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Introduction

In Optical code-division multiple access (OCDMA) applications,
the number of codewords in an OOC corresponds to possible
number of asynchronous users able to transmit information
efficiently and reliably.

1D-0O0Cs suffer from small cardinality (need long codewords or
relaxed correlations).

3D-00Cs or space/wavelength/time OOCs encode the data bits in
spatial, wavelength and time domains, overcoming the 1D-O0C
shortcomings.
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Introduction

3D O0Cs

We denote by (A x S x T,w, \s, \c) a 3D-O0C with constant
weight w, A wavelengths, space spreading length S, and
time-spreading length 7' (hence, each codeword may be considered
as an A x S x T binary array) subject to the following properties.

e (auto-correlation property) for any codeword A = (a; ;) and

for any integer 1 <t < T — 1, we have
S—1A-1T-1

Z Z Z Qi Gk Gij e+t < Aa,
i=0 j=0 k=1
e (cross-correlation property) for any two distinct codewords
A= (a;j), B=(bij) and for any integer 0 <t < T —1,
S—1A-1T-1

we have Z Z Z @i jkbij et < A,
i=0 j=0 k=0 )

where each subscript is reduced modulo T UNB
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Introduction

Example
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Figure: Autocorrelation A\, =1 Figure: Autocorrelation zero!
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Codes with A, = 0 are called ideal codes.
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Introduction

Bounds
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A codeword from an ideal 3-D OOC, black cubes indicate 1, white
indicate 0. (b) Each of the AS space/wavelength sections
correspond to an element from an alphabet of size T' + 1.
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Bounds

Bounds

Let ®(C) denote the theoretical upper bound on the capacity of
C. After adapting the Johnson Bound for non-binary alphabets we
obtain the following bound for ideal 3-D OOCs.

Theorem
[Johnson Bound for Ideal 3D OOC]
Let C be an (A x S x T,w,0,\)-0O0C, then

(C) < J(Ax S xT,w,0,\)
|As|asn . |as )

w w—1 w— A

Note thatif C'is an ideal 3D OOC of maximal weight (w = AS")
then ®(C) < TH. P))
Codes meeting the bound will be said to be J-optimal. UNB
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Bounds

Bounds

One way to achieve A\, = 0 is to select codes with at most one
pulse per spatial plane. Such codes are referred to as at most one
pulse per plane (AMOPP) codes. AMOPP codes of maximal
weight S have a single pulse per spatial plane, and are referred to
as SPP codes.
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Bounds

Using similar methods as above we are able to establish that for
fixed dimensions, weight, and correlation

d(SPP) < AT

< O(AMOPP)

§ ; {Af}T {ATHES_—ll) { {ATUES_—)\)\)JH
< ®(Ideal)

< |28 {T(As_l 1) { {T(AS_AA)H J

References
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Bounds

Known families of optimal ideal 3D OOC, A\. = 1.

p a prime, ¢ a prime power, 0(k,q) = qkqtl;l

Conditions Type Ref.

w =S < p for all p dividing AT SPP Kim,Yu,Park, (2000)
w=S=A=T=p SPP Li, Fan, Shum (2012)
w=S=4<A=¢q, T>2 SPP Li, Fan, Shum (2012)
w=S=q+1,A=q¢q>3,T=p>q | SPP Li, Fan, Shum (2012)
w=S=3A=T mod?2 SPP Shum (2015)
w=3, AT(S — 1) even, AMOPP Shum(2015)

AT(S —1)S =0 mod 3, and
S =0,1mod 4 if
T =2 mod 4 and A is odd.
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Projective Spaces: Notation

PG(k,q) : The finite projective geometry of dimension k and
order gq.

The number of points of PG(k,q):

k+1
q —1
0(k,q) =0(k) = —>+—.
Number of lines on PG(k,q): L(k)
The number of d-flats in PG(k, q):

E+1] (= 1) (gFt —q) - (¢F T — ¢%)
[ d+1 L_ (1 — 1) (g™ —q) - (¢3! — ¢9)°
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Projective Constructions

Singer representation

A Singer group is a cyclic group acting sharply transitively on the
points of PG(k,q). A generator is a Singer cycle.
Let 3 be a primitive element of GF(¢*T!). Then the powers of 3:

0 1 2 k k—1_ . 2 :9k‘7 -1
B BL B2, ... pY e et a(=0(kg)—1)

represent the projective points of ¥ = PG(k, q).
Denote by ¢ the Singer cycle of ¥ defined by 5 — 3i*1.

)

UNB

gaintjohn

12/28



Projective Constructions

Codewords from Orbits

Let n =6(k) = A-S-T where G is the Singer group of
Y = PG(k,q). Since G is cyclic there exists a unique subgroup H
of order T (H is the subgroup with generator ¢%).

Definition (Projective Incidence Array)

Let A, S, T be positive integers such that 8(k,q) =A-S-T. For
an arbitrary pointset A in ¥ = PG(k, q) we define the A x S x T
incidence array A = (a; %), 0<i<A—-1,0<5<85-1,
0<k<T-—1where a; ;=1 if and only if the point
corresponding to BiTIATESA igin A

Note that a cyclic shift of the temporal planes of A is the
incidence array corresponding to o(.A).
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Projective Constructions

If Ais a pointset of ¥, consider its orbit Orbg(A) under the
group H generated by ¢5.

The set A has full H-orbit if |Orby(A)| =T = {5 and short
H-orbit otherwise.

If A has full H-orbit then a representative member of the orbit and
corresponding 3-D codeword is chosen. The collection of all such
codewords gives rise to a (A X .S x T, w, Ag, Ac)-3D-00C, where

— ASz AS-
Aa _0<z<]<T 1{|¢ ﬁ¢ J( )|} (1)
and
Ae= max {1674 NI (A} (2)

ranging over all A, A" with full H-orbit.
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A handy Theorem

Theorem ( Rao (1969), Drudge (2002) )

In ¥ = PG(k,q), there exists a short G-orbit of d-flats if and only
if ged(k +1,d+ 1) # 1. In the case that d + 1 divides k + 1 there
is a short orbit S which partitions the points of ¥. (i.e. constitutes
a d-spread of X). There is precisely one such orbit, and the

0(k)
G-stabilizer of any 11 € S is Stabg(Il) = (p?@).
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Projective Constructions

Codes from projective lines, A\, =1

In PG(k,q), k odd, let S be the line spread determined by G
where say Stabg(¢) = H for £ € S (so |H| = ¢+ 1).

It follows that any pointset meeting each line of the spread in at
most one point will be of full H-orbit, and moreover, that
members of the orbit will be mutually disjoint.

(Consequently, if AS = eélj_’g), then the corresponding
A x S x (g+ 1) incidence array will satisfies A, = 0).
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Projective Constructions

Clearly, each line ¢ ¢ S meets each spread line in at most one
point.

For each full H-orbit of lines, select a representative member and
corresponding A x S X (g + 1) incidence array (3D-codeword). The
collection of all such codewords comprises a
(AxSx(g+1),q+1,0,.)-3DO0OC C.

As two lines intersect in at most one point we have A\, = 1.
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Projective Constructions

Each ¢ ¢ S is of full H-orbit, that is |Orby(¢)| = g+ 1, and the
lines in Orby (¢) are disjoint. It follows that the number of full

H-orbits of lines is
L(k) —|S|
q+1
L [ =1 —q)  0(k)
q+1 (¢ —1)(¢* — q) q+1
_ Q'e(kvc.I)'e(k_Qa(I) (3)
a (¢+ 1)

# orbits =

Comparing this with our established bounds we see that C is in

fact optimal.
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Theorem
Let q be a prime power and let k be odd. For any factorisation

AST = 0(k,q) where T divides q + 1 there exists a J-optimal
(AxSxT,g+1,0,1)-00C.
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Projective Constructions

In an analogous way we may generalize whereby codewords
correspond to lines that are not contained in any element of a
d-spread of X.

Theorem

Ford > 1, m > 1, and for any factorisation

AST = (m —1,¢**1) - 0(d, q) where T divides 6(d, q), there
exists a J-optimal (A x S xT,q+ 1,0,1)-00C .
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Affine Analogue

There exists an affine analogue of the Singer automorphism,
denoted G' = (7). The following follows from Theorem 8 of (Bose,
1942).

Theorem (Bose (1942))

A d-flat TT in PG(k,q) is of full G-orbit if and only if the origin
Py ¢ 11 and 11 is not a subset of Tl.

Utilizing this theorem we are able to contruct more 3D-OQ0Cs.
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Theorem
For q a prime power, and for any factoristion AST = ¢* — 1 where
T divides ¢ — 1 there exists a J-optimal (A x S x T,q,0,1)-0O0C.
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An Affine Construction

New families of optimal ideal 3D OOC, A\, = 1.

p a prime, ¢ a prime power, 0(k,q) = qkqtll_l
Conditions Type Ref.
w =S < p for all p dividing AT | SPP Kim, Yu, and Park (2000)
w=S=A=T=p SPP Li, Fan, and K. W. Shum (2012)
w=S=4<A=¢q T>2 SPP Li, Fan, and K. W. Shum (2012)
w==95=a+1LA=q>3, SPP Li, Fan, and K. W. Shum (2012)
T=p>gq
w=8S=3A=T mod?2 SPP Kenneth W. Shum (2015)

w =3, AT(S — 1) even,
AT(S —1)S =0 mod 3, and
S =0,1mod 4 if

T =2 mod 4 and A is odd.

AMOPP | Shum(2015)

w=q+1,T|0(d, q),

AST = 6(m — 1,¢**10(d, q), TLA (2017)
d>0m>1
w=gq, AST=¢* —1,T|(qg - 1) TLA 2017 )
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An Affine Construction

Conclusion and further work

e Provided constructions of infinite families of optimal ideal
3-dimensional OOC's.

e Constructions involve two or more parameters that may grow
without bound.
e FUTURE:
1. Consider orbits of further algebraic or geometric objects
(curves, arcs, subgeometries etc.) .
2. If desired, construct codes without the ideal constraints (much
larger families).
3. Possible generalize methods to (periodic) (multidimensional)
Costas Arrays.
4. Complete generalizations to D-dimensional codes.

))

UNB

saintjoln

25 /28



Introduction Bounds Projective Constructions An Affine Construction References

[d Alderson, T. L. (2017). “3-Dimensional Optical Orthogonal Codes
with ldeal Autocorrelation-Bounds and Optimal Constructions”.
In: Information Theory, IEEE Transactions on in press, pp. 1-7.
1SSN: 0018-9448. pDoO1: 10.1109/TIT.2017.2717538.

[4 Bose, R. C. (1942). “An affine analogue of Singer's theorem” . In:
J. Indian Math. Soc. (N.S.) 6, pp. 1-15.

[4 Drudge, Keldon (2002). “On the orbits of Singer groups and their
subgroups”. In: Electron. J. Combin. 9.1, Research Paper 15, 10
pp. (electronic). 1SsN: 1077-8926.

[§ Kim, Sangin, Kyungsik Yu, and N. Park (2000). “A new family of
space/wavelength /time spread three-dimensional optical code
for OCDMA networks”. In: Journal of Lightwave Technology
18.4, pp. 502-511. 1ssN: 0733-8724. por: 10.1109/50.838124.

[@ Li, X., P. Fan, and K. W. Shum (2012). “Construction of
Space/Wavelength /Time Spread Optical Code with Large Family
Size". In: IEEE Communications Letters 16.6, pp. 893-896. ))
ISSN: 1089-7798. DOI: 10.1109/LCOMM.2012.040912.112296. UNB,

26 /28


https://doi.org/10.1109/TIT.2017.2717538
https://doi.org/10.1109/50.838124
https://doi.org/10.1109/LCOMM.2012.040912.112296

Introduction Bounds Projective Constructions An Affine Construction References

[1 Rao, C. Radhakrishna (1969). “Cyclical generation of linear
subspaces in finite geometries”. In: Combinatorial Mathematics
and its Applications (Proc. Conf., Univ. North Carolina, Chapel
Hill, N.C., 1967). Chapel Hill, N.C.: Univ. North Carolina Press,
pp. 515-535.

[§ Shum, Kenneth W. (2015). “Optimal three-dimensional optical
orthogonal codes of weight three”. In: Des. Codes Cryptogr.
75.1, pp. 109-126. 1sSN: 0925-1022. DOTI:
10.1007/s10623-013-9894-4. URL:
http://dx.doi.org/10.1007/s10623-013-9894-4.

))

UNB

saintjohn

27 /28


https://doi.org/10.1007/s10623-013-9894-4
http://dx.doi.org/10.1007/s10623-013-9894-4

Danke,

| ass uns essen!

References

))

UNB
saintjon



	Introduction
	Bounds
	Projective Constructions
	An Affine Construction

