijgslaan 281, S-22, B-9000 Gent, Belgium
jschille@cage.ugent.be

December 13, 2006

Abstract

This work is inspired by a paper of Hertel and Pott on maximum non-linear functions [3]. Geometrically, these functions correspond with quasi-quadrics; objects introduced in [1]. Hertel and Pott obtain a characterization of some binary quasi-quadrics in affine spaces by their intersection numbers with hyperplanes and spaces of codimension 2. We obtain a similar characterization for quadrics in projective spaces by intersection numbers with low-dimensional spaces. Ferri and Tallini [2] characterized the non-singular quadric $Q(4, q)$ by its intersection numbers with planes and solids. We prove a corollary of this theorem for $Q(4, q)$ and then extend this corollary to all quadrics in $P G(n, q), n \geq 4$. The only exceptions we get occur for q even, where we can have an oval or an ovoid as intersection with our point set in the non-singular part.

References

[1] F. De Clerck, N. Hamilton, C. M. O'Keefe, and T. Penttila. Quasi-quadrics and related structures. Australas. J. Combin., 22:151-166, 2000.
[2] O. Ferri and G. Tallini. A characterization of nonsingular quadrics in $\operatorname{PG}(4, q)$. Rend. Mat. Appl. (7), 11(1):15-21, 1991.
[3] D. Hertel and A. Pott. A characterization of a class of maximum non-linear functions. Preprint, 2006.

