## Hyperovals and bent functions

#### Kanat Abdukhalikov

Dept of Mathematical Sciences, UAEU and Institute of Mathematics, Kazakhstan

Finite Geometries
The 5th Irsee Conference
September 10-16, 2017
Germany

## Outline

- Bent functions
- Spreads, ovals and line ovals
- Bent functions and ovals / line ovals
- Automorphism groups

## Bent functions

A Boolean function:

$$f: \mathbb{F}_{2^n} \to \mathbb{F}_2$$

Bent function: Boolean function at maximal possible distance from affine functions

Bent function: Boolean function whose support is a Hadamard Difference Set

Bent function: Matrix  $[(-1)^{f(x+y)}]_{x,y\in\mathbb{F}_{2^n}}$  is Hadamard

Bent functions exist only for even n



## Bent functions

A Boolean function:  $f: \mathbb{F}_{2^n} \to \mathbb{F}_2$ 

Walsh transform of  $f: W_f(u) = \sum_{x \in F} (-1)^{f(x) + u \cdot x}$ 

(Discrete Fourier Transform)

#### Definition

A Boolean function f on  $\mathbb{F}_{2^n}$  is said to be bent if its Walsh transform satisfies  $W_f(u) = \pm 2^{n/2}$  for all  $u \in \mathbb{F}_{2^n}$ .

dual function 
$$\tilde{f}$$
:  $W_f(u) = 2^{n/2} (-1)^{\tilde{f}(u)}$ 

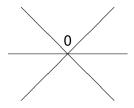
The dual of a bent function is bent again, and  $\tilde{\tilde{f}} = f$ .



# Desarguesian Spreads

$$F = \mathbb{F}_q$$
,  $q = 2^m$ 

Desarguesian spread of  $V = F \times F$  is the family of all 1-subspaces over F.



There are q + 1 subspaces and every nonzero point of V lies in a unique subspace.

Niho bent functions: bent functions that are linear (over  $\mathbb{F}_2$ ) on the elements of the Desarguesian spread



### **Ovals**

An oval in affine plane AG(2, q) is a set of q + 1 points, no three of which are collinear.

Hyperoval: set of q + 2 points, no three of which are collinear.

For any oval there is a unique point (called nucleus) that completes oval to hyperoval (in general, nucleus is in projective plane PG(2, q))

Dually, a line oval in affine plane AG(2, q) is a set of q + 1 nonparallel lines no three of which are concurrent.



## Niho bent functions

Dillon (1974)

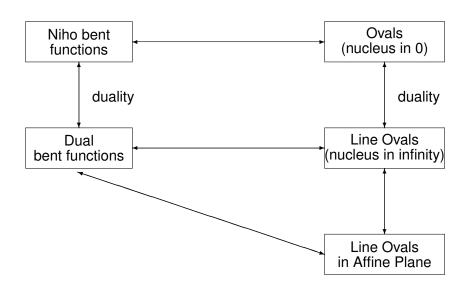
Dobbertin-Leander-Canteaut-Carlet-Felke-Gaborit-Kholosha (2006).

Carlet-Mesnager (2011): Niho bent function  $\rightarrow$  o-polynomial  $\rightarrow$  hyperoval

Penttila-Budaghyan-Carlet-Helleseth-Kholosha (unpublished - Irsee 2014):

Niho bent functions are equivalent ⇔ corresponding ovals are projectively equivalent

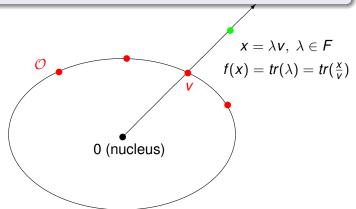
# Map of Connections



### Bent functions and ovals

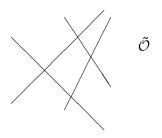
#### Theorem

There is one-to-one correspondence between Niho bent functions and ovals  $\mathcal{O}$  (with nucleus in 0) in the projective plane PG(2,q).



## Bent functions and line ovals

Niho bent function  $f \to \text{Oval } \mathcal{O} \to \text{Line oval } \tilde{\mathcal{O}}$ 



$$\tilde{f}(x) = 0 \Leftrightarrow x \in E(\tilde{\mathcal{O}})$$

where  $E(\tilde{\mathcal{O}})$  is the set of points which are on the lines of the line oval  $\tilde{\mathcal{O}}$ .



## Polar coordinate representation

K/F field extension of degree 2,  $K = \mathbb{F}_{2^n}$ ,  $F = \mathbb{F}_{2^m}$ , n = 2m.

Consider K as AG(2, q),  $q = 2^m$ .

The *conjugate* of  $x \in K$  over F is

$$\bar{x} = x^q$$
.

Norm and Trace maps from K to F are

$$N(x) = x\bar{x}, \quad T = x + \bar{x}.$$

The unit circle of *K* is the set of elements of norm 1:

$$S = \{u \in K : N(x) = 1\}.$$

S is the multiplicative group of (q + 1)st roots of unity in K. Each element of  $K^*$  has a unique representation

$$x = \lambda u$$

with  $\lambda \in F^*$  and  $u \in S$  (polar coordinate representation).

## Niho bent functions

Consider  $K = \mathbb{F}_{2^n}$  as two dimensional vector space over F. Then the set

$$\{uF: u \in S\}$$

is a Desarguesian spread.

#### Niho bent functions:

Boolean functions  $f: K \to \mathbb{F}_2$ , which are  $\mathbb{F}_2$ -linear on each element uF of the spread.

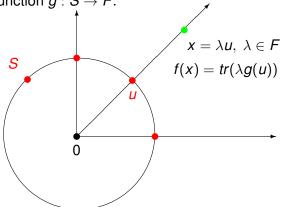


### Niho bent functions

Niho bent function  $f: K \to \mathbb{F}_2$  can be represented as

$$f(\lambda u) = tr(\lambda g(u))$$

for some function  $g: S \to F$ .



## From bent functions to ovals and line ovals

Let  $f: K \to \mathbb{F}_2$  be a Niho bent function such that

$$f(\lambda u) = tr(\lambda g(u))$$

for some function  $g: S \rightarrow F$ .

#### Theorem

The set  $\left\{\frac{u}{g(u)}:\ u\in S\right\}$  forms an oval with nucleus in 0.

#### Theorem

Lines with equations  $u\overline{x} + \overline{u}x + g(u) = 0$ , where  $u \in S$ , forms a line oval in K.



## **Dual functions**

Let  $f: K \to \mathbb{F}_2$  be a Niho bent function such that

$$f(\lambda u) = tr(\lambda g(u))$$

for some function  $g: S \rightarrow F$ .

Then the dual function for f is

$$\tilde{f}(x) = \prod_{u \in S} (u\overline{x} + \overline{u}x + g(u))^{q-1}.$$

# Criteria for functions g(u)

#### Theorem

Let  $f(\lambda u) = tr(\lambda g(u))$  for some function  $g: S \to F$ .

Then the following statements are equivalent:

- The function f is bent;
- **2** Equation  $g(u) + u\overline{b} + \overline{u}b = 0$  has 2 or 0 solutions for any  $b \in K$ ;
- $T(x/y) \cdot g(z) + T(z/x) \cdot g(y) + T(y/z) \cdot g(x) \neq 0 \text{ for all distinct } x, y, z \in S.$
- **4**  $(x^2 + y^2)z \cdot g(z) + (x^2 + z^2)y \cdot g(y) + (y^2 + z^2)x \cdot g(x) \neq 0$  for all distinct  $x, y, z \in S$ .



## O-polynomials

O-polynomial h(t):

$$\{(t, h(t), 1) \mid t \in \mathbb{F}_{2^m}\} \cup (1, 0, 0) \cup (0, 1, 0)$$

is a hyperoval in  $PG(2, 2^m)$ 

## O-polynomials

W. Cherowitzo, Hyperoval webpage, http://math.ucdenver.edu/~wcherowi/research/hyperoval/hypero.html

Some known o-polynomials h(t)

- 1)  $h(t) = t^{2^{i}}$ , where gcd(i, m) = 1.
- 2)  $h(t) = t^6$ , where *m* is odd (Segre 1962).
- 3)  $h(t) = t^{2^k + 2^{2k}}$ , where m = 4k 1 (Glynn 1983)
- 3')  $h(t) = t^{2^{2k+1}+2^{3k+1}}$ , where m = 4k + 1 (Glynn 1983)
- 4)  $h(t) = t^{3 \cdot 2^k + 4}$ , where m = 2k 1 (Glynn 1983).
- 5)  $h(t) = t^{1/6} + t^{1/2} + t^{5/6}$ , where *m* is odd (Payne).
- 6)  $h(t) = t^{2^k} + t^{2^k+2} + t^{3\cdot 2^k+4}$ , where m = 2k 1 (Cherowitzo).



## O-polynomials

7) Adelaide o-polynomials

$$h(t) = \frac{T(b^k)}{T(b)}(t+1) + \frac{T((bt+b^q)^k)}{T(b)}(t+T(b)t^{1/2}+1)^{1-k} + t^{1/2},$$

where m even,  $b \in S$ ,  $b \neq 1$  and  $k = \pm \frac{q-1}{3}$ .

8) Subiaco o-polynomials

$$h(t) = \frac{d^2t^4 + d^2(1+d+d^2)t^3 + d^2(1+d+d^2)t^2 + d^2t}{(t^2+dt+1)^2} + t^{1/2}$$

where  $d \in F$ , tr(1/d) = 1, and  $d \notin \mathbb{F}_4$  for  $m \equiv 2 \pmod{4}$ . This o-polynomial gives rise to two inequivalent hyperovals when  $m \equiv 2 \pmod{4}$  and to a unique hyperoval when  $m \not\equiv 2 \pmod{4}$ .



## Niho bent functions

Dobbertin-Leander-Canteaut-Carlet-Felke-Gaborit-Kholosha (2006):

Examples of Niho bent functions of the form  $Tr(ax^{d_1} + x^{d_2})$ 

Correspond to Translation, Adelaide and Subiaco hyperovals

## Adelaide hyperovals

$$g(u) = 1 + u^{(q-1)/3} + \bar{u}^{(q-1)/3}$$

Adelaide hyperoval in *K*:

$$\left\{\frac{u}{1+u^{(q-1)/3}+\bar{u}^{(q-1)/3}}:\ u\in S\right\}\cup\{0\}$$

Automorphism group:  $Gal(K/\mathbb{F}_2)$ 

# Subiaco hyperovals

$$g(u) = 1 + u^5 + \bar{u}^5,$$
  
 $g_1(u) = 1 + \theta u^5 + \bar{\theta}\bar{u}^5 \text{ (for } m \equiv 2 \pmod{4))},$ 

where  $\langle heta 
angle = \mathcal{S}$  .

Subiaco hyperovals:

$$\left\{ \begin{aligned} &\frac{u}{1+u^5+\bar{u}^5}:\ u\in\mathcal{S} \right\} \cup \{0\},\\ &\left\{ \frac{u}{1+\theta u^5+\bar{\theta}\bar{u}^5}:\ u\in\mathcal{S} \right\} \cup \{0\} \end{aligned}$$

# Subiaco hyperovals

a) Let  $m \not\equiv 2 \pmod{4}$  and Subiaco hyperoval given by

$$g(u) = 1 + u^5 + \bar{u}^5.$$

Then automorphism group has order n and equal to  $Gal(K/\mathbb{F}_2)$ .

b) Let  $m \equiv 2 \pmod{4}$  and Subiaco hyperoval given by

$$g(u) = 1 + u^5 + \bar{u}^5.$$

Then automorphism group has order 5n and is equal to  $\langle \varphi \rangle \cdot Gal(K/\mathbb{F}_2)$ , where  $\varphi$  is a rotation of order 5.

c) Let  $m \equiv 2 \pmod{4}$  and Subiaco hyperoval given by

$$g(u) = 1 + \theta u^5 + \bar{\theta}\bar{u}^5.$$

Then its automorphism has order 5n/4 and is isomorphic to  $\langle \varphi \rangle \langle \sigma^4 \rangle$ , where  $\varphi$  is a rotation of order 5.

## Odd characteristics

Çeşmelioğlu-Meidl-Pott (2015)

No analogs in odd characteristic

# Bent Function Linear on Spreads

#### Theorem

Let Q be a quasifield,  $\Sigma(Q)$  be its associated spread, and  $Q^t$  be the transpose quasifield of Q. Then bent functions f(x,y) which are linear on elements of the spread  $\Sigma(Q)$ , are in one-to-one correspondence with line ovals  $\mathcal{O}$  in  $\mathcal{A}(Q^t)$ . The zeroes of the dual function  $\tilde{f}(x,y)$  are exactly the points of the line oval  $\mathcal{O}$ .

Thank you for your attention!