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Bent functions

A Boolean function:
f : F2n → F2

Bent function: Boolean function at maximal possible distance
from affine functions

Bent function: Boolean function whose support is a Hadamard
Difference Set

Bent function: Matrix [(−1)f (x+y)]x ,y∈F2n is Hadamard

Bent functions exist only for even n
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Bent functions

A Boolean function: f : F2n → F2

Walsh transform of f : Wf (u) =
∑

x∈F (−1)f (x)+u·x

(Discrete Fourier Transform)

Definition
A Boolean function f on F2n is said to be bent if its Walsh
transform satisfies Wf (u) = ±2n/2 for all u ∈ F2n .

dual function f̃ : Wf (u) = 2n/2 (−1)f̃ (u)

The dual of a bent function is bent again, and ˜̃f = f .
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Desarguesian Spreads

F = Fq , q = 2m

Desarguesian spread of V = F × F is the family of all
1-subspaces over F .
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There are q + 1 subspaces and every nonzero point of V lies in
a unique subspace.

Niho bent functions: bent functions that are linear (over F2) on
the elements of the Desarguesian spread
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Ovals

An oval in affine plane AG(2,q) is a set of q + 1 points, no three
of which are collinear.

Hyperoval: set of q + 2 points, no three of which are collinear.

For any oval there is a unique point (called nucleus) that
completes oval to hyperoval
(in general, nucleus is in projective plane PG(2,q))

Dually, a line oval in affine plane AG(2,q) is a set of q + 1
nonparallel lines no three of which are concurrent.
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Niho bent functions

Dillon (1974)

Dobbertin-Leander-Canteaut-Carlet-Felke-Gaborit-Kholosha
(2006).

Carlet-Mesnager (2011):
Niho bent function→ o-polynomial→ hyperoval

Penttila-Budaghyan-Carlet-Helleseth-Kholosha
(unpublished - Irsee 2014):
Niho bent functions are equivalent⇔ corresponding ovals are
projectively equivalent
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Map of Connections

Niho bent
functions

Ovals
(nucleus in 0)

Dual
bent functions

Line Ovals
(nucleus in infinity)

duality duality
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Line Ovals
in Affine Plane
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Bent functions and ovals

Theorem
There is one-to-one correspondence between Niho bent
functions and ovals O (with nucleus in 0) in the projective plane
PG(2,q).

t
0 (nucleus)
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x = λv , λ ∈ F

f (x) = tr(λ) = tr( x
v )O t t

t
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Bent functions and line ovals

Niho bent function f → Oval O → Line oval Õ
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f̃ (x) = 0⇔ x ∈ E(Õ)

where E(Õ) is the set of points which are on the lines of the
line oval Õ.
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Polar coordinate representation

K/F field extension of degree 2, K = F2n , F = F2m , n = 2m.

Consider K as AG(2,q), q = 2m.
The conjugate of x ∈ K over F is

x̄ = xq.

Norm and Trace maps from K to F are

N(x) = xx̄ , T = x + x̄ .

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K : N(x) = 1}.

S is the multiplicative group of (q + 1)st roots of unity in K .
Each element of K ∗ has a unique representation

x = λu

with λ ∈ F ∗ and u ∈ S (polar coordinate representation).
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Niho bent functions

Consider K = F2n as two dimensional vector space over F .
Then the set

{uF : u ∈ S}

is a Desarguesian spread.

Niho bent functions:
Boolean functions f : K → F2, which are F2-linear on each
element uF of the spread.
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Niho bent functions

Niho bent function f : K → F2 can be represented as

f (λu) = tr(λg(u))

for some function g : S → F .
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x = λu, λ ∈ F

f (x) = tr(λg(u))S t t
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From bent functions to ovals and line ovals

Let f : K → F2 be a Niho bent function such that

f (λu) = tr(λg(u))

for some function g : S → F .

Theorem

The set
{

u
g(u) : u ∈ S

}
forms an oval with nucleus in 0.

Theorem
Lines with equations ux + ux + g(u) = 0, where u ∈ S, forms a
line oval in K .
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Dual functions

Let f : K → F2 be a Niho bent function such that

f (λu) = tr(λg(u))

for some function g : S → F .

Then the dual function for f is

f̃ (x) =
∏
u∈S

(ux + ux + g(u))q−1.
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Criteria for functions g(u)

Theorem
Let f (λu) = tr(λg(u)) for some function g : S → F.
Then the following statements are equivalent:

1 The function f is bent;
2 Equation g(u) + ub + ub = 0 has 2 or 0 solutions for any

b ∈ K ;
3 T (x/y) · g(z) + T (z/x) · g(y) + T (y/z) · g(x) 6= 0 for all

distinct x , y , z ∈ S.
4 (x2 + y2)z · g(z) + (x2 + z2)y · g(y) + (y2 + z2)x · g(x) 6= 0

for all distinct x , y , z ∈ S.
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O-polynomials

O-polynomial h(t):

{(t ,h(t),1) | t ∈ F2m} ∪ (1,0,0) ∪ (0,1,0)

is a hyperoval in PG(2,2m)
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O-polynomials

W. Cherowitzo, Hyperoval webpage,
http://math.ucdenver.edu/∼wcherowi/research/hyperoval/hypero.html

Some known o-polynomials h(t)
1) h(t) = t2i

, where gcd(i ,m) = 1.
2) h(t) = t6, where m is odd (Segre 1962).
3) h(t) = t2k+22k

, where m = 4k − 1 (Glynn 1983)
3’) h(t) = t22k+1+23k+1

, where m = 4k + 1 (Glynn 1983)
4) h(t) = t3·2k+4, where m = 2k − 1 (Glynn 1983).
5) h(t) = t1/6 + t1/2 + t5/6, where m is odd (Payne).
6) h(t) = t2k

+ t2k+2 + t3·2k+4, where m = 2k − 1 (Cherowitzo).
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O-polynomials

7) Adelaide o-polynomials

h(t) =
T (bk )

T (b)
(t + 1) +

T ((bt + bq)k )

T (b)
(t + T (b)t1/2 + 1)1−k + t1/2,

where m even, b ∈ S, b 6= 1 and k = ±q−1
3 .

8) Subiaco o-polynomials

h(t) =
d2t4 + d2(1 + d + d2)t3 + d2(1 + d + d2)t2 + d2t

(t2 + dt + 1)2 + t1/2

where d ∈ F , tr(1/d) = 1, and d 6∈ F4 for m ≡ 2 (mod 4). This
o-polynomial gives rise to two inequivalent hyperovals when
m ≡ 2 (mod 4) and to a unique hyperoval when m 6≡ 2
(mod 4).
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Niho bent functions

Dobbertin-Leander-Canteaut-Carlet-Felke-Gaborit-Kholosha
(2006) :
Examples of Niho bent functions of the form Tr(axd1 + xd2)

Correspond to Translation, Adelaide and Subiaco hyperovals
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Adelaide hyperovals

g(u) = 1 + u(q−1)/3 + ū(q−1)/3

Adelaide hyperoval in K :{
u

1 + u(q−1)/3 + ū(q−1)/3 : u ∈ S
}
∪ {0}

Automorphism group: Gal(K/F2)
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Subiaco hyperovals

g(u) = 1 + u5 + ū5,

g1(u) = 1 + θu5 + θ̄ū5 (for m ≡ 2 (mod 4)),

where 〈θ〉 = S .

Subiaco hyperovals:{
u

1 + u5 + ū5 : u ∈ S
}
∪ {0},

{
u

1 + θu5 + θ̄ū5
: u ∈ S

}
∪ {0}
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Subiaco hyperovals

a) Let m 6≡ 2 (mod 4) and Subiaco hyperoval given by

g(u) = 1 + u5 + ū5.

Then automorphism group has order n and equal to Gal(K/F2).

b) Let m ≡ 2 (mod 4) and Subiaco hyperoval given by

g(u) = 1 + u5 + ū5.

Then automorphism group has order 5n and is equal to
〈ϕ〉 ·Gal(K/F2), where ϕ is a rotation of order 5.

c) Let m ≡ 2 (mod 4) and Subiaco hyperoval given by

g(u) = 1 + θu5 + θ̄ū5.

Then its automorphism has order 5n/4 and is isomorphic to
〈ϕ〉〈σ4〉, where ϕ is a rotation of order 5.
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Odd characteristics

Çeşmelioğlu-Meidl-Pott (2015)

No analogs in odd characteristic
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Bent Function Linear on Spreads

Theorem

Let Q be a quasifield, Σ(Q) be its associated spread, and Qt

be the transpose quasifield of Q. Then bent functions f (x , y)
which are linear on elements of the spread Σ(Q), are in
one-to-one correspondence with line ovals O in A(Qt ).
The zeroes of the dual function f̃ (x , y) are exactly the points of
the line oval O.
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Thank you for your attention!
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