Minimal multiple blocking sets

Anurag Bishnoi

(with S. Mattheus and J. Schillewaert)

Free University of Berlin https://anuragbishnoi.wordpress.com/

Finite Geometries, Irsee September 2017

Blocking Sets

A subset B of points in a projective plane π_n of order n s.t. for all lines ℓ we have $|\ell \cap B| \ge 1$. It is *minimal* iff $\forall X \in B$, $\exists \ell_X$ s.t. $\ell_X \cap B = \{X\}$.

Blocking Sets

A subset B of points in a projective plane π_n of order n s.t. for all lines ℓ we have $|\ell \cap B| \ge 1$. It is *minimal* iff $\forall X \in B$, $\exists \ell_X$ s.t. $\ell_X \cap B = \{X\}$.

Trivially, a line is a blocking set of size n + 1. A vertex-less triangle forms a blocking set of size 3(n - 1).

Possible Sizes

What are the possible sizes of a (minimal) blocking set?

Possible Sizes

What are the possible sizes of a (minimal) blocking set?

Theorem (Bruen 1970, Bruen and Thas 1977)

A non-trivial minimal blocking set B in π_n satisfies

$$n + \sqrt{n} + 1 \le |B| \le n\sqrt{n} + 1.$$

Baer subplanes and Hermitian curves prove sharpness for $n = p^{2k}$.

A. Blokhuis, P. Sziklai and T. Szőnyi. Blocking sets in projective spaces. In *Current Research Topics in Galois Geometry*, 2011.

Our results

A *t-fold blocking set* is a set *B* with the property that $|\ell \cap B| \ge t$ for all lines ℓ .

Our results

A *t-fold blocking set* is a set B with the property that $|\ell \cap B| \ge t$ for all lines ℓ . It is minimal if $\forall X \in B$, $\exists \ell_X$ such that $|\ell_X \cap B| = t$.

Our results

A *t-fold blocking set* is a set *B* with the property that $|\ell \cap B| \ge t$ for all lines ℓ . It is minimal if $\forall X \in B$, $\exists \ell_X$ such that $|\ell_X \cap B| = t$.

Main Result: A generalization of the Bruen-Thas upper bound to minimal t-fold blocking sets.

For a graph G on vertices v_1, \ldots, v_n let A be a the $n \times n$ real matrix such that $A_{ij} = 1$ if v_i is adjacent to v_j and 0 otherwise.

For a graph G on vertices v_1, \ldots, v_n let A be a the $n \times n$ real matrix such that $A_{ij} = 1$ if v_i is adjacent to v_j and 0 otherwise.

Then *A* has *n* real eigenvalues, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

For a graph G on vertices v_1, \ldots, v_n let A be a the $n \times n$ real matrix such that $A_{ij} = 1$ if v_i is adjacent to v_j and 0 otherwise.

Then A has n real eigenvalues, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

If G is k-regular then $k \geq \lambda_1$ and $\lambda_n \geq -k$.

For a graph G on vertices v_1, \ldots, v_n let A be a the $n \times n$ real matrix such that $A_{ij} = 1$ if v_i is adjacent to v_j and 0 otherwise.

Then A has n real eigenvalues, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

If G is k-regular then $k \geq \lambda_1$ and $\lambda_n \geq -k$.

Let λ be the second largest eigenvalue in absolute terms.

$$\left|e(S,T)-\frac{d_L|S||T|}{|R|}\right|\leq$$

The proof

For each point X of the blocking set S pick a line ℓ_X such that $|\ell_X \cap S| = 1$. This gives us a set T of lines such that |T| = |S| and e(S,T) = |S|.

https://www.win.tue.nl/~aeb/graphs/cages/cages.html

The proof

For each point X of the blocking set S pick a line ℓ_X such that $|\ell_X \cap S| = 1$. This gives us a set T of lines such that |T| = |S| and e(S, T) = |S|.

The eigenvalues of π_n are $n+1 \geq \sqrt{n} \geq -\sqrt{n} \geq -n-1$.

¹https://www.win.tue.nl/~aeb/graphs/cages/cages.html

The proof

For each point X of the blocking set S pick a line ℓ_X such that $|\ell_X \cap S| = 1$. This gives us a set T of lines such that |T| = |S| and e(S, T) = |S|.

The eigenvalues of π_n are $n+1 \geq \sqrt{n} \geq -\sqrt{n} \geq -n-1$.

Plug it in

$$\left| e(S,T) - \frac{d_L|S||T|}{|R|} \right| \leq \lambda \sqrt{|S||T| \left(1 - \frac{|S|}{|L|}\right) \left(1 - \frac{|T|}{|R|}\right)}.$$

and get

$$|S| < n\sqrt{n} + 1.$$

¹https://www.win.tue.nl/~aeb/graphs/cages/cages.html

Minimal multiple blocking sets

Theorem

Let B be a minimal t-fold blocking set in π_n . Then

$$|B| \leq \frac{1}{2}n\sqrt{4tn - (3t+1)(t-1)} + \frac{1}{2}(t-1)n + t = \Theta(\sqrt{t}n^{3/2}).$$

Case of Equality

This bound is sharp for:

- **1** t = 1 and n =an even power of a prime. (Unitals)
- t = n and n arbitrary. (Full plane minus a point)
- \bullet $t = n \sqrt{n}$ and n = an even power of prime. (Complement of a Baer subplane)

Case of Equality

This bound is sharp for:

- **1** t = 1 and n =an even power of a prime. (Unitals)
- \bullet $t=n-\sqrt{n}$ and n= an even power of prime. (Complement of a Baer subplane)

Theorem

If equality occurs and n is a prime power, then B is one of the three types.

A construction

There exists such a set of size $q\sqrt{q}+1+(t-1)(q-\sqrt{q}+1)$ in PG(2,q) for every square q and $t\leq \sqrt{q}+1$.

A construction

There exists such a set of size $q\sqrt{q}+1+(t-1)(q-\sqrt{q}+1)$ in PG(2,q) for every square q and $t \leq \sqrt{q}+1$.

Take
$$t-1$$
 secant lines ℓ_1,\ldots,ℓ_{t-1} through a point of a unital $\mathcal U$ and let

$$B = \mathcal{U} \cup \ell_1 \cup \cdots \cup \ell_{t-1} \cup \{\ell_1^{\perp} \cup \cdots \cup \ell_{t-1}^{\perp}\}.$$

A construction

There exists such a set of size $q\sqrt{q}+1+(t-1)(q-\sqrt{q}+1)$ in PG(2,q) for every square q and $t \leq \sqrt{q}+1$.

Take t-1 secant lines ℓ_1,\ldots,ℓ_{t-1} through a point of a unital $\mathcal U$ and let

$$B = \mathcal{U} \cup \ell_1 \cup \cdots \cup \ell_{t-1} \cup \{\ell_1^{\perp} \cup \cdots \cup \ell_{t-1}^{\perp}\}.$$

Remark: for t = 2 we can do better (Pavese)

• Symmetric 2- (v, k, λ) designs

• Symmetric 2- (v, k, λ) designs

• Point-hyperplane designs in PG(k, q) (recovers a result of Bruen and Thas)

• Symmetric 2- (v, k, λ) designs

• Point-hyperplane designs in PG(k, q) (recovers a result of Bruen and Thas)

Semiarcs (recovers a result of Csajbók and Kiss)

• Symmetric 2- (v, k, λ) designs

• Point-hyperplane designs in PG(k, q) (recovers a result of Bruen and Thas)

• Semiarcs (recovers a result of Csajbók and Kiss)

• Any set of points P which "determines" a set of lines L with |L| = f(|P|) such that e(P, L) can be computed in terms of |P|

Open Problems

Find better constructions.

② Improve the upper bound when n is not a square.

3 Study multiple blocking sets with respect to hyperplanes in PG(k, q).

• How large can a minimal blocking set with respect to lines in PG(3, q) be?

References

- [1] J. Bamberg, A. Bishnoi and G. Royle. On regular induced subgraphs of generalized polygons. arXiv:1708.01095
- [2] A. Bishnoi, S. Mattheus and J. Schillewaert. Minimal multiple blocking sets. arXiv:1703.07843
- [3] J. Loucks and C. Timmons. Triangle-free induced subgraphs of polarity graphs, arXiv:1703.06347.
- [4] S. Mattheus and F. Pavese. Triangle-free induced subgraphs of the unitary polarity graph. In preparation.