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Blocking Sets

A subset B of points in a projective plane πn of order n s.t. for all lines `
we have |` ∩ B| ≥ 1. It is minimal iff ∀X ∈ B, ∃`X s.t. `X ∩ B = {X}.

Trivially, a line is a blocking set of size n + 1. A vertex-less triangle forms
a blocking set of size 3(n − 1).
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Possible Sizes

What are the possible sizes of a (minimal) blocking set?

Theorem (Bruen 1970, Bruen and Thas 1977)

A non-trivial minimal blocking set B in πn satisfies

n +
√
n + 1 ≤ |B| ≤ n

√
n + 1.

Baer subplanes and Hermitian curves prove sharpness for n = p2k .

A. Blokhuis, P. Sziklai and T. Szőnyi. Blocking sets in projective
spaces. In Current Research Topics in Galois Geometry, 2011.
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Our results

A t-fold blocking set is a set B with the property that |` ∩ B| ≥ t for all
lines `.

It is minimal if ∀X ∈ B, ∃`X such that |`X ∩ B| = t.

Main Result: A generalization of the Bruen-Thas upper bound to
minimal t-fold blocking sets.
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Spectral graph theory

For a graph G on vertices v1, . . . , vn let A be a the n × n real matrix such
that Aij = 1 if vi is adjacent to vj and 0 otherwise.

Then A has n real eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λn.

If G is k-regular then k ≥ λ1 and λn ≥ −k .

Let λ be the second largest eigenvalue in absolute terms.
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The proof

For each point X of the blocking set S pick a line `X such that
|`X ∩ S | = 1. This gives us a set T of lines such that |T | = |S | and
e(S ,T ) = |S |.

The eigenvalues of πn are n + 1 ≥
√
n ≥ −

√
n ≥ −n − 1. 1
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Minimal multiple blocking sets

Theorem

Let B be a minimal t-fold blocking set in πn. Then

|B| ≤ 1

2
n
√

4tn − (3t + 1)(t − 1) +
1

2
(t − 1)n + t = Θ(

√
tn3/2).



Case of Equality

This bound is sharp for:

1 t = 1 and n = an even power of a prime. (Unitals)

2 t = n and n arbitrary. (Full plane minus a point)

3 t = n−
√
n and n = an even power of prime. (Complement of a Baer

subplane)

Theorem

If equality occurs and n is a prime power, then B is one of the three types.



Case of Equality

This bound is sharp for:

1 t = 1 and n = an even power of a prime. (Unitals)

2 t = n and n arbitrary. (Full plane minus a point)

3 t = n−
√
n and n = an even power of prime. (Complement of a Baer

subplane)

Theorem

If equality occurs and n is a prime power, then B is one of the three types.



A construction

There exists such a set of size q
√
q + 1 + (t − 1)(q −√q + 1) in PG(2, q)

for every square q and t ≤ √q + 1.

Take t − 1 secant lines `1, . . . , `t−1 through a point of a unital U and let

B = U ∪ `1 ∪ · · · ∪ `t−1 ∪ {`⊥1 ∪ · · · ∪ `⊥t−1}.

Remark: for t = 2 we can do better (Pavese)
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Generalizations

Symmetric 2-(v , k , λ) designs

Point-hyperplane designs in PG(k, q) (recovers a result of Bruen and
Thas)

Semiarcs (recovers a result of Csajbók and Kiss)

Any set of points P which “determines” a set of lines L with
|L| = f (|P|) such that e(P, L) can be computed in terms of |P|
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Open Problems

1 Find better constructions.

2 Improve the upper bound when n is not a square.

3 Study multiple blocking sets with respect to hyperplanes in PG(k , q).

4 How large can a minimal blocking set with respect to lines in
PG(3, q) be?
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