New families of KM-arcs

Maarten De Boeck (joint work with Geertrui Van de Voorde)

Finite Geometries – Fifth Irsee Conference September 12, 2017

GENT

1 Introduction

2 Elation KM-arcs

3 A new family of KM-arcs of type q/8

4 A new family of KM-arcs of type q/16

Definition

A KM-arc of type t in PG(2, q) is a set of q + t points in PG(2, q) which is of type (0, 2, t), $t \ge 2$.

A line containing i points of the KM-arc is called an i-secant. So, all lines are 0-, 2- or t-secants with respect to a KM-arc.

Example

t=2: hyperoval

t = q: two lines without intersection point

Theorem (Korchmáros-Mazzocca, Gács-Weiner)

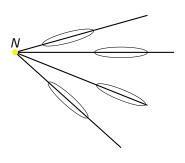
If A is a KM-arc of type t in PG(2, q), $2 \le t < q$, then

- q is even;
- t is a divisor of q.

If moreover t > 2, then

▶ there are $\frac{q}{t} + 1$ different t-secants to A, and they are concurrent.

The common point of the *t*-secants is called the *t*-nucleus.



Construction (Korchmáros-Mazzocca)

- ▶ h − i | h
- ▶ *L* be the relative trace function $\mathbb{F}_{2^h} \to \mathbb{F}_{2^{h-i}}$
- \triangleright g an o-polynomial in $\mathbb{F}_{2^{h-i}}$

The set $A_{km} = \{(1, g(L(x)), x) \mid x \in \mathbb{F}_{2^h}\}$ in PG(2, 2^h) is the affine part of a KM-arc of type 2^{i} .

Construction (Gács-Weiner)

- ▶ h − i | h
- ▶ I a direct complement of $\mathbb{F}_{2^{h-i}}$ in \mathbb{F}_{2^h}
- ▶ KM-arc *H* of type *t* with affine part $\{(1, x_k, y_k)\} \subseteq PG(2, 2^{h-i})$

We define in $PG(2, 2^h)$:

$$J = \{(1, x_k, y_k + j) : (1, x_k, y_k) \in H, j \in I\}.$$

- (A) If H is a hyperoval and $(0,0,1) \in H$, then J can be uniquely extended to a KM-arc of type 2^i in PG $(2,2^h)$.
- (B) If H is a hyperoval and $(0,0,1) \notin H$, then J can be uniquely extended to a KM-arc of type 2^{i+1} in PG $(2,2^h)$.
- (C) If H is a KM-arc of type 2^m and (0,0,1) is the 2^m -nucleus of H, then J can be uniquely extended to a KM-arc of type 2^{i+m} in $PG(2,2^h)$.

6

Construction by Vandendriessche, later generalised.

Construction (De Boeck-Van de Voorde)

Let Tr be the absolute trace function $\mathbb{F}_q \to \mathbb{F}_2$. Let $\alpha, \beta \in \mathbb{F}_q \setminus \{0,1\}$ such that $\alpha\beta \neq 1$ and denote $\gamma = \frac{\beta+1}{\alpha\beta+1}$, $\xi = \alpha\beta\gamma$. Define the following sets

$$\begin{split} \mathcal{S}_0 &:= \{ (0,1,z) \mid z \in \mathbb{F}_q, \mathsf{Tr}(z) = 0, \mathsf{Tr}(z/\alpha) = 0 \} \ , \\ \mathcal{S}_1 &:= \{ (1,0,z) \mid z \in \mathbb{F}_q, \mathsf{Tr}(z) = 0, \mathsf{Tr}(z/(\alpha\gamma)) = 0 \} \ , \\ \mathcal{S}_2 &:= \{ (1,1,z) \mid z \in \mathbb{F}_q, \mathsf{Tr}(z) = 1, \mathsf{Tr}(z/(\alpha\beta)) = 0 \} \ , \\ \mathcal{S}_3 &:= \{ (1,\gamma,z) \mid z \in \mathbb{F}_q, \mathsf{Tr}(z/(\alpha\gamma)) = 1, \mathsf{Tr}(z/\xi) = 1 \} \ , \\ \mathcal{S}_4 &:= \{ (1,\beta+1,z) \mid z \in \mathbb{F}_q, \mathsf{Tr}(z/(\alpha\beta)) = 1, \mathsf{Tr}(z/\xi) = 0 \} \ . \end{split}$$

Then, $A = \bigcup_{i=0}^4 S_i$ is a KM-arc of type q/4 in PG(2, q).

7 \ Overview

- ▶ For every q hyperovals (KM-arcs of type 2) in PG(2, q) are known to exist. Classification for $q \le 64$ (talk Vandendriessche on Friday).
- ▶ For every q KM-arcs of type q/2 in PG(2, q) are classified: one example up to PGL-equivalence.

q	t=4	t = 8	t = 16	t = 32
16	KM			
32	KMM, V	V, DB-VdV		
64	V	KM	KM, GW, DB-VdV	
128	?	?	?	V, DB-VdV

Elation KM-arcs

Definition

A KM-arc \mathcal{A} in PG(2, q) is a called a translation KM-arc with respect to the line ℓ if the group of elations (translations) with axis ℓ fixing $\mathcal A$ acts transitively on the points of $A \setminus \ell$; the line ℓ is called the *translation line*.

Theorem (De Boeck-Van de Voorde)

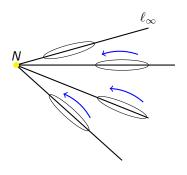
Translation KM-arcs and i-clubs are equivalent objects.

Definition

A KM-arc $\mathcal A$ of type t>2 in PG(2, q) is an elation KM-arc with elation line ℓ_∞ if and only if for every t-secant $\ell \neq \ell_\infty$ to $\mathcal A$, the group of elations with axis ℓ_∞ that stabilise $\mathcal A$ (setwise) acts transitively on the points of ℓ .

A hyperoval $\mathcal H$ in PG(2, q) is called an elation hyperoval with elation line ℓ_∞ if a non-trivial elation with axis ℓ_∞ which stabilises $\mathcal H$ exists.

If t > 2, the *t*-nucleus is the centre of the elations.



11 \ Observations

Theorem

Let $\mathcal A$ be an elation KM-arc of type t in PG(2, q), $2 \le t < q$, with elation line ℓ , then ℓ is a t-secant to $\mathcal A$.

11 \ Observations

Theorem

Let $\mathcal A$ be an elation KM-arc of type t in PG(2, q), $2 \le t < q$, with elation line ℓ , then ℓ is a t-secant to $\mathcal A$.

Lemma

If \mathcal{A} is an elation KM-arc of type t>2 in PG(2, q), with elation line $L_{\infty}: X=0$ and t-nucleus N(0,0,1), then there is an additive subgroup S of size t in \mathbb{F}_q , such that for any $\alpha\in\mathbb{F}_q$ the set $\{z\mid (1,\alpha,z)\in\mathcal{A}\}$ is either empty or a coset of S; and vice versa.

Theorem

- Korchmáros-Mazzocca (Gács-Weiner (A)): all elation.
- ► Gács-Weiner (B), (C): elation if starting from elation KM-arc or elation hyperoval
- ▶ Vandendriessche, eight KM-arcs of type 4 in PG(2,32): one elation.

Elation KM-arcs of type q/4

Theorem

Let $\mathcal A$ be an elation KM-arc of type q/4, then $\mathcal A$ is PGL-equivalent to the KM-arc constructed by the DB-VdB construction with $\alpha=\frac{1}{\beta^2}$. Hence, $\mathcal A$ is a translation KM-arc iff it is an elation KM-arc.

A new family of KM-arcs of type q/8

Theorem

- ho $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}_q^*$ are \mathbb{F}_2 -independent, $q = 2^h \ge 16$
- $S = \{ x \in \mathbb{F}_a \mid \forall i : \mathsf{Tr}(\alpha_i x) = 0 \}$
- lacksquare $eta_1, eta_2, eta_3 \in \mathbb{F}_q^*$ such that $\mathsf{Tr}(lpha_i eta_j) = \delta_{i,j}$
- f_1, f_2, f_3 functions $\mathbb{F}_2^3 \to \mathbb{F}_2$
 - $f_1:(x,y,z)\mapsto x+y+z+yz$
 - $f_2:(x,y,z)\mapsto y+z+xz$
 - $f_3:(x,y,z)\mapsto z+xy$
- $S_0 = \{(0,1,x) \mid \forall i : \text{Tr}(\alpha_i^2 x) = 0\}$

$$\mathcal{S}_{(\lambda_1,\lambda_2,\lambda_3)} = \left\{ \left(1, \sum_{i=1}^3 \lambda_i \alpha_i, \sum_{i=1}^3 f_i(\lambda_1,\lambda_2,\lambda_3) \beta_i + s \right) \, \middle| \, s \in S \right\}, \; (\lambda_1,\lambda_2,\lambda_3) \in \mathbb{F}_2^3$$

The point set $\mathcal{A} = \mathcal{S}_0 \cup \bigcup_{v \in \mathbb{F}_2^3} \mathcal{S}_v$ is an elation KM-arc of type q/8 in PG(2, q) with elation line Z = 0 and q/8-nucleus (0,0,1).

Definition

The function $M_n^k: (\mathbb{F}_2^k)^n \to \mathbb{F}_2$ is the function taking *n* vectors of length *k* as argument and mapping them to 0 if two of these vectors are equal and to 1 otherwise.

$$\Delta = \begin{vmatrix} 1 & \sum_{i=1}^{3} \lambda_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\overline{\lambda}) \beta_{i} + s \\ 1 & \sum_{i=1}^{3} \lambda'_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\overline{\lambda}') \beta_{i} + s' \\ 1 & \sum_{i=1}^{3} \lambda''_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\overline{\lambda}'') \beta_{i} + s'' \end{vmatrix}$$

$$\mathsf{Tr}(\Delta) = M_{3}^{3}(\overline{\lambda}, \overline{\lambda}', \overline{\lambda}'')$$

17 \ Equivalences

Theorem

Let $\alpha_1,\alpha_2,\alpha_3\in\mathbb{F}_q^*$ and $\alpha_1',\alpha_2',\alpha_3'\in\mathbb{F}_q^*$ be both \mathbb{F}_2 -independent sets with $\langle\alpha_1,\alpha_2,\alpha_3\rangle_2=\langle\alpha_1',\alpha_2',\alpha_3'\rangle_2$. Let \mathcal{A} and \mathcal{A}' be the KM-arcs constructed using the triples $(\alpha_1,\alpha_2,\alpha_3)$ and $(\alpha_1',\alpha_2',\alpha_3')$, respectively. Then \mathcal{A} and \mathcal{A}' are PGL-equivalent.

Theorem

Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}_q^*$ and $\alpha_1', \alpha_2', \alpha_3' \in \mathbb{F}_q^*$ be both \mathbb{F}_2 -independent sets with $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_2 = \langle \alpha_1', \alpha_2', \alpha_3' \rangle_2$. Let \mathcal{A} and \mathcal{A}' be the KM-arcs constructed using the triples $(\alpha_1, \alpha_2, \alpha_3)$ and $(\alpha'_1, \alpha'_2, \alpha'_3)$, respectively. Then A and A' are PGL-equivalent.

$\mathsf{Theorem}$

Let A and A' be the KM-arcs in PG(2,q) constructed using the admissible triples $(\alpha_1, \alpha_2, \alpha_3)$ and $(k\alpha_1^{\varphi}, k\alpha_2^{\varphi}, k\alpha_3^{\varphi})$, respectively, with $k \in \mathbb{F}_q^*$ and φ a field automorphism of \mathbb{F}_q . Then \mathcal{A} and \mathcal{A}' are P Γ L-equivalent.

Corollary

A KM-arc of type q/8 in PG(2, q) exists for all q.

Theorem

Any KM-arc of type q/8 in PG(2, q) constructed using this construction is not a translation KM-arc.

Theorem

In PG(2,16) all admissible triples give rise to the Lunelli-Sce hyperoval.

A new family of KM-arcs of type q/16

Lemma

Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{F}_q^*$ be \mathbb{F}_2 -independent. If $\frac{\alpha_i^2}{\alpha_4} \in \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$ for i=1,2,3, then we can find an $\alpha \in \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$ such that $\{\alpha_1(\alpha_1+\alpha_4), \alpha_2(\alpha_2+\alpha_4), \alpha_3(\alpha_3+\alpha_4), \alpha_4\alpha\}$ is an \mathbb{F}_2 -independent set.

Construction

Theorem

- $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{F}_q^*$ are \mathbb{F}_2 -independent, $q \geq 64$, such that $\frac{\alpha_i^2}{\alpha_i} \in \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$
 - $S = \{x \in \mathbb{F}_q \mid \forall i : \operatorname{Tr}(\alpha_i x) = 0\}$
 - lacksquare $\beta_1, \beta_2, \beta_3 \in \mathbb{F}_q^*$ such that $\operatorname{Tr}(\alpha_i \beta_i) = \delta_{i,j}$
 - $p_1, p_2, p_3 \subset \mathbb{F}_q$ such that $\Pi(\alpha_i p_j) = \delta_{i,j}$ $p_1, p_2, p_3 \subset \mathbb{F}_q$ such that
 - $\{\alpha_1(\alpha_1+\alpha_4), \alpha_2(\alpha_2+\alpha_4), \alpha_3(\alpha_3+\alpha_4), \alpha_4\alpha\}$ is an \mathbb{F}_2 -independent set
 - f_1, f_2, f_3 functions $\mathbb{F}_2^3 \to \mathbb{F}_2$ as before

•
$$S_0 = \{(0,1,x) \mid \text{Tr}(\alpha_i(\alpha_i + \alpha_4)x) = 0, i = 1,2,3 \land \text{Tr}(\alpha_4\alpha x) = 1\}$$

$$\mathcal{S}_{\overline{\lambda}} = \left\{ \left(1, \sum_{i=1}^4 \lambda_i lpha_i, \sum_{i=1}^3 f_i(\lambda_1, \lambda_2, \lambda_3) eta_i + s
ight) \left| \ s \in \mathcal{S}
ight.
ight\}, \ \overline{\lambda} = (\lambda_1, \dots, \lambda_4) \in \mathbb{F}_2^4$$

The point set $\mathcal{A}=\mathcal{S}_0\cup\bigcup_{v\in\mathbb{F}_2^4}\mathcal{S}_v$ is an elation KM-arc of type q/16 in PG(2, q) with elation line X=0 and q/16-nucleus (0,0,1).

22 \ Why does it work? (bis)

Given $\overline{\lambda} = (\lambda_1, \dots, \lambda_4) \in \mathbb{F}_2^4$, we denote $\widetilde{\lambda} = (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{F}_2^4$

$$\Delta = \begin{vmatrix} 1 & \sum_{i=1}^{4} \lambda_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\widetilde{\lambda}) \beta_{i} + s \\ 1 & \sum_{i=1}^{4} \lambda_{i}' \alpha_{i} & \sum_{i=1}^{3} f_{i}(\widetilde{\lambda}') \beta_{i} + s' \\ 1 & \sum_{i=1}^{4} \lambda_{i}'' \alpha_{i} & \sum_{i=1}^{3} f_{i}(\widetilde{\lambda}'') \beta_{i} + s'' \end{vmatrix}$$

$$\operatorname{Tr}(\Delta) = M_3^3(\widetilde{\lambda}, \widetilde{\lambda}', \widetilde{\lambda}'')$$
.

If $\widetilde{\lambda}' = \widetilde{\lambda}''$ and $\lambda_4' = \lambda_4'' + 1$:

$$\operatorname{Tr}\left(\frac{\sum_{i=1}^{4}(\lambda_{i}+\lambda_{i}')\alpha_{i}}{\alpha_{4}}\Delta\right)=M_{2}^{3}(\widetilde{\lambda},\widetilde{\lambda}').$$

$\mathsf{Theorem}$

Let $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \subset \mathbb{F}_q^*$ and $\{\alpha_1', \alpha_2', \alpha_3', \alpha_4\} \subset \mathbb{F}_q^*$ be both \mathbb{F}_2 -independent sets such that $\langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle = \langle \alpha_1', \alpha_2', \alpha_3', \alpha_4 \rangle$ and such that $\frac{\alpha_i^2}{\alpha_i} \in \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$ for i = 1, 2, 3. Let \mathcal{A} and \mathcal{A}' be the KM-arcs constructed using the tuples $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ and $(\alpha'_1, \alpha'_2, \alpha'_3, \alpha_4)$, respectively. Then A and A' are PTL-equivalent.

Theorem

Let A and A' be the KM-arcs in PG(2,q) constructed using the admissible tuples $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ and $(k\alpha_1^{\varphi}, k\alpha_2^{\varphi}, k\alpha_3^{\varphi}, k\alpha_4^{\varphi})$, respectively, with $k \in \mathbb{F}_q^*$ and φ a field automorphism of \mathbb{F}_q . Then \mathcal{A} and \mathcal{A}' are P Γ L-equivalent.

24 \ Results

Theorem

A KM-arc \mathcal{A} of type q/16 in PG(2, q) constructed using this construction admits a group of elations of size q/8.

Theorem

Any KM-arc in PG(2, q) constructed using this construction is not a translation KM-arc.

Theorem

A KM-arc \mathcal{A} of type q/16 in PG(2, q), $q=2^h$, constructed through the previous construction exists if and only if

- ▶ 4 | h and \mathcal{A} is PΓL-equivalent to the KM-arc constructed using an admissible tuple $(\alpha_1, \alpha_2, \alpha_3, 1)$ with $\langle \alpha_1, \alpha_2, \alpha_3, 1 \rangle = \mathbb{F}_{16} \subset \mathbb{F}_q$,
- ▶ 6 | h and \mathcal{A} is PTL-equivalent to the KM-arc constructed using an admissible tuple $(\alpha_1, \alpha_2, \alpha_3, 1)$ with $\langle \alpha_1, \alpha_2, \alpha_3, 1 \rangle = \langle \mathbb{F}_4, \mathbb{F}_8 \rangle \subseteq \mathbb{F}_q$ or
- ▶ 7 | h and \mathcal{A} is PFL-equivalent to the KM-arc constructed using the admissible tuple $(z, z^2, z^4, 1)$ or to the KM-arc constructed using the admissible tuple $(z^{11}, z^{22}, z^{44}, 1)$, with $z \in \mathbb{F}_a$ admitting $z^7 = z + 1$.

Here we consider the subfields as additive subgroups of \mathbb{F}_q , +.

Corollary

A KM-arc of type q/16 in PG(2, q) exists for all $q=2^h$ such that $4 \mid h$, $5 \mid h$, $6 \mid h$ or $7 \mid h$.

Corollary

A KM-arc of type q/16 in PG(2, q) exists for all $q=2^h$ such that $4\mid h$, $5\mid h$, $6\mid h$ or $7\mid h$.

Remark

Discussion of the KM-arcs of type 2^{h-4} in PG(2, 2^h) obtained through the new construction

- ▶ 4 | *h*: also appears by applying the Gács-Weiner construction (A) on the Lunelli-Sce hyperoval
- ▶ 6 | h: also appears by applying the Gács-Weiner construction (C) on a sporadic example by Vandendriessche
- ▶ 7 | h: two new families of examples

