Maximum scattered subspaces and maximum rank distance codes

Bence Csajbók

joint works with

Giuseppe Marino, Olga Polverino, Corrado Zanella, Ferdinando Zullo

MTA-ELTE Geometric and Algebraic Combinatorics Research Group ELTE Eötvös Loránd University, Budapest, Hungary

> University of Campania "Luigi Vanvitelli" Caserta, Italy

Irsee, 11 September 2017

Scattered subspaces

Let $V = V(r, q^n)$ be an r-dimensional \mathbb{F}_{q^n} -space.

Consider V as an rn-dimensional \mathbb{F}_q -space, and let \mathcal{D} denote the following Desarguesian spread of n-dimensional \mathbb{F}_q -subspaces of V:

$$\mathcal{D}:=\{\langle \mathbf{v}\rangle_{\mathbb{F}_{q^n}}\colon \mathbf{v}\in V^*\}.$$

Definition (Blokhuis and Lavrauw)

An \mathbb{F}_q -subspace U of V is said to be *scattered* (w.r.t. \mathcal{D}) if each element of \mathcal{D} meets U in an \mathbb{F}_q -subspace of dimension at most one, i.e. for each $\mathbf{v} \in V$ we have

$$\dim_{\mathbb{F}_q}(\langle \mathbf{v} \rangle_{\mathbb{F}_{q^n}} \cap U) \leqslant 1.$$

For background and generalizations see **Michel Lavrauw:** Scattered spaces in Galois geometry in *Contemporary Developments in Finite Fields and Applications*, World Scientific 2016

Maximum scattered subspaces

Theorem (Blokhuis and Lavrauw 2000)

The rank of a scattered \mathbb{F}_q -space of $V(r, q^n)$ is at most rn/2.

A scattered \mathbb{F}_q -subspace U of V is said to be maximum scattered if for each scattered \mathbb{F}_q -subspace U' of V, $\dim_{\mathbb{F}_q} U' \leqslant \dim_{\mathbb{F}_q} U$.

Example (Blokhuis and Lavrauw 2000)

If r is even, say r = 2m, then

$$\{(x_1, x_1^q, x_2, x_2^q, \dots, x_m, x_m^q) \colon x_1, x_2, \dots, x_m \in \mathbb{F}_{q^n}\}$$

is a maximum scattered \mathbb{F}_q -subspace of $V(2m, q^n)$

Motivation

- Maximum scattered \mathbb{F}_q -subspaces of $V(2, q^n)$ correspond to \mathbb{F}_q -linear $\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ functions determining maximum number of directions, that is, $(q^n 1)/(q 1)$.
- Maximum scattered \mathbb{F}_q -subspaces of $V(2, q^n)$ define maximum rank distance codes (Sheekey).
- Maximum scattered \mathbb{F}_q -subpsaces of $V(r, q^n)$, rn even define maximum rank distance codes (BCs, Marino, Polverino, Zullo).
- Maximum scattered spaces define two-intersection sets w.r.t. the hyperplanes of the corresponding projective space,
- and hence two-weight codes and strongly regular graphs.
- They can be used to construct translation caps, *t*-fold blocking sets.

How to construct maximum scattered subspaces?

According to the first example of this talk, there are examples of maximum scattered \mathbb{F}_q -subspaces with dimension mn in $V(2m,q^n)$, so the missing cases are when the dimension is odd.

Theorem (Bartoli, Giulietti, Marino, Polverino 2015)

Let U_i be a maximum scattered subspace of $V_i(r_i, q^n)$ for i = 1, 2. Then $U_1 \oplus U_2$ is a maximum scattered subspace of $V_1 \oplus V_2$.

It follows that as direct sum of maximum scattered subspaces in 2 and 3-dimensional vector spaces we can construct examples in every dimension.

Maximum scattered subspaces of $V(2, q^n)$

The elements of $\Gamma L(2,q^n)$ preserve the Desarguesian spread $\mathcal D$ and hence the image of a maximum scattered subspace under an element of this group is also a maximum scattered subspace.

Two maximum scattered subspaces are **equivalent** if there is an element of $\Gamma L(2, q^n)$ mapping one subspace to the other.

Up to equivalence, each n-dimensional \mathbb{F}_q -subspace can be written as

$$\{(x, f(x)): x \in \mathbb{F}_{q^n}\},\$$

where f(x) is a q-polynomial over \mathbb{F}_{q^n} , that is

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i},$$

with $a_i \in \mathbb{F}_{q^n}$ for $i = 0, 1, \dots, n-1$.

The known non-equivalent examples

Example (Blokhuis and Lavrauw 2000)

 $\{(x, x^{q^s}): x \in \mathbb{F}_{q^n}\}, \text{ where } \gcd(s, n) = 1.$

Example (For s = 1 Lunardon and Polverino 2001, for $s \neq 1$ Sheekey 2016)

 $\{(x, x^{q^s} + \delta x^{q^{n-s}}) \colon x \in \mathbb{F}_{q^n}\}, \text{ where } N_{q^n/q}(\delta) \neq 1 \text{ and } \gcd(s, n) = 1.$

Theorem (Lavrauw and Van de Voorde 2010)

In $V(2, q^3)$ the only example is the Blokhuis–Lavrauw construction.

Theorem (BCs and Zanella 2017)

In $V(2, q^4)$ the only examples are the Blokhuis–Lavrauw and the Lunardon–Polverino constructions.

Are there further examples in $V(2, q^n)$, $n \ge 5$?

Recent constructions over \mathbb{F}_{q^6} and \mathbb{F}_{q^8}

Example (BCs, Marino, Polverino and Zanella 2017)

For q>2 there exists $\delta\in\mathbb{F}_{q^6}^*$ such that

$$\{(\mathbf{x}, \delta \mathbf{x}^{\mathbf{q}} + \mathbf{x}^{\mathbf{q}^4}) : \mathbf{x} \in \mathbb{F}_{\mathbf{q}^6}\}$$

is a new maximum scattered \mathbb{F}_q -subspace of $V(2,q^6)$. For example when $q\equiv 1\pmod 4$, then take $\delta\in\mathbb{F}_{q^2}$ such that $\mathsf{N}_{q^2/q}(\delta)=-1$.

Example (BCs, Marino, Polverino and Zanella 2017)

Let q be odd, then

$$\{(\mathbf{x}, \delta \mathbf{x}^{\mathbf{q}} + \mathbf{x}^{\mathbf{q}^5}) : \mathbf{x} \in \mathbb{F}_{\mathbf{q}^8}\}$$

is a new maximum scattered \mathbb{F}_q -subspace of $V(2,q^8)$ for each $\delta\in\mathbb{F}_{q^2}$ with $\delta^2=-1$.

Consider in general the following \mathbb{F}_q -subspace of $\mathbb{F}_{q^{2n}} \times \mathbb{F}_{q^{2n}}$:

$$U = \{(x, \delta x^{q^s} + x^{q^{s+n}}) \colon x \in \mathbb{F}_{q^{2n}}\},\$$

where gcd(s, n) = 1 and $N_{q^{2n}/q^n}(\delta) \neq 1$.

- If we consider $\mathbb{F}_{q^{2n}} \times \mathbb{F}_{q^{2n}}$ as a 4-dimensional \mathbb{F}_{q^n} -space, then U is always maximum scattered, that is, the one-dimensional \mathbb{F}_{q^n} -spaces meet U in \mathbb{F}_q -subspaces of dimension at most one.
- It defines a linear set of pseudoregulus type in $PG(3, q^n)$. Using the known properties of this linear set we can prove that each one-dimensional $\mathbb{F}_{q^{2n}}$ -space meets U in an \mathbb{F}_q -subspace of dimension at most two.
- With further restrictions on δ and putting n=3,4 we obtain the previous two examples, where the one-dimensional $\mathbb{F}_{q^{2n}}$ -spaces meet U in \mathbb{F}_q -subspaces of dimension at most one.

Constructions in $V(3, q^{2t})$

- In order to find maximum scattered subspaces of $V(r, q^n)$ of rank rn/2 when r is odd and n = 2t is even, we need
- maximum scattered subspaces of rank 3t in $V(3, q^{2t})$.
- Bartoli, Giulietti, Marino, Polverino (2016) found maximum scattered spaces for various infinite families of the parameters q and t. For certain parameters there are constructions also due to Ball, Blokhuis, Lavrauw (2000).
- We generalized the construction of Bartoli, Giulietti, Marino, Polverino (2016) and gave a construction which works for every parameter.

Theorem (BCs, Marino, Polverino and Zullo 2017)

In $V(r,q^n)$, rn even, there exist maximum scattered \mathbb{F}_q -subspaces of dimension rn/2.

MRD-codes

Consider the set of $m \times n$ matrices $\mathbb{F}_q^{m \times n}$ over \mathbb{F}_q with distance function

$$d(A,B) = rk(A-B)$$

for $A, B \in \mathbb{F}_q^{m \times n}$.

A subset $C \subseteq \mathbb{F}_q^{m \times n}$ is called a rank distance code.

The **minimum distance** of C is

$$d(C) = \min_{A,B \in \mathcal{C}, A \neq B} \{d(A,B)\}.$$

For an $m \times n$ rank metric code C with minimum distance d the Singleton like bound, proved by **Delsarte** and later by **Gabidulin** is

$$\#\mathcal{C} \leqslant q^{\max\{m,n\}(\min\{m,n\}-d+1)}. \tag{1}$$

If this bound is achieved, then $\mathcal C$ is called a **maximum rank distance** code (MRD-code).

The parameters of an $m \times n$ MRD-code over \mathbb{F}_q with minimum distance d and dimension t over \mathbb{F}_q are: $[m \times n, t, d]$.

Lately, such codes have been studied intensively since they define subspace codes, which are used in random network coding.

After fixing basis in V(n,q) and V(m,q), $m \times n$ matrices over \mathbb{F}_q can also be viewed as \mathbb{F}_q -linear maps from V(n,q) to V(m,q).

Theorem (Sheekey 2015)

Let $\{(x, f(x)): x \in \mathbb{F}_{q^n}\}$ be a maximum scattered \mathbb{F}_q -space of $V(2, q^n)$. Then the following set of \mathbb{F}_q -linear $\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ maps:

$$\{x \mapsto ax + bf(x) \colon a, b \in \mathbb{F}_{q^n}\}$$

is an MRD-code with parameters $[n \times n, 2n, n-1]_{\mathbb{F}_q}$.

Theorem (BCs, Marino, Polverino, Zullo 2017):

Let U be a maximum scattered \mathbb{F}_q -subspace of $V=V(r,q^n)$, rn even. For every $\mathbf{v}\in V$ let $t_{\mathbf{v}}$ denote the $\mathbb{F}_{q^n}\to V$ map:

$$x \in \mathbb{F}_{q^n} \mapsto x\mathbf{v} \in V.$$

Let W be an \mathbb{F}_q -space of dimension rn/2 and let G be any \mathbb{F}_q -linear $V \to W$ function such that $\ker G = U$. Then the set of $\mathbb{F}_{q^n} \to W$ maps

$$\{G\circ t_{\mathbf{v}}\colon \mathbf{v}\in V\}$$

is an MRD-code with parameters $[rn/2 \times n, rn, n-1]_{\mathbb{F}_q}$.

- Choosing a different V → W map G' with kernel U yields an equivalent MRD-code.
- What happens when r=2? Let $U=\{(x,f(x)): x\in \mathbb{F}_{q^n}\}, \ W=\mathbb{F}_{q^n} \text{ and define } G \text{ as}$

$$(a,b) \in V(2,q^n) \mapsto f(a)-b,$$

clearly it has *U* as kernel and the obtained MRD-code is

$$\{x \in \mathbb{F}_{q^n} \mapsto G(xa, xb) = f(xa) - xb \colon a, b \in \mathbb{F}_{q^n}\}.$$

This is the the adjoint of the code obtained from the maximum scattered subspace $U=\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\}$ by Sheekey's contruction. (Where $\hat{f}(x)=\sum_{i=0}^{n-1}a_{n-i}^{q^i}x^{q^i}$ is the adjoint of $f(x)=\sum_{i=0}^{n-1}a_ix^{q^i}$ w.r.t. the bilinear form $\langle x,y\rangle=\mathrm{Tr}_{q^n/q}(xy)$.)

The left-idealiser of an $n \times n$ MRD code C is

$$\{A \in \mathbb{F}_q^{n \times n} \colon AC \in \mathcal{C} \text{ for each } C \in \mathcal{C}\}.$$

Equivalent codes have isomorphic left-idealisers and this allowed us to prove the following.

Theorem (BCs, Marino, Polverino, Zanella 2017)

The MRD-codes with parameters $[6 \times 6, 12, 5]_{\mathbb{F}_q}$ and $[8 \times 8, 16, 7]_{\mathbb{F}_q}$ which arise from the new maximum scattered subspaces

$$\{(\mathbf{x}, \delta \mathbf{x}^{\mathbf{q}} + \mathbf{x}^{\mathbf{q}^4}) : \mathbf{x} \in \mathbb{F}_{\mathbf{q}^6}\}$$

and

$$\{(\mathbf{x}, \delta \mathbf{x}^{\mathbf{q}} + \mathbf{x}^{\mathbf{q}^5}) : \mathbf{x} \in \mathbb{F}_{\mathbf{q}^8}\}$$

are not equivalent to the known MRD-codes.

THANK YOU FOR YOUR ATTENTION