Improvement of the sunflower bound

Jozefien D'haeseleer September 2017

2 \ Definition Subspace code

- Codewords are subspaces
- Constant or mixed dimension subspace code
- Subspace distance:

$$d(U, V) = \dim(U + V) - \dim(U \cap V)$$

 Speeds up the transmission of information through a wireless network

Sunflower

t-intersecting constant dimension subspace codes

Codewords are k-dimensional subspaces, where distinct codewords intersect in a t-dimensional subspace.

Sunflower

All codewords pass through the same *t*-dimensional subspace.

Sunflower Bound

Large t-intersecting constant dimension subspace codes are sunflowers if

$$|C|>\left(rac{q^k-q^t}{q-1}
ight)^2+\left(rac{q^k-q^t}{q-1}
ight)+1$$

This bound is probably too high.

- ▶ Codewords are three-dimensional subspaces, where distinct subspaces intersect in a point. (k = 4, t = 1).
- The sunflower bound is in this case

$$\left(\frac{q^4-q^1}{q-1}\right)^2 + \left(\frac{q^4-q^1}{q-1}\right) + 1 = q^6 + 2q^5 + 3q^4 + 3q^3 + 2q^2 + q + 1$$

Purpose

Decreasing the sunflower bound, for k = 4, t = 1, to q^6 .

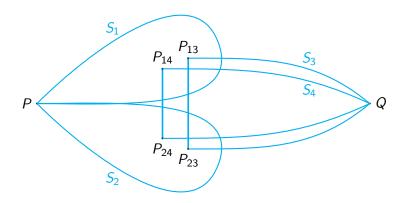
Summary of the proof

Suppose we have a collection of q^6 solids that pairwise intersect in a point, and doesn't form a sunflower.

We look for a contradiction.

- ▶ All solids are located in a 7,8 or 9-dimensional space
- Entropy and Shearer's Lemma
- Looking for a contradiction by countings

All solids are located in a 7,8 or 9-dimensional space.



Entropy and Shearer's lemma

Entropy

The entropy H(X) of a random variable $X = \{x_1, x_2, \dots, x_n\}$ measures the quantity of uncertainty in X.

Shearer's lemma

Suppose n different points in \mathbb{F}^3 , that have n_1 projections on the XY-plane, n_2 projections on the XZ-plane, and n_3 projections on the YZ-plane. Then $n^2 \leq n_1 n_2 n_3$.

Shearer's lemma in our Situation

Suppose L is a collection of lines, and $P_1, P_2, \ldots, P_{k+1}$ are k+1 linearly independent points in PG(k,q) so that every point P_i is located on at most I lines of L. Suppose n is the number of points in PG(k,q) so that $PP_i, \forall i \in [1,\ldots,k+1]$ is a line of L. Then we find that $n \leq I^{k/(k-1)} + I$.

Looking for a contradiction by countings

- ▶ Double counting of the collection of points with specific characteristics.
- ► An inequality in function of *q*.
- ▶ A contradiction when *q* becomes large enough.

Theorem

Every 1-intersecting constant dimension subspace code of 4-spaces having size at least q^6 is a sunflower.

11 \Further research

- ► Generalisation: Decreasing the sunflower bound when the codewords are *k*-dimensional subspaces that pairwise intersect in a point.
- ► Generalisation: Decreasing the sunflower bound when the codewords are *k*-dimensional subspaces that pairwise intersect in *t*-dimensional subspace.

Thank you very much for your attention.