## The Final Four

Jim Davis
Irsee conference
September 2014
John Dillon, Taylor Applebaum, Gavin McGrew, Tahseen Rabbani, Daniel Habibi, Kevin Erb, Erin Geoghan

## The Final Result

 The Final Four Jim DavisIrsee conference September 20142017

John Dillon, Taylor Applebaum, Gavin MeGrew, Tahseen Rabbani, Daniel Habibi, KevinErb, Erin Geoghan

Jonathan Jedwab, Ken Smith, William Yolland

## Statement of Problem

Which groups of order 256 contain a $(256,120,56)$ difference set?

## History lesson \#I

- Groups of order 16
- 1960s Kibler does computer search.
- i2 of I4 have difference sets


## History lesson \#2

- Groups of order 64
- 1990s Dillon does computer search.
- 259 of 267 have difference sets


## Modular group

- Original proof: didn't exist
- Ken Smith: construction!


## Statement of Problem

Which groups of order 256 contain a $(256,120,56)$ difference set?

Issue: there are 56,092 nonisomorphic groups!

## Outline of talk

- Motivation
- Easy examples
- Nonexistence
- Constructions
- Computer searches
- Final thoughts


## Key example



## Key example



## Key example

|  | $X$ |  |  |
| :---: | :---: | :---: | :---: |
| $X$ |  | $x$ |  |
|  | $X$ |  |  |
|  |  |  |  |
|  |  |  |  |

## Similar group



## Move it around!



## Independently move pieces



## Independently move pieces



## Independently move pieces



## Independently move pieces



## Works here too

|  | $X$ |  |  |
| :---: | :---: | :---: | :---: |
| $X$ |  | $X$ |  |
|  | $X$ |  |  |
|  | $x$ |  |  |

## Works here too

|  | $X$ |  |  |
| :---: | :---: | :---: | :---: |
| $X$ |  | $X$ |  |
| $x$ | $X$ |  |  |
|  |  |  |  |

## Works here too

|  | $X$ | $x$ | $X$ |
| :---: | :---: | :---: | :---: |
| $X$ |  |  |  |
| $x$ |  |  |  |
| $X$ |  |  |  |

## Nonexistence

G/H large and cyclic

## Nonexistence

G/H large and cyclic
no $(256,120,56)$ DS

G/H large and dihedral

$$
\text { no }(256,120,56) \text { DS }
$$

## Nonexistence

## That is it!! Rules out 43 groups.

G/H large and cyclic

$$
\text { no }(256,120,56) \text { DS }
$$

G/H large and dihedral


$$
\text { no }(256,120,56) \text { DS }
$$

## Nonexistence

That is it!! Rules out 43 groups.

$$
56,092-43=56,049
$$

G/H large and cyclic

$$
\text { no }(256,120,56) \mathrm{DS}
$$

G/H large and dihedral


$$
\text { no }(256,120,56) \mathrm{DS}
$$

## Dillon-McFarland (Drisko)

If $\mathrm{H}<\mathrm{G}$ is normal, $\mathrm{H}=\left(\mathrm{Z}_{2}\right)^{4}$, then G has a DS

## Dillon-McFarland (Drisko)

## If $\mathrm{H}<\mathrm{G}$ is normal, $\mathrm{H}=\left(\mathrm{Z}_{2}\right)^{4}$, then G has a DS

$-42,300$ groups have such a normal subgroup

## Dillon-McFarland (Drisko)

If $\mathrm{H}<\mathrm{G}$ is normal, $\mathrm{H}=\left(\mathrm{Z}_{2}\right)^{4}$, then G has a DS

$-42,300$ groups have such a normal subgroup

$$
-56000-42300=-13700
$$

## Product constructions

G, H have DSs

GxH has DS

## Product constructions

G, H have DSs



GxH has DS

Handles -9500 of remaining groups

## Product constructions

G, H have DSs



GxH has DS

Handles -9500 of remaining groups
$-13700-9500=-4200$

## $[\mathrm{G}: \mathrm{H}]=4$

-3500 groups

795 groups remaining!
(Down to 714 a little later)

## $Z_{4} \times Z_{4} \times Z_{2}$

- 649 of the remaining groups had a normal subgroup
- ( $16,8,8,-$ ) covering EBSs


## Why does this work?

- $\mathrm{B}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}}^{-\mathrm{T}}=\mathrm{cG}$ forl $\mathrm{i}=\mathrm{j}$
- $\mathrm{g}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}^{(-\mathrm{T}} \mathrm{g}_{\mathrm{i}}^{-\mathrm{T}}$ nice?


## Modification of other methods

- K-Matrices
- Representation Theory


## Final Four

- SmallGroup $(256,408)$
- SmallGroup $(256,501)$
- SmallGroup $(256,536)$
- SmallGroup(256,6700)


## Final Four

$a^{2}=b^{32}=c^{2}=d^{2}=1$,

- SmallGroup $\left(256,40^{8}\right) \rightarrow \mathrm{cbc}^{-1}=\mathrm{ba}, \mathrm{dbd}^{-1}=\mathrm{b}^{23} \mathrm{c}$,
- SmallGroup $(256,50$ I) $\mathrm{dcd}^{-1}=\mathrm{b}^{16} \mathrm{ac}$
- SmallGroup $(256,536)$
- SmallGroup(256,6700)


## Final Four

- SmallGroup $(256,408)$
- SmallGroup $(256,50 \pi) \longrightarrow b^{64}=a^{2}=c^{2}=r$,
- SmallGroup $(256,501) \quad \mathrm{aba}^{-\mathrm{I}}=\mathrm{b}^{33}, \mathrm{cbc}^{-\mathrm{I}}=\mathrm{ba}$
- SmallGroup $(256,536)$
- SmallGroup(256,6700)


## Final Four

- SmallGroup $(256,408)$
- SmallGroup $(256,501)$
- SmallGroup $(256,536) \longrightarrow \begin{aligned} & b^{64}=a^{4}=\mathrm{I}, \\ & a b a^{-1}=b^{-17}\end{aligned}$
- SmallGroup(256,6700)


## Final Four

- SmallGroup $(256,408)$
- SmallGroup $(256,501)$
- SmallGroup $(256,536)$
- SmallGroup $(256,6700) \longrightarrow \quad b^{32}=a^{4}=c^{2}=I$,
- $m \mathrm{aba}^{-1}=\mathrm{b}^{-17}, \mathrm{cbc}^{-1}=\mathrm{b}^{\mathrm{I} 7} \mathrm{a}^{2}$


## Where now?

Conjecture???: the large cyclic and large dihedral quotient nonexistence criteria are necessary and sufficient for a difference set in a 2 -group to exist.

## Related work

- Bent functions!
- Relative difference sets in nonabelian groups.
- \# of distinct difference sets in a given group
- Inequivalent designs

