Finite flag-transitive affine planes with a solvable automorphism group

Tao Feng School of Mathematical Sciences Zhejiang University

Fifth Irsee Conference on Finite Geometries September 15, 2017

Definition

A finite incidence structure $(\mathcal{P},\mathcal{L},\mathcal{I})$ consists of

- lacksquare two finite nonempty sets \mathcal{P} (points) and \mathcal{L} (lines/blocks),
- 2 an incidence relation $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$.

A flag is an incident point-line pair.

The classification of finite incidence structures in terms of a group theoretical hypothesis is now commonplace.

Example (Ostrom-Wagner Theorem)

A finite projective plane having a 2-transitive collineation group must be Desarguesian.

The general study of flag-transitive planes was initiated by Higman and McLaughlin, and they posed the problem of classifying the finite flag-transitive projective planes.

Theorem (Kantor)

A finite flag-transitive projective plane is desarguesian with the possible exception where the collineation group G is a Frobenius group of prime degree.

Remark

"...the Frobenius case remains elusive, but presumably occurs only for PG(2,2) and PG(2,8)" (Kantor)

The affine case

Theorem (Wagner)

A finite flag-transitive affine plane must be a translation plane.

Unlike the projective case,

- there are many examples of such planes;
- the classification and construction are more of a combinatorial flavor rather than group theoretical.

The translation group T is elementary abelian, and acts regularly on points. The collineation group= $T \times T$ translation complement.

Spread

A spread of $V = \mathbb{F}_q^{2n}$ is a set of *n*-dimensional subspaces $W_0, W_1, \cdots, W_{q^n}$ that partitions the nonzero vectors of V.

Example (regular spread)

Take $V = \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$, and define $L_a = \{(x, ax) : x \in \mathbb{F}_{q^n}\}$ for $a \in \mathbb{F}_{q^n}$, $L_{\infty} = \{(0, y) : y \in \mathbb{F}_{q^n}\}$. They form a spread of V.

Translation plane

We can define an affine plane from a spread.

- **1** points: vectors of $V = \mathbb{F}_q^{2n}$;
- ② lines: $W_i + v$, $0 \le i \le q^n$, $v \in V$.
- 3 incidence: inclusion.

The translation group T consists of the translation τ_u 's defined by

$$\tau_u(v) = u + v, \quad \tau_u(W_i + v) = W_i + u + v.$$

The regular spread defines AG(2, q) in this way.

Solvability of collineation group

Theorem (Foulser)

With a finite number of exceptions, a solvable flag transitive group of a finite affine plane has its translation complement contained in the group consisting of $x \mapsto ax^{\sigma}$ with $a \in \mathbb{F}_{q^{2n}}^*$ and $\sigma \in \mathsf{Gal}(\mathbb{F}_{q^{2n}})$.

Theorem (Kantor)

The only odd order flag-transitive planes with nonsolvable automorphism groups are the nearfield planes of order 9 and Hering's plane of order 27.

C-planes and H-planes

Assuming that the plane is not Hering plane of order 27, Ebert showed that the translation complement must contain a Singer subgroup $H=\langle \gamma^2 \rangle$ of order $\frac{q^n+1}{2}$ under the restriction

$$\gcd\left(rac{1}{2}(q^n+1),ne
ight)=1,\quad q ext{ odd,}$$
 $\gcd(q^n+1,ne)=1,\quad q ext{ even.}$

If the translation complement is isomorphic to $\langle \gamma \rangle$, then we say that the plane is type $\mathcal C$. If the translation complement contains an isomorphic copy of $\langle \gamma^2 \rangle$ but not $\langle \gamma \rangle$, then we call the plane type $\mathcal H$.

Examples

There are two general constructions

- Odd order: Kantor-Suetake family¹
- 2 Even order case: Kantor-Williams family²

The dimensions of these planes over their kernels are odd.

Remark

It remains open whether there is a flag-transitive affine plane of even order and even dimension.

¹The dimension two case is also due to Baker and Ebert.

²prolific, arising from symplectic spread

Classifications

Prince has completed the determination of all the flag-transitive affine planes of order at most 125.

Ebert and collaborators classified the (odd order, dim 2/3) case.

- approach: geometric
- Baer subgeometry partition

The starting point: coordinatization

Let $\mathcal S$ be a spread of type $\mathcal H$ or type $\mathcal C$. Let W be a component of $\mathcal S$, so that $\mathcal S=\{g(W):g\in \operatorname{Aut}(\mathcal S)\}$. Since the regular spread of $\mathbb F_{q^{2n}}$ has q^n+1 components, there exists $\delta\in \mathbb F_{q^{2n}}\setminus \mathbb F_{q^n}$ such that $W\cap \mathbb F_{q^n}\cdot \delta=\{0\}$. From $\mathbb F_{q^{2n}}=\mathbb F_{q^n}\oplus \mathbb F_{q^n}\cdot \delta$, we can write the $\mathbb F_q$ -subspace W as follows:

$$W = \{x + \delta \cdot L(x) : x \in \mathbb{F}_{q^n}\},\tag{1}$$

where $L(X) \in \mathbb{F}_{q^n}[X]$ is a reduced *q*-polynomial. We also define

$$Q(X) := (X + \delta L(X)) \cdot (X + \delta^{q^n} L(X)), \tag{2}$$

which is a DO polynomial over \mathbb{F}_{a^n} .

The key lemma

Additional notation:

- **1** $\Theta(u)$: the map $x \mapsto ux$, $x \in \mathbb{F}_{q^{2n}}$;
- ② β : an element of order $(q^n + 1)(q 1)$;

Lemma

- If q is odd, then S_H is a partial spread iff Q(x) is a planar function, and S_C is a spread iff $x \mapsto Q(x)$ permutes $\mathbb{F}_q^*/\mathbb{F}_q^*$.
- **2** If q is even, then S_C is a spread iff $x \mapsto Q(x)$ permutes \mathbb{F}_{q^n} .

Idea of the proof

A function $f: \mathbb{F}_q \mapsto \mathbb{F}_q$ is planar if $x \mapsto f(x+a) - f(x) - f(a)$ is a permutation of \mathbb{F}_q for any $a \neq 0$. It is known that there are no planar functions in even characteristic.

Lemma (Weng, Zeng, 2012)

Let $f : \mathbb{F}_q \mapsto \mathbb{F}_q$ be a DO polynomial. Then f is planar if and only if f is 2-to-1, namely, every nonzero element has 0 or 2 preimages.

Immediate consequences

Corollary

In the case q and n are both odd, if S_H forms a partial spread, then S_C forms a spread.

Theorem

There is no type C spread with ambient space $(\mathbb{F}_{q^{2n}},+)$ and kernel \mathbb{F}_q when n is even and q is odd.

Characterization of Kantor-Suetake family

Menichetti (1977, 1996): Let S be a finite semifield of prime dimension n over the nucleus \mathbb{F}_q . Then there is an integer $\nu(n)$ such that if $q \geq \nu(n)$ then S is isotopic to a finite field or a generalized twisted field. Moreover, we have $\nu(3) = 0$.

Theorem (F., 2017)

Let n be an odd prime, $\nu(n)$ be as above, and $q \geq \nu(n)$. A type $\mathcal C$ spread $\mathcal S$ of $(\mathbb F_{q^{2n}},+)$ with kernel $\mathbb F_q$ is isomorphic to the orbit of $W=\{x+\delta\cdot x^{q^i}:x\in\mathbb F_{q^n}\}$ under $\langle\Theta(\beta)\rangle$ for some δ and i such that $\delta^{q^n-1}=-1$, $\gcd(i,n)=1$.

Idea of the proof

By Prop 11.31 of the Handbook, which is essentially due to Albert, a generalized twisted field that has a commutative isotope must be isotopic to the commutative presemifield defined by a planar function $x^{1+p^{\alpha}}$ over \mathbb{F}_{p^e} , where $e/\gcd(e,\alpha)$ is odd.

Lemma (Coulter, Henderson, 2008)

Let p be an odd prime and $q = p^e$. Let f be a planar function of DO type over \mathbb{F}_q and $S_f = (\mathbb{F}_q, +, *)$ be the associated presemifield with x * y = f(x + y) - f(x) - f(y). There exist linearized permutation polynomials M_1 and M_2 such that

- if S_f is isotopic to a finite field, then $f(M_2(x)) = M_1(x^2)$;
- ② if S_f is isotopic to a commutative twisted field, then $f(M_2(x)) = M_1(x^{p^{\alpha}+1})$, where α is as above.

The case q even

The following lemma describes how to study the permutation behavior of a DO polynomial via quadratic forms.

Lemma

Let $Q(X) = \sum_{i,j} a_{ij} X^{q^i + q^j} \in \mathbb{F}_{q^n}[X]$ with q even. Then Q(X) is a PP iff $Q_y(x) = Tr_{\mathbb{F}_{q^n}/\mathbb{F}_q}(yQ(x))$ has odd rank for $y \neq 0$.

We are able to characterize type $\mathcal C$ planes up to dimension four. This is the first characterization result in the even order case.

Thanks for your attention!