# Higher Dimensional Optical Orthogonal Codes <br> Finite Geometries 2017 <br> $5^{\text {th }}$ Irsee Conference 

Tim Alderson ${ }^{1}$

University of New Brunswick
September 12, 2017.

[^0]
## Table of contents

Introduction

Bounds

Projective Constructions

An Affine Construction
$2 / 28$

In Optical code-division multiple access (OCDMA) applications, the number of codewords in an OOC corresponds to possible number of asynchronous users able to transmit information efficiently and reliably.

1D-OOCs suffer from small cardinality (need long codewords or relaxed correlations).

3D-OOCs or space/wavelength/time OOCs encode the data bits in spatial, wavelength and time domains, overcoming the 1D-OOC shortcomings.

## 3D OOCs

We denote by $\left(\Lambda \times S \times T, w, \lambda_{a}, \lambda_{c}\right)$ a 3D-OOC with constant weight $w, \Lambda$ wavelengths, space spreading length $S$, and time-spreading length $T$ (hence, each codeword may be considered as an $\Lambda \times S \times T$ binary array) subject to the following properties.

- (auto-correlation property) for any codeword $A=\left(a_{i, j, k}\right)$ and for any integer $1 \leq t \leq T-1$, we have

$$
\sum_{i=0}^{S-1} \sum_{j=0}^{\Lambda-1} \sum_{k=1}^{T-1} a_{i, j, k} a_{i, j, k+t} \leq \lambda_{a}
$$

- (cross-correlation property) for any two distinct codewords $A=\left(a_{i, j, k}\right), B=\left(b_{i, j, k}\right)$ and for any integer $0 \leq t \leq T-1$, we have $\sum_{i=0}^{S-1} \sum_{j=0}^{\Lambda-1} \sum_{k=0}^{T-1} a_{i, j, k} b_{i, j, k+t} \leq \lambda_{c}$,
where each subscript is reduced modulo $T$.


## Example



Figure: Autocorrelation $\lambda_{a}=1$


Figure: Autocorrelation zero!

Codes with $\lambda_{a}=0$ are called ideal codes.

## Bounds



A codeword from an ideal 3-D OOC, black cubes indicate 1, white indicate 0 . (b) Each of the $\Lambda S$ space/wavelength sections correspond to an element from an alphabet of size $T+1$.

## Bounds

Let $\Phi(C)$ denote the theoretical upper bound on the capacity of $C$. After adapting the Johnson Bound for non-binary alphabets we obtain the following bound for ideal 3-D OOCs.

## Theorem

[Johnson Bound for Ideal 3D OOC]
Let $C$ be an $(\Lambda \times S \times T, w, 0, \lambda)$-OOC, then

$$
\begin{aligned}
\Phi(C) & \leq J\left(\Lambda \times S \times T, w, 0, \lambda_{c}\right) \\
& =\left\lfloor\frac{\Lambda S}{w}\left\lfloor\frac{T(\Lambda S-1)}{w-1}\left\lfloor\cdots\left\lfloor\frac{T(\Lambda S-\lambda)}{w-\lambda}\right\rfloor\right\rfloor \cdots\right\rfloor\right.
\end{aligned}
$$

Note thatif $C$ is an ideal 3D OOC of maximal weight $(w=\Lambda S)$ then $\Phi(C) \leq T^{\lambda}$.
Codes meeting the bound will be said to be J-optimal.

## Bounds

One way to achieve $\lambda_{a}=0$ is to select codes with at most one pulse per spatial plane. Such codes are referred to as at most one pulse per plane (AMOPP) codes. AMOPP codes of maximal weight $S$ have a single pulse per spatial plane, and are referred to as SPP codes.

## Bounds

Using similar methods as above we are able to establish that for fixed dimensions, weight, and correlation

$$
\begin{aligned}
\Phi(S P P) & \leq \Lambda^{\lambda} T^{\lambda-1} \\
& \leq \Phi(A M O P P) \\
& \leq\left\lfloor\frac { 1 } { T } \left\lfloor\frac{\Lambda S T}{w}\left\lfloor\frac{\Lambda T(S-1)}{w-1}\left\lfloor\cdots\left\lfloor\frac{\Lambda T(S-\lambda)}{w-\lambda}\right\rfloor\right\rfloor\right\rfloor\right.\right. \\
& \leq \Phi(\text { Ideal }) \\
& \leq\left\lfloor\frac{\Lambda S}{w}\left\lfloor\frac{T(\Lambda S-1)}{w-1}\left\lfloor\cdots\left\lfloor\frac{T(\Lambda S-\lambda)}{w-\lambda}\right\rfloor\right\rfloor \cdots\right\rfloor\right.
\end{aligned}
$$

## Known families of optimal ideal 3D OOC, $\lambda_{c}=1$.

$p$ a prime, $q$ a prime power, $\theta(k, q)=\frac{q^{k+1}-1}{q-1}$

| Conditions | Type | Ref. |
| :--- | :--- | :---: |
| $w=S \leq p$ for all $p$ dividing $\Lambda T$ | SPP | Kim,Yu,Park, (2000) |
| $w=S=\Lambda=T=p$ | SPP | Li, Fan, Shum (2012) |
| $w=S=4 \leq \Lambda=q, T \geq 2$ | SPP | Li, Fan, Shum (2012) |
| $w=S=q+1, \Lambda=q>3, T=p>q$ | SPP | Li, Fan, Shum (2012) |
| $w=S=3 \Lambda \equiv T \bmod 2$ | SPP | Shum (2015) |
| $w=3, \Lambda T(S-1)$ even, | AMOPP | Shum(2015) |
| $\Lambda T(S-1) S \equiv 0 \bmod 3$, and |  |  |
| $S \equiv 0,1 \bmod 4$ if |  |  |
| $T \equiv 2 \bmod 4$ and $\Lambda$ is odd. |  |  |

## Projective Spaces: Notation

- $P G(k, q)$ : The finite projective geometry of dimension $k$ and order $q$.
- The number of points of $P G(k, q)$ :

$$
\theta(k, q)=\theta(k)=\frac{q^{k+1}-1}{q-1} .
$$

- Number of lines on $\operatorname{PG}(k, q): \mathcal{L}(k)$
- The number of $d$-flats in $P G(k, q)$ :

$$
\left[\begin{array}{l}
k+1 \\
d+1
\end{array}\right]_{q}=\frac{\left(q^{k+1}-1\right)\left(q^{k+1}-q\right) \cdots\left(q^{k+1}-q^{d}\right)}{\left(q^{d+1}-1\right)\left(q^{d+1}-q\right) \cdots\left(q^{d+1}-q^{d}\right)}
$$

## Singer representation

A Singer group is a cyclic group acting sharply transitively on the points of $P G(k, q)$. A generator is a Singer cycle. Let $\beta$ be a primitive element of $G F\left(q^{k+1}\right)$. Then the powers of $\beta$ :

$$
\beta^{0}, \beta^{1}, \beta^{2}, \ldots, \beta^{q^{k}+q^{k-1}+\cdots+q^{2}+q(=\theta(k, q)-1)}
$$

represent the projective points of $\Sigma=P G(k, q)$.
Denote by $\phi$ the Singer cycle of $\Sigma$ defined by $\beta^{i} \mapsto \beta^{i+1}$.

## Codewords from Orbits

Let $n=\theta(k)=\Lambda \cdot S \cdot T$ where $G$ is the Singer group of $\Sigma=P G(k, q)$. Since $G$ is cyclic there exists a unique subgroup $H$ of order $T$ ( $H$ is the subgroup with generator $\phi^{\Lambda S}$ ).

Definition (Projective Incidence Array)
Let $\Lambda, S, T$ be positive integers such that $\theta(k, q)=\Lambda \cdot S \cdot T$. For an arbitrary pointset $\mathcal{A}$ in $\Sigma=P G(k, q)$ we define the $\Lambda \times S \times T$ incidence array $A=\left(a_{i, j, k}\right), 0 \leq i \leq \Lambda-1,0 \leq j \leq S-1$, $0 \leq k \leq T-1$ where $a_{i, j, k}=1$ if and only if the point corresponding to $\beta^{i+j \cdot \Lambda+k \cdot S \Lambda}$ is in $\mathcal{A}$.
Note that a cyclic shift of the temporal planes of $A$ is the incidence array corresponding to $\sigma(\mathcal{A})$.
$\beta^{9}$ induces a cyclic shift of the temporal planes.

$\underset{\substack{\text { UNB } \\ \text { smmpon }}}{J)}$

If $\mathcal{A}$ is a pointset of $\Sigma$, consider its orbit $\operatorname{Orb}_{H}(\mathcal{A})$ under the group $H$ generated by $\phi^{\Lambda S}$.
The set $\mathcal{A}$ has full $H$-orbit if $\left|\operatorname{Orb}_{H}(\mathcal{A})\right|=T=\frac{n}{\Lambda S}$ and short $H$-orbit otherwise.
If $\mathcal{A}$ has full $H$-orbit then a representative member of the orbit and corresponding 3-D codeword is chosen. The collection of all such codewords gives rise to a ( $\Lambda \times S \times T, w, \lambda_{a}, \lambda_{c}$ )-3D-OOC, where

$$
\begin{equation*}
\lambda_{a}=\max _{0 \leq i<j \leq T-1}\left\{\left|\phi^{\Lambda S \cdot i}(\mathcal{A}) \cap \phi^{\Lambda S \cdot j}(\mathcal{A})\right|\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{c}=\max _{0 \leq i, j \leq T-1}\left\{\left|\phi^{\Lambda S \cdot i}(\mathcal{A}) \cap \phi^{\Lambda S \cdot j}\left(\mathcal{A}^{\prime}\right)\right|\right\} \tag{2}
\end{equation*}
$$

ranging over all $\mathcal{A}, \mathcal{A}^{\prime}$ with full $H$-orbit.

## A handy Theorem

Theorem ( Rao (1969), Drudge (2002) )
In $\Sigma=P G(k, q)$, there exists a short $G$-orbit of d-flats if and only if $\operatorname{gcd}(k+1, d+1) \neq 1$. In the case that $d+1$ divides $k+1$ there is a short orbit $\mathcal{S}$ which partitions the points of $\Sigma$ (i.e. constitutes a d-spread of $\Sigma$ ). There is precisely one such orbit, and the $G$-stabilizer of any $\Pi \in \mathcal{S}$ is $\operatorname{Stab}_{G}(\Pi)=\left\langle\phi^{\frac{\theta(k)}{\theta(d)}}\right\rangle$.

## Codes from projective lines, $\lambda_{c}=1$

In $P G(k, q), k$ odd, let $\mathcal{S}$ be the line spread determined by $G$ where say $\operatorname{Stab}_{G}(\ell)=H$ for $\ell \in \mathcal{S}$ (so $|H|=q+1$ ).

It follows that any pointset meeting each line of the spread in at most one point will be of full $H$-orbit, and moreover, that members of the orbit will be mutually disjoint.
(Consequently, if $\Lambda S=\frac{\theta(k, q)}{q+1}$, then the corresponding $\Lambda \times S \times(q+1)$ incidence array will satisfies $\left.\lambda_{a}=0\right)$.

Clearly, each line $\ell \notin \mathcal{S}$ meets each spread line in at most one point.

For each full $H$-orbit of lines, select a representative member and corresponding $\Lambda \times S \times(q+1)$ incidence array (3D-codeword). The collection of all such codewords comprises a $\left(\Lambda \times S \times(q+1), q+1,0, \lambda_{c}\right)$-3DOOC $C$.

As two lines intersect in at most one point we have $\lambda_{c}=1$.

Each $\ell \notin \mathcal{S}$ is of full $H$-orbit, that is $\left|\operatorname{Orb}_{H}(\ell)\right|=q+1$, and the lines in $\operatorname{Orb}_{H}(\ell)$ are disjoint. It follows that the number of full $H$-orbits of lines is

$$
\begin{align*}
\text { \# orbits } & =\frac{\mathcal{L}(k)-|\mathcal{S}|}{q+1} \\
& =\frac{1}{q+1} \cdot\left[\frac{\left(q^{k+1}-1\right)\left(q^{k+1}-q\right)}{\left(q^{2}-1\right)\left(q^{2}-q\right)}-\frac{\theta(k)}{q+1}\right] \\
& =\frac{q \cdot \theta(k, q) \cdot \theta(k-2, q)}{(q+1)^{2}} \tag{3}
\end{align*}
$$

Comparing this with our established bounds we see that $C$ is in fact optimal.

Theorem
Let $q$ be a prime power and let $k$ be odd. For any factorisation $\Lambda S T=\theta(k, q)$ where $T$ divides $q+1$ there exists a J-optimal ( $\Lambda \times S \times T, q+1,0,1)$-OOC.

In an analogous way we may generalize whereby codewords correspond to lines that are not contained in any element of a $d$-spread of $\Sigma$.

Theorem
For $d \geq 1, m>1$, and for any factorisation
$\Lambda S T=\theta\left(m-1, q^{d+1}\right) \cdot \theta(d, q)$ where $T$ divides $\theta(d, q)$, there exists a J-optimal $(\Lambda \times S \times T, q+1,0,1)$-OOC.

## Affine Analogue

There exists an affine analogue of the Singer automorphism, denoted $\hat{G}=\langle\hat{\psi}\rangle$. The following follows from Theorem 8 of (Bose, 1942).

Theorem (Bose (1942))
A d-flat $\Pi$ in $P G(k, q)$ is of full $\hat{G}$-orbit if and only if the origin $P_{0} \notin \Pi$ and $\Pi$ is not a subset of $\Pi_{\infty}$.
Utilizing this theorem we are able to contruct more 3D-OOCs.

Theorem
For $q$ a prime power, and for any factoristion $\Lambda S T=q^{k}-1$ where $T$ divides $q-1$ there exists a J-optimal $(\Lambda \times S \times T, q, 0,1)$-OOC.

## New families of optimal ideal 3D OOC, $\lambda_{c}=1$.

$$
p \text { a prime, } q \text { a prime power, } \theta(k, q)=\frac{q^{k+1}-1}{q-1}
$$

| Conditions | Type | Ref. |
| :--- | :--- | :--- |
| $w=S \leq p$ for all $p$ dividing $\Lambda T$ | SPP | Kim, Yu, and Park (2000) |
| $w=S=\Lambda=T=p$ | SPP | Li, Fan, and K. W. Shum (2012) |
| $w=S=4 \leq \Lambda=q, T \geq 2$ | SPP | Li, Fan, and K. W. Shum (2012) |
| $w=S=q+1, \Lambda=q>3$, | SPP | Li, Fan, and K. W. Shum (2012) |
| $T=p>q$ |  |  |
| $w=S=3 \Lambda \equiv T \quad \bmod 2$ | SPP | Kenneth W. Shum (2015) |
| $w=3, \Lambda T(S-1)$ even, |  |  |
| $\Lambda T(S-1) S \equiv 0 \bmod 3$, and | AMOPP | Shum(2015) |
| $S \equiv 0,1 \bmod 4$ if |  |  |
| $T \equiv 2 \bmod 4$ and $\Lambda$ is odd. |  |  |
| $w=q+1, T \mid \theta(d, q)$, |  | TLA (2017) |
| $\Lambda S T=\theta\left(m-1, q^{d+1}\right) \theta(d, q)$, |  |  |
| $d>0, m>1$ |  | TLA 2017 |
| $w=q, \Lambda S T=q^{k}-1, T \mid(q-1)$ |  |  |

## Conclusion and further work

- Provided constructions of infinite families of optimal ideal 3-dimensional OOC's.
- Constructions involve two or more parameters that may grow without bound.
- FUTURE:

1. Consider orbits of further algebraic or geometric objects (curves, arcs, subgeometries etc.) .
2. If desired, construct codes without the ideal constraints (much larger families).
3. Possible generalize methods to (periodic) (multidimensional) Costas Arrays.
4. Complete generalizations to D-dimensional codes.

囯 Alderson，T．L．（2017）．＂3－Dimensional Optical Orthogonal Codes with Ideal Autocorrelation－Bounds and Optimal Constructions＂． In：Information Theory，IEEE Transactions on in press，pp．1－7． ISSN：0018－9448．DOI：10．1109／TIT．2017．2717538．
（190se，R．C．（1942）．＂An affine analogue of Singer＇s theorem＂．In： J．Indian Math．Soc．（N．S．）6，pp．1－15．
围 Drudge，Keldon（2002）．＂On the orbits of Singer groups and their subgroups＂．In：Electron．J．Combin．9．1，Research Paper 15， 10 pp．（electronic）．ISSN：1077－8926．
围 Kim，Sangin，Kyungsik Yu，and N．Park（2000）．＂A new family of space／wavelength／time spread three－dimensional optical code for OCDMA networks＂．In：Journal of Lightwave Technology 18．4，pp．502－511．ISSN：0733－8724．DOI：10．1109／50．838124．
Ei，X．，P．Fan，and K．W．Shum（2012）．＂Construction of Space／Wavelength／Time Spread Optical Code with Large Family Size＂．In：IEEE Communications Letters 16．6，pp．893－896． ISSN：1089－7798．DOI：10．1109／LCOMM．2012．040912．112296．

嗇 Rao, C. Radhakrishna (1969). "Cyclical generation of linear subspaces in finite geometries". In: Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967). Chapel Hill, N.C.: Univ. North Carolina Press, pp. 515-535.
國 Shum, Kenneth W. (2015). "Optimal three-dimensional optical orthogonal codes of weight three". In: Des. Codes Cryptogr. 75.1, pp. 109-126. ISSN: 0925-1022. DOI:
10.1007/s10623-013-9894-4. URL:
http://dx.doi.org/10.1007/s10623-013-9894-4.

## Danke,

## Lass uns essen!


[^0]:    ${ }^{1}$ Supported by the NSERC of Canada Discovery Grants Program.

