(SMALL) BLOCKING SETS OF NON-DESARGUESIAN PROJECTIVE AND AFFINE PLANES

Finite Geometries Fifth Irsee Conference September 14, 2017

jan@debeule.eu

1

This is joint work with

- ► Tamás Héger
- ► Tamás Szőnyi
- ► Geertrui Van de Voorde

Does the 1 mod p results holds for small blocking sets in non-Desarguesian projective planes?

Let \mathcal{S} be a projective plane or affine plane of order q.

Definition

A blocking set is a set \mathcal{B} of Π_q such that every line of Π_q meets \mathcal{B} in at least one point.

Let S be a projective plane or affine plane of order q.

Definition

A *blocking set* is a set \mathcal{B} of Π_q such that every line of Π_q meets \mathcal{B} in at least one point.

The set of points on a line of *projective plane* is a *trivial* example of a blocking set.

Let \mathcal{S} be a projective plane or affine plane of order q.

Definition

A blocking set is a set \mathcal{B} of Π_q such that every line of Π_q meets \mathcal{B} in at least one point.

The set of points on a line of *projective plane* is a *trivial* example of a blocking set.

Definition

A blocking set is called *minimal* if no smaller blocking set is contained in it.

SMALLEST MINIMAL BLOCKING SETS

Theorem (Bruen 1970,1971)

Let \mathcal{B} be a minimal blocking set of Π_q . Then $|\mathcal{B}| \ge q + \sqrt{q} + 1$. In case of equality \mathcal{B} is a Bear subplane.

SMALLEST MINIMAL BLOCKING SETS

Theorem (Bruen 1970,1971)

Let \mathcal{B} be a minimal blocking set of Π_q . Then $|\mathcal{B}| \ge q + \sqrt{q} + 1$. In case of equality \mathcal{B} is a Bear subplane.

Theorem (Jamison 1977, Brouwer-Schrijver 1978) Let \mathcal{B} be a minimal blocking set of AG(2, q). Then $|\mathcal{B}| \ge 2q - 1$

SMALL MINIMAL BLOCKING SETS

Theorem (Blokhuis 1994)

Let q be prime. Then a minimal blocking set of PG(2, q) has size at least $\frac{3}{2}(p+1)$.

SMALL MINIMAL BLOCKING SETS

Theorem (Blokhuis 1994)

Let q be prime. Then a minimal blocking set of PG(2,q) has size at least $\frac{3}{2}(p+1)$.

Definition

A blocking set \mathcal{B} of $\operatorname{PG}(2,q)$ is *small* if $|\mathcal{B}| < \frac{3}{2}(q+1)$

SMALL MINIMAL BLOCKING SETS

Theorem (Blokhuis 1994)

Let q be prime. Then a minimal blocking set of PG(2,q) has size at least $\frac{3}{2}(p+1)$.

Definition

A blocking set \mathcal{B} of $\operatorname{PG}(2,q)$ is *small* if $|\mathcal{B}| < \frac{3}{2}(q+1)$

Theorem (Blokhuis 1994, Szőnyi 1997, Sziklai 2008)

Let \mathcal{B} be a small blocking set of PG(2, q), $q = p^h$. Then every line of PG(2, q) meets \mathcal{B} in 1 (mod p) points. If a line meets \mathcal{B} in p + 1 points, then it meets \mathcal{B} in a subline.

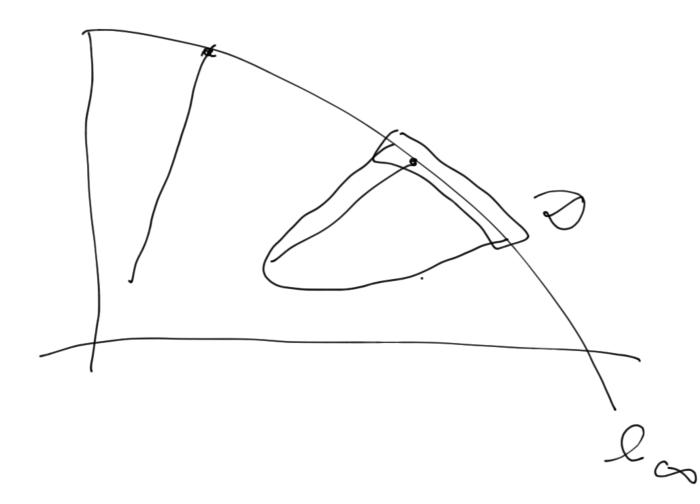
ANDRÉ-BRUCK-BOSE CONSTRUCTION

- Consider a regular spread R in PG(3, q). Replace one regular of R by its opposite regulas, call the new spread R'.
- Embed PG(3, q) as hyperplane π_∞ into PG(4, q). Consider the lines of R' in π_∞. Define:
 - 1. **points** as the points of $PG(4, q) \setminus \pi_{\infty}$
 - 2. **lines** as the planes of $PG(4, q) \setminus \pi_{\infty}$ meeting π_{∞} in a line of \mathcal{R}' .
 - 3. inherited incidence of PG(4, q).

This point line geometry is the *affine Hall plane of order* q^2 . Its points at infinity can be represented by the lines of \mathcal{R}' .

BY DERIVATION

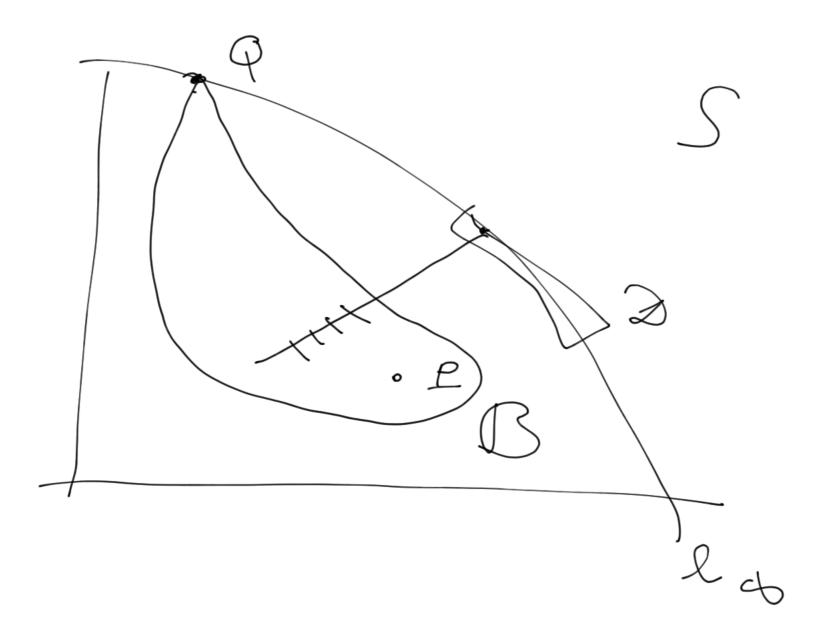
► Consider the Desarguesian projective plane PG(2, q²) and a line at infinity I_∞. Choose a subline PG(1, q) of I_∞, with point set D.



BY DERIVATION

- Consider the Desarguesian projective plane PG(2, q²) and a line at infinity I_∞. Choose a subline PG(1, q) of I_∞, with point set D.
- Define:
 - 1. **points** as the points of $\operatorname{PG}(2,q^2) \setminus I_{\infty}$
 - 2. **lines** of type one as lines of $PG(2, q^2)$ not meeting I_{∞} in a point of \mathcal{D} .
 - 3. **lines** of type two as Baer subplanes of $PG(2, q^2)$ meeting I_{∞} in the points of \mathcal{D} .

This point line geometry is the affine Hall plane of order q^2 . The points at infinity of the lines of type one can be represented by the points of $\infty \setminus \mathcal{D}$. Denote by \mathcal{D}' the points at infinity of the lines of type two.



Lemma The set $\{I \cap \mathcal{B} | I \in S\}$ is a dual oval of \mathcal{B} .

Lemma The set $\{I \cap \mathcal{B} | I \in \mathcal{S}\}$ is a dual oval of \mathcal{B} .

Call \mathcal{O} the set of points of \mathcal{B} that are contained in exactly one line of \mathcal{S} . Call \mathcal{O}^+ the set of points of \mathcal{B} covered by exactly two lines of \mathcal{S} and call \mathcal{O}^- the set of points of $\mathcal{B} \setminus \{Q\}$ not covered by any line of \mathcal{S} .

Lemma

1.
$$|\mathcal{O}| = q + 1$$
, $|\mathcal{O}^+| = \frac{q(q+1)}{2}$, $|\mathcal{O}^-| = \frac{(q+1)(q-2)}{2}$. If q is odd, then \mathcal{O} is an oval of \mathcal{B} ; if q is even, then \mathcal{O} is a line of \mathcal{B} .

Lemma

- 1. $|\mathcal{O}| = q + 1$, $|\mathcal{O}^+| = \frac{q(q+1)}{2}$, $|\mathcal{O}^-| = \frac{(q+1)(q-2)}{2}$. If q is odd, then \mathcal{O} is an oval of \mathcal{B} ; if q is even, then \mathcal{O} is a line of \mathcal{B} .
- 2. If $P \in \mathcal{O}^-$, then each Baer subplane of [P] meets \mathcal{B} only in P.

Lemma

- 1. $|\mathcal{O}| = q + 1$, $|\mathcal{O}^+| = \frac{q(q+1)}{2}$, $|\mathcal{O}^-| = \frac{(q+1)(q-2)}{2}$. If q is odd, then \mathcal{O} is an oval of \mathcal{B} ; if q is even, then \mathcal{O} is a line of \mathcal{B} .
- 2. If $P \in \mathcal{O}^-$, then each Baer subplane of [P] meets \mathcal{B} only in P.
- 3. If $P \in \mathcal{O}$, then q Baer subplanes of [P] meet \mathcal{B} in two points, one of which is P and the other is contained in \mathcal{O}^+ , and one Baer subplane of [P] meets \mathcal{B} only in P.
- 4. If $P \in \mathcal{O}^+$, then q 1 Baer subplanes of [P] meet \mathcal{B} in three points of \mathcal{O}^+ (including P), and two Baer subplanes of [P] meet \mathcal{B} in two points, one of which is P and the other is contained in \mathcal{O} .

Lemma

If q ≠ 2 (mod 3), then ∀P∈ D', t₀(P) = q²-q/3.
If q ≡ 2 (mod 3), then for q+1/3 points P ∈ D', t₀(P) = q²-q-2/3, and for 2(q+1)/3 points P ∈ D', t₀(P) = q²-q+1/3.

BLOCKING SETS OF THE PROJECTIVE HALL PLANE

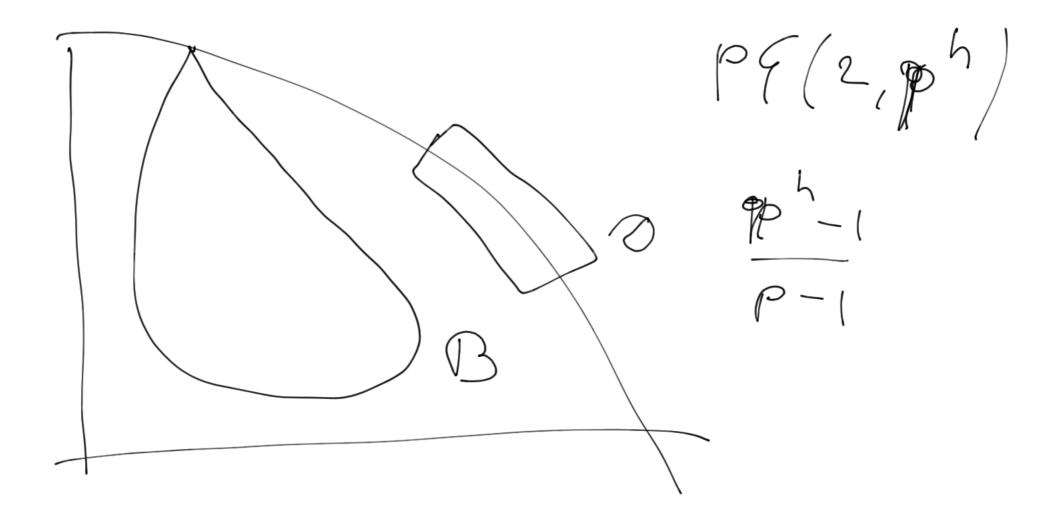
Theorem (DB, Héger, Szőnyi, Van de Voorde) In the projective Hall plane of order q^2 , q > 2, there exists a minimal blocking set of size $q^2 + 2q + 2$, which admits 1-, 2-, 3-, 4-, (q + 1)- and (q + 2)-secants.

SMALL BLOCKING SETS ...

Theorem

Let q be a prime power. There exists a non-Desarguesian affine plane of order q² in which there is a blocking set of size at most $\frac{4q^2}{3} + \frac{5q}{3}$ A blocking set in the Hall plane of order q^2

ANDRÉ PLANES



A blocking set in the Hall plane of order q^2

ANDRÉ PLANES

Theorem (DB, Héger, Szőnyi, Van de Voorde) If \mathcal{B} is a blocking set in $PG(2, p^h)$, p > 5 prime, of size at most $\frac{3}{2}(p^h - p^{h-1})$, then there exists a double blocking set in $PG(2, p^h)$ of size $|\mathcal{B}| + p^h + p^{h-1} + 1$. In particular, if p > 5, then there exist double blocking sets in $PG(2, p^h)$ of size $2p^h + 2p^{h-1} + 2$.

ANDRÉ PLANES

Theorem (DB, Héger, Szőnyi, Van de Voorde) Consider the André plane $\Pi_{\mathcal{D}}$ of order p^h derived from $PG(2, p^h)$, p prime, $h \ge 2$. Then there exists a non-trivial minimal blocking set in $\Pi_{\mathcal{D}}$ of size at least $p^h + p^{h-1} + 2$ and at most $p^h + p^{h-1} + \frac{p^h - 1}{p-1} + 1$.

ANDRÉ PLANES

Theorem (DB, Héger, Szőnyi, Van de Voorde)

Consider the André plane $\Pi_{\mathcal{D}}$ of order p^{h} derived from $PG(2, p^{h})$, p prime, $h \geq 2$. Then there exists a non-trivial minimal blocking set in $\Pi_{\mathcal{D}}$ of size at least $p^{h} + p^{h-1} + 2$ and at most $p^{h} + p^{h-1} + \frac{p^{h}-1}{p-1} + 1$.

Computer experiments confirm that blocking sets of non-Desargusian affine planes of order q^h of size smaller than

$$\left\lfloor \frac{4}{3}q^h + \frac{5}{3}\sqrt{q^h} \right\rfloor$$

exist.