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In Optical code-division multiple access (OCDMA) applications,
the number of codewords in an OOC corresponds to possible
number of asynchronous users able to transmit information
efficiently and reliably.

1D-OOCs suffer from small cardinality (need long codewords or
relaxed correlations).

3D-OOCs or space/wavelength/time OOCs encode the data bits in
spatial, wavelength and time domains, overcoming the 1D-OOC
shortcomings.
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3D OOCs

We denote by (Λ× S × T,w, λa, λc) a 3D-OOC with constant
weight w, Λ wavelengths, space spreading length S, and
time-spreading length T (hence, each codeword may be considered
as an Λ× S × T binary array) subject to the following properties.

• (auto-correlation property) for any codeword A = (ai,j,k) and
for any integer 1 ≤ t ≤ T − 1, we have
S−1∑
i=0

Λ−1∑
j=0

T−1∑
k=1

ai,j,kai,j,k+t ≤ λa,

• (cross-correlation property) for any two distinct codewords
A = (ai,j,k), B = (bi,j,k) and for any integer 0 ≤ t ≤ T − 1,

we have
S−1∑
i=0

Λ−1∑
j=0

T−1∑
k=0

ai,j,kbi,j,k+t ≤ λc,

where each subscript is reduced modulo T .
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Example
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Figure: Autocorrelation λa = 1
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Figure: Autocorrelation zero!

Codes with λa = 0 are called ideal codes.
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Bounds
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A codeword from an ideal 3-D OOC, black cubes indicate 1, white
indicate 0. (b) Each of the ΛS space/wavelength sections
correspond to an element from an alphabet of size T + 1.
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Bounds

Let Φ(C) denote the theoretical upper bound on the capacity of
C. After adapting the Johnson Bound for non-binary alphabets we
obtain the following bound for ideal 3-D OOCs.

Theorem
[Johnson Bound for Ideal 3D OOC]
Let C be an (Λ× S × T,w, 0, λ)-OOC, then

Φ(C) ≤ J(Λ× S × T,w, 0, λc)

=

⌊
ΛS

w

⌊
T (ΛS − 1)

w − 1

⌊
· · ·
⌊
T (ΛS − λ)

w − λ

⌋⌋
· · ·
⌋

Note thatif C is an ideal 3D OOC of maximal weight (w = ΛS )
then Φ(C) ≤ T λ.
Codes meeting the bound will be said to be J-optimal.
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Bounds

One way to achieve λa = 0 is to select codes with at most one
pulse per spatial plane. Such codes are referred to as at most one
pulse per plane (AMOPP) codes. AMOPP codes of maximal
weight S have a single pulse per spatial plane, and are referred to
as SPP codes.
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Bounds

Using similar methods as above we are able to establish that for
fixed dimensions, weight, and correlation

Φ(SPP ) ≤ ΛλT λ−1

≤ Φ(AMOPP )

≤
⌊

1

T

⌊
ΛST

w

⌊
ΛT (S − 1)

w − 1

⌊
· · ·
⌊

ΛT (S − λ)

w − λ

⌋⌋⌋
≤ Φ(Ideal)

≤
⌊

ΛS

w

⌊
T (ΛS − 1)

w − 1

⌊
· · ·
⌊
T (ΛS − λ)

w − λ

⌋⌋
· · ·
⌋
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Known families of optimal ideal 3D OOC, λc = 1.

p a prime, q a prime power, θ(k, q) = qk+1−1
q−1

Conditions Type Ref.

w = S ≤ p for all p dividing ΛT SPP Kim,Yu,Park, (2000)

w = S = Λ = T = p SPP Li, Fan, Shum (2012)

w = S = 4 ≤ Λ = q, T ≥ 2 SPP Li, Fan, Shum (2012)

w = S = q+ 1, Λ = q > 3, T = p > q SPP Li, Fan, Shum (2012)

w = S = 3 Λ ≡ T mod 2 SPP Shum (2015)

w = 3, ΛT (S − 1) even,
ΛT (S − 1)S ≡ 0 mod 3, and
S ≡ 0, 1 mod 4 if
T ≡ 2 mod 4 and Λ is odd.

AMOPP Shum(2015)
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Projective Spaces: Notation

• PG(k, q) : The finite projective geometry of dimension k and
order q.

• The number of points of PG(k, q):

θ(k, q) = θ(k) =
qk+1 − 1

q − 1
.

• Number of lines on PG(k, q): L(k)

• The number of d-flats in PG(k, q):[
k + 1
d+ 1

]
q

=
(qk+1 − 1)(qk+1 − q) · · · (qk+1 − qd)
(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)

.
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Singer representation

A Singer group is a cyclic group acting sharply transitively on the
points of PG(k, q). A generator is a Singer cycle.
Let β be a primitive element of GF (qk+1). Then the powers of β:

β0, β1, β2, . . . , βq
k+qk−1+···+q2+q(=θ(k,q)−1)

represent the projective points of Σ = PG(k, q).

Denote by φ the Singer cycle of Σ defined by βi 7→ βi+1.
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Codewords from Orbits

Let n = θ(k) = Λ · S · T where G is the Singer group of
Σ = PG(k, q). Since G is cyclic there exists a unique subgroup H
of order T (H is the subgroup with generator φΛS).

Definition (Projective Incidence Array)

Let Λ, S, T be positive integers such that θ(k, q) = Λ · S · T . For
an arbitrary pointset A in Σ = PG(k, q) we define the Λ× S × T
incidence array A = (ai,j,k), 0 ≤ i ≤ Λ− 1, 0 ≤ j ≤ S − 1,
0 ≤ k ≤ T − 1 where ai,j,k = 1 if and only if the point
corresponding to βi+j·Λ+k·SΛ is in A.

Note that a cyclic shift of the temporal planes of A is the
incidence array corresponding to σ(A).
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β9 induces a cyclic shift of the temporal planes.
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If A is a pointset of Σ, consider its orbit OrbH(A) under the
group H generated by φΛS .
The set A has full H-orbit if |OrbH(A)| = T = n

ΛS and short
H-orbit otherwise.
If A has full H-orbit then a representative member of the orbit and
corresponding 3-D codeword is chosen. The collection of all such
codewords gives rise to a (Λ× S × T,w, λa, λc)-3D-OOC, where

λa = max
0≤i<j≤ T−1

{
|φΛS·i(A) ∩ φΛS·j(A)|

}
(1)

and
λc = max

0≤i,j≤ T−1

{
|φΛS·i(A) ∩ φΛS·j(A′)|

}
(2)

ranging over all A, A′ with full H-orbit.
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A handy Theorem

Theorem ( Rao (1969), Drudge (2002) )

In Σ = PG(k, q), there exists a short G-orbit of d-flats if and only
if gcd(k + 1, d+ 1) 6= 1. In the case that d+ 1 divides k + 1 there
is a short orbit S which partitions the points of Σ (i.e. constitutes
a d-spread of Σ). There is precisely one such orbit, and the

G-stabilizer of any Π ∈ S is StabG(Π) = 〈φ
θ(k)
θ(d) 〉.
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Codes from projective lines, λc = 1

In PG(k, q), k odd, let S be the line spread determined by G
where say StabG(`) = H for ` ∈ S (so |H| = q + 1).

It follows that any pointset meeting each line of the spread in at
most one point will be of full H-orbit, and moreover, that
members of the orbit will be mutually disjoint.

(Consequently, if ΛS = θ(k,q)
q+1 , then the corresponding

Λ× S × (q + 1) incidence array will satisfies λa = 0).
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Clearly, each line ` /∈ S meets each spread line in at most one
point.

For each full H-orbit of lines, select a representative member and
corresponding Λ× S × (q+ 1) incidence array (3D-codeword). The
collection of all such codewords comprises a
(Λ× S × (q + 1), q + 1, 0, λc)-3DOOC C.

As two lines intersect in at most one point we have λc = 1.
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Each ` /∈ S is of full H-orbit, that is |OrbH(`)| = q + 1, and the
lines in OrbH(`) are disjoint. It follows that the number of full
H-orbits of lines is

# orbits =
L(k)− |S|
q + 1

=
1

q + 1
·
[

(qk+1 − 1)(qk+1 − q)
(q2 − 1)(q2 − q)

− θ(k)

q + 1

]
=
q · θ(k, q) · θ(k − 2, q)

(q + 1)2
(3)

Comparing this with our established bounds we see that C is in
fact optimal.
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Theorem
Let q be a prime power and let k be odd. For any factorisation
ΛST = θ(k, q) where T divides q + 1 there exists a J-optimal
(Λ× S × T, q + 1, 0, 1)-OOC.
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In an analogous way we may generalize whereby codewords
correspond to lines that are not contained in any element of a
d-spread of Σ.

Theorem
For d ≥ 1, m > 1, and for any factorisation
ΛST = θ(m− 1, qd+1) · θ(d, q) where T divides θ(d, q), there
exists a J-optimal (Λ× S × T, q + 1, 0, 1)-OOC .
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Affine Analogue

There exists an affine analogue of the Singer automorphism,
denoted Ĝ = 〈ψ̂〉. The following follows from Theorem 8 of (Bose,
1942).

Theorem (Bose (1942))

A d-flat Π in PG(k, q) is of full Ĝ-orbit if and only if the origin
P0 /∈ Π and Π is not a subset of Π∞.

Utilizing this theorem we are able to contruct more 3D-OOCs.
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Theorem
For q a prime power, and for any factoristion ΛST = qk − 1 where
T divides q − 1 there exists a J-optimal (Λ× S × T, q, 0, 1)-OOC.
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New families of optimal ideal 3D OOC, λc = 1.

p a prime, q a prime power, θ(k, q) = qk+1−1
q−1

Conditions Type Ref.

w = S ≤ p for all p dividing ΛT SPP Kim, Yu, and Park (2000)

w = S = Λ = T = p SPP Li, Fan, and K. W. Shum (2012)

w = S = 4 ≤ Λ = q, T ≥ 2 SPP Li, Fan, and K. W. Shum (2012)

w = S = q + 1, Λ = q > 3,
T = p > q

SPP Li, Fan, and K. W. Shum (2012)

w = S = 3 Λ ≡ T mod 2 SPP Kenneth W. Shum (2015)

w = 3, ΛT (S − 1) even,
ΛT (S − 1)S ≡ 0 mod 3, and
S ≡ 0, 1 mod 4 if
T ≡ 2 mod 4 and Λ is odd.

AMOPP Shum(2015)

w = q + 1, T |θ(d, q),
ΛST = θ(m− 1, qd+1)θ(d, q),
d > 0,m > 1

TLA (2017)

w = q, ΛST = qk − 1, T |(q − 1) TLA 2017

24 / 28



Introduction Bounds Projective Constructions An Affine Construction References

Conclusion and further work

• Provided constructions of infinite families of optimal ideal
3-dimensional OOC’s.

• Constructions involve two or more parameters that may grow
without bound.

• FUTURE:

1. Consider orbits of further algebraic or geometric objects
(curves, arcs, subgeometries etc.) .

2. If desired, construct codes without the ideal constraints (much
larger families).

3. Possible generalize methods to (periodic) (multidimensional)
Costas Arrays.

4. Complete generalizations to D-dimensional codes.
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Danke,

Lass uns essen!
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