On Tight Sets of Hyperbolic Quadrics

Alexander Gavrilyuk

University of Science and Technology of China (Hefei, China)

Fifth Irsee Conference Finite Geometry 2017

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Introduced and first studied by Payne in GQ (1987)
- ► Extended to Polar Spaces by Drudge (1998)
- ▶ Bamberg, Kelly, Law, Penttila (2006, 2007):
 - ▶ Unification: tight sets and *m*-ovoids as Intriguing Sets
 - New constructions
 - ► Connections to: *m*-systems, covers, eggs, minihypers,...
 - .. and projective two-character sets.
- ► Many more recent results
- ▶ Tight sets of hyperbolic quadrics generalise (and inherit a very special property of) Cameron-Liebler line classes in PG(3, q).

- ▶ Let \mathcal{P} be a finite polar space of rank r.
- ▶ A generator of \mathcal{P} is a maximal t.i./t.s. subspace.
- ▶ A generator $\cong PG(r-1,q)$, so every two of its points are collinear.

Let T be a subset of points of \mathcal{P} .

Question (Payne, 1987, for the case r = 2)

How many pairs of collinear points may T contain? (What could be the maximum average number of points of T collinear to a point of T?)

- ▶ Let \mathcal{P} be a finite polar space of rank r.
- ▶ A generator of \mathcal{P} is a maximal t.i./t.s. subspace.
- ▶ A generator $\cong PG(r-1,q)$, so every two of its points are collinear.

Let T be a subset of points of \mathcal{P} .

Question (Payne, 1987, for the case r = 2)

How many pairs of collinear points may T contain? (What could be the maximum average number of points of T collinear to a point of T?)

- ▶ Let \mathcal{P} be a finite polar space of rank r.
- ▶ A generator of \mathcal{P} is a maximal t.i./t.s. subspace.
- ▶ A generator $\cong PG(r-1,q)$, so every two of its points are collinear.

Let T be a subset of points of \mathcal{P} .

Question (Payne, 1987, for the case r = 2)

How many pairs of collinear points may T contain?

(What could be the maximum average number of points of T collinear to a point of T?)

- ▶ Let \mathcal{P} be a finite polar space of rank r.
- ▶ A generator of \mathcal{P} is a maximal t.i./t.s. subspace.
- ▶ A generator $\cong PG(r-1,q)$, so every two of its points are collinear.

Let T be a subset of points of \mathcal{P} .

Question (Payne, 1987, for the case r = 2)

How many pairs of collinear points may T contain? (What could be the maximum average number of points of T collinear to a point of T?)

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \begin{cases} x^{\frac{q^{r-1}-1}{q-1}} + q^{r-1}, & \text{if } p \in T, \\ x^{\frac{q^{r-1}-1}{q-1}}, & \text{if } p \notin T. \end{cases}$$

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \begin{cases} x \frac{q^{r-1}-1}{q-1} + q^{r-1}, & \text{if } p \in T, \\ x \frac{q^{r-1}-1}{q-1}, & \text{if } p \notin T. \end{cases}$$

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \begin{cases} x^{\frac{q^{r-1}-1}{q-1}} + q^{r-1}, & \text{if } p \in T, \\ x^{\frac{q^{r-1}-1}{q-1}}, & \text{if } p \notin T. \end{cases}$$

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \left\{ \begin{array}{ll} x^{\frac{q^{r-1}-1}{q-1}} + q^{r-1}, & \text{if } p \in T, \\ \\ x^{\frac{q^{r-1}-1}{q-1}}, & \text{if } p \not \in T. \end{array} \right.$$

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \left\{ \begin{array}{ll} x^{\frac{q^{r-1}-1}{q-1}} + q^{r-1}, & \text{if } p \in T, \\ \\ x^{\frac{q^{r-1}-1}{q-1}}, & \text{if } p \not \in T. \end{array} \right.$$

Equality holds if T is the union of x disjoint generators.

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)

The average number κ of points of T collinear with a point of T satisfies:

$$\kappa \le |T| \frac{q^{r-1} - 1}{q^r - 1} + q^{r-1}.$$

If equality holds, then $|T| = x \frac{q^r - 1}{q - 1}$ for some integer x, and for every point $p \in \mathcal{P}$,

$$|T \cap \{p\}^{\perp}| = \left\{ \begin{array}{ll} x^{\frac{q^{r-1}-1}{q-1}} + q^{r-1}, & \text{if } p \in T, \\ \\ x^{\frac{q^{r-1}-1}{q-1}}, & \text{if } p \not \in T. \end{array} \right.$$

Equality holds if T is the union of x disjoint generators.

T is an x-tight set $\Rightarrow P \setminus T$ is $(q^{r-1} + 1 - x)$ -tight

1-tight, 2-tight sets in $Q^+(3, \mathbb{F}_2)$

Question

How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

 $T \approx$ the union of x disjoint generators

Question

T is an x-tight set $\Rightarrow \mathcal{P} \setminus T$ is $(q^{r-1} + 1 - x)$ -tight

1-tight, 2-tight sets in $Q^+(3, \mathbb{F}_2)$

Question

How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

 $T \approx$ the union of x disjoint generators

Question

T is an x-tight set $\Rightarrow \mathcal{P} \setminus T$ is $(q^{r-1} + 1 - x)$ -tight

1-tight, 2-tight sets in $Q^+(3, \mathbb{F}_2)$

Question

How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

 $T \approx$ the union of x disjoint generators

Question

T is an x-tight set $\Rightarrow \mathcal{P} \setminus T$ is $(q^{r-1} + 1 - x)$ -tight

1-tight, 2-tight sets in $Q^+(3, \mathbb{F}_2)$

Question

How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

 $T \approx$ the union of x disjoint generators

Question

T is an x-tight set $\Rightarrow \mathcal{P} \setminus T$ is $(q^{r-1} + 1 - x)$ -tight

1-tight, 2-tight sets in $Q^+(3, \mathbb{F}_2)$

Question

How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

 $T \approx$ the union of x disjoint generators

Question

Hyperbolic polar spaces

Hyperbolic polar spaces

Disjoint generators in $Q^+(2r-1,q)$:

$$(r \text{ even}) \checkmark$$

$$\searrow (r \text{ odd})$$

large sets of them

no more than 2

Any other tight sets?

Any tight sets with x > 2?

Small ranks:

$$r = 2$$

(all reducible)

x-tight set of $Q^+(5,q)$ C.-L. line classes in PG(3,q)

with parameter x

Disjoint generators in $Q^+(2r-1,q)$:

 $(r \text{ even}) \checkmark$

 $\searrow (r \text{ odd})$

large sets of them

no more than 2

Any other tight sets?

Any tight sets with x > 2?

Small ranks:

$$r=2$$

r = 3

(all reducible)

x-tight set of $Q^+(5,q)$ $Klein \qquad \uparrow \quad correspondence$ C.-L. line classes in PG(3,q)

Disjoint generators in
$$Q^+(2r-1,q)$$
:

$$(r \text{ even}) \checkmark$$

$$\searrow (r \text{ odd})$$

large sets of them

no more than 2

Any other tight sets?

Any tight sets with x > 2?

Small ranks:

$$r = 2$$

(all reducible)

x-tight set of $Q^+(5,q)$ $Klein \qquad \uparrow \quad correspondence$ C.-L. line classes in <math>PG(3,q)

Disjoint generators in
$$Q^+(2r-1,q)$$
:

$$(r \text{ even}) \checkmark$$

$$\searrow (r \text{ odd})$$

large sets of them

no more than 2

Any other tight sets?

Any tight sets with x > 2?

Small ranks:

$$r = 2$$

x-tight set of $Q^+(5,q)$ C.-L. line classes in PG(3,q)

Disjoint generators in
$$Q^+(2r-1,q)$$
:

$$(r \text{ even}) \checkmark$$

$$\searrow (r \text{ odd})$$

large sets of them

no more than 2

Any other tight sets?

Any tight sets with x > 2?

Small ranks:

$$r = 2$$

(all reducible)

x-tight set of $Q^+(5,q)$ $Klein \qquad \uparrow \quad correspondence$ C.-L. line classes in PG(3,q)

with parameter x

An x-tight set of $Q^+(2r-1,q)$ must be reducible if:

 $ightharpoonup x \lesssim \sqrt{q}$

K. Drudge, 1998

J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007

- $x \le q \text{ and } r \in \{2, 3, 4\},$
- $x \le q-1$ and $r \ge 5$ and and $q \ge 71,$

L. Beukemann, K. Metsch, 2013

• $x \le Cq^{4/3}$ and r = 3,

K. Metsch, 2014

Recall, however, that x may take values $0, 1, \ldots, \frac{q^{r-1}+1}{2}$

An x-tight set of $Q^+(2r-1,q)$ must be reducible if:

 $ightharpoonup x \lesssim \sqrt{q}$

K. Drudge, 1998

J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007

- $x \le q \text{ and } r \in \{2, 3, 4\},$
- $x \le q 1$ and $r \ge 5$ and and $q \ge 71$,

L. Beukemann, K. Metsch, 2013

 $ightharpoonup x \le Cq^{4/3}$ and r = 3,

K. Metsch, 2014

Recall, however, that x may take values $0, 1, \dots, \frac{q^{r-1}+1}{2}$.

An x-tight set of $Q^+(2r-1,q)$ must be reducible if:

 $x \lesssim \sqrt{q},$

K. Drudge, 1998

J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007

- $x \le q \text{ and } r \in \{2, 3, 4\},$
- $x \le q 1$ and $r \ge 5$ and and $q \ge 71$,

L. Beukemann, K. Metsch, 2013

• $x \le Cq^{4/3}$ and r = 3,

K. Metsch, 2014

Recall, however, that x may take values $0, 1, \dots, \frac{q^{r-1}+1}{2}$.

An x-tight set of $Q^+(2r-1,q)$ must be reducible if:

 $ightharpoonup x \lesssim \sqrt{q}$

K. Drudge, 1998

J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007

- $x \le q \text{ and } r \in \{2, 3, 4\},$
- $x \le q 1$ and $r \ge 5$ and and $q \ge 71$,

L. Beukemann, K. Metsch, 2013

• $x \le Cq^{4/3}$ and r = 3,

K. Metsch, 2014

Recall, however, that x may take values $0, 1, \dots, \frac{q^{r-1}+1}{2}$.

Our result

Theorem (G., Metsch, 2014)

Let T be an x-tight set of $Q^+(5,q)$ (the Klein quadric). Then for every plane π of $Q^+(5,q)$, the number $n := |\pi \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1).$$

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd)

01

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

Our result

Theorem (G., Metsch, 2014)

Let T be an x-tight set of $Q^+(5,q)$ (the Klein quadric). Then for every plane π of $Q^+(5,q)$, the number $n := |\pi \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1).$$

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

Our result

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

If an x-tight set of $Q^+(2r-1,q)$ exists, then there must exist at least one integer n satisfying the equation above.

Example: q = 3, $r = 5 \Rightarrow x \in \{0, 1, 2, \dots, \frac{3^4+1}{2} = 41\}$. For $x \in \{3, 4, 6, 7, 11, 12, \dots\}$ (20 values of $\{0, 1, 2, \dots, 41\}$), there are no integer numbers n satisfying the equation with given x and q. \Rightarrow There are no x-tight sets with given x.

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

If an x-tight set of $Q^+(2r-1,q)$ exists, then there must exist at least one integer n satisfying the equation above.

Example: q = 3, $r = 5 \Rightarrow x \in \{0, 1, 2, \dots, \frac{3^4+1}{2} = 41\}$. For $x \in \{3, 4, 6, 7, 11, 12, \dots\}$ (20 values of $\{0, 1, 2, \dots, 41\}$), there are no integer numbers n satisfying the equation with given x and q. \Rightarrow There are no x-tight sets with given x.

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

If an x-tight set of $Q^+(2r-1,q)$ exists, then there must exist at least one integer n satisfying the equation above.

Example:
$$q = 3$$
, $r = 5 \Rightarrow x \in \{0, 1, 2, \dots, \frac{3^4+1}{2} = 41\}$.
For $x \in \{3, 4, 6, 7, 11, 12, \dots\}$ (20 values of $\{0, 1, 2, \dots, 41\}$), there are no integer numbers n satisfying the equation with given x and q . \Rightarrow There are no x -tight sets with given x .

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

If an x-tight set of $Q^+(2r-1,q)$ exists, then there must exist at least one integer n satisfying the equation above.

Example:
$$q = 3$$
, $r = 5 \Rightarrow x \in \{0, 1, 2, \dots, \frac{3^4+1}{2} = 41\}$.
For $x \in \{3, 4, 6, 7, 11, 12, \dots\}$ (20 values of $\{0, 1, 2, \dots, 41\}$), there are no integer numbers n satisfying the equation with given x and q . \Rightarrow There are no x -tight sets with given x .

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n := |\gamma \cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

If an x-tight set of $Q^+(2r-1,q)$ exists, then there must exist at least one integer n satisfying the equation above.

Example: q = 3, $r = 5 \Rightarrow x \in \{0, 1, 2, \dots, \frac{3^4 + 1}{2} = 41\}$. For $x \in \{3, 4, 6, 7, 11, 12, \dots\}$ (20 values of $\{0, 1, 2, \dots, 41\}$), there are no integer numbers n satisfying the equation with given x and q. \Rightarrow There are no x-tight sets with given x.

Let T be an x-tight set of a hyperbolic quadric \mathcal{P} of rank r.

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \le r - 1$ of PG(2r - 1, q)

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q - 1} + q^{r-d-1}|T \cap S|.$$

Theorem (K. Drudge, 1998)

For every pair $\{p_1, p_2\}$ of non-collinear points of \mathcal{P} :

$$T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

Let T be an x-tight set of a hyperbolic quadric \mathcal{P} of rank r.

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \leq r-1$ of $\mathrm{PG}(2r-1,q)$

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q-1} + q^{r-d-1}|T \cap S|.$$

Theorem (K. Drudge, 1998)

For every pair $\{p_1, p_2\}$ of non-collinear points of \mathcal{P} :

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

Let T be an x-tight set of a hyperbolic quadric \mathcal{P} of rank r.

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \leq r-1$ of $\mathrm{PG}(2r-1,q)$

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q-1} + q^{r-d-1}|T \cap S|.$$

 \Downarrow

Theorem (K. Drudge, 1998)

For every pair $\{p_1, p_2\}$ of non-collinear points of \mathcal{P} :

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

Let T be an x-tight set of a hyperbolic quadric \mathcal{P} of rank r.

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \le r-1$ of $\mathrm{PG}(2r-1,q)$

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q-1} + q^{r-d-1}|T \cap S|.$$

 \Downarrow

Theorem (K. Drudge, 1998)

For every pair $\{p_1, p_2\}$ of non-collinear points of \mathcal{P} :

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$? \qquad \qquad \circlearrowright p_2$$

$$\parallel$$

$$q^{r-2} - 1 \qquad \qquad r^{-2} = 0$$

$$\sum_{p_0 \in T \cap (\mathcal{P} \setminus \{p_1\}^{\perp})} |T \cap \{p_1, p_2\}^{\perp}|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{-1}}{q-1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

$$\sum_{p_2 \in T \cap (\mathcal{P} \setminus \{p_1\}^{\perp})} |T \cap \{p_1, p_2\}^{\perp}|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$? \qquad \qquad \qquad \circlearrowright p_2$$

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-1} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

$$\sum_{p_2 \in T \cap (\mathcal{P} \setminus \{p_1\}^{\perp})} |T \cap \{p_1, p_2\}^{\perp}|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$? \qquad \qquad \qquad \bigcirc p_2$$

$$\parallel$$

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q}{q-1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

$$\sum_{p_2 \in T \cap (\mathcal{P} \setminus \{p_1\}^\perp)} |T \cap \{p_1, p_2\}^\perp|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$? \qquad \qquad \circlearrowright p_2$$

$$|| \qquad \qquad |T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

$$\sum_{p_2 \in T \cap (\mathcal{P} \setminus \{p_1\}^{\perp})} |T \cap \{p_1, p_2\}^{\perp}|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$|T \cap \{p_1, p_2\}^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \{p_1, p_2\}|.$$

$$\sum_{p_2 \in T \cap (\mathcal{P} \setminus \{p_1\}^\perp)} |T \cap \{p_1, p_2\}^\perp|$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \qquad \Longrightarrow \qquad |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell=0}^{\infty} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \qquad \Longrightarrow \qquad |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell \text{ on } p_1} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \Longrightarrow |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell \text{ on } p_1} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \Longrightarrow |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell \text{ on } p_1} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \Longrightarrow |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell \text{ on } p_1} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Fix a point $p_1 \in T$.

We count the number E of pairs of incident points in

$$(T \cap \{p_1\}^{\perp}) \times (T \cap (\mathcal{P} \setminus \{p_1\}^{\perp}))$$

$$\circlearrowright \ell \Longrightarrow |T \cap \{p_1\}^{\perp}| - |T \cap \ell^{\perp}|$$

$$|T \cap \ell^{\perp}| = x \frac{q^{r-2} - 1}{q - 1} + q^{r-2}|T \cap \ell|$$

We also know
$$\sum_{\ell \text{ on } p_1} |T \cap \ell| = |T \cap \{p_1\}^{\perp}|.$$

Sketch of the proof: One more counting

$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell|^2 \sim \text{ via } x, q, r.$$
$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell| \sim \text{ via } x, q, r.$$

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \leq r - 1$ of PG(2r - 1, q)

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q - 1} + q^{r-d-1}|T \cap S|.$$

Applying this lemma to $\pi = \langle \ell_1, \ell_2 \rangle$, where ℓ_1, ℓ_2 on $p_1, \ell_1 \not\perp \ell_2$:

$$\sum_{\ell' \in \mathcal{M}, \ r_1 : \ \ell' + \ell_2, \ \ell' + \ell_2} |T \cap \ell'| = x \frac{q^{r-3} - 1}{q - 1} + q^{r-3} (|T \cap \ell_1| + |T \cap \ell_2|).$$

Sketch of the proof: One more counting

$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell|^2 \sim \text{ via } x, q, r.$$

$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell| \sim \text{ via } x, q, r.$$

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \le r-1$ of $\mathrm{PG}(2r-1,q)$

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q-1} + q^{r-d-1}|T \cap S|.$$

Applying this lemma to $\pi = \langle \ell_1, \ell_2 \rangle$, where ℓ_1, ℓ_2 on $p_1, \ell_1 \not\perp \ell_2$:

$$\sum_{\ell' \text{ on } p_1: \ \ell' \perp \ell_1, \ \ell' \perp \ell_2} |T \cap \ell'| = x \frac{q^{r-3} - 1}{q - 1} + q^{r-3} (|T \cap \ell_1| + |T \cap \ell_2|).$$

Sketch of the proof: One more counting

$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell|^2 \sim \text{ via } x, q, r.$$
$$\sum_{\substack{\ell \text{ on } p_1}} |T \cap \ell| \sim \text{ via } x, q, r.$$

Lemma (L. Beukemann, K. Metsch, 2013)

For every subspace S of dimension $d \leq r - 1$ of PG(2r - 1, q)

$$|T \cap S^{\perp}| = x \frac{q^{r-d-1} - 1}{q-1} + q^{r-d-1}|T \cap S|.$$

Applying this lemma to $\pi = \langle \ell_1, \ell_2 \rangle$, where ℓ_1, ℓ_2 on $p_1, \ell_1 \not\perp \ell_2$:

$$\sum_{\ell' \in \mathcal{P}_1, \ \ell' = \ell' + \ell_2, \ \ell' + \ell_2} |T \cap \ell'| = x \frac{q^{r-3} - 1}{q - 1} + q^{r-3} (|T \cap \ell_1| + |T \cap \ell_2|).$$

The result

Theorem

Let T be an x-tight set of $Q^+(2r-1,q)$. Then, for every generator γ , the number $n:=|\gamma\cap T|$ satisfies

$$\binom{x}{2} + n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is odd),

or

$$n(n-x) \equiv 0 \mod (q+1)$$
, (if the rank r is even).

- r = 2: only reducible (i.e., trivial) examples
- ightharpoonup r = 3: many examples of C.-L. line classes
- r = 4: the field reduction

$$PG(3, q^2) \rightsquigarrow PG(2 \cdot (3+1) - 1, q)$$

a tight set of $Q^+(3, q) \mapsto$ a tight set of $Q^+(7, q)$
(so it gives only trivial tight sets)

▶ r = 5: Q⁺(9, q), completely open, but our result eliminates about a half of possible values for x.

- ightharpoonup r = 2: only reducible (i.e., trivial) examples
- ightharpoonup r = 3: many examples of C.-L. line classes
- ightharpoonup r = 4: the field reduction

$$PG(3, q^2) \rightsquigarrow PG(2 \cdot (3+1) - 1, q)$$

a tight set of $Q^+(3, q) \mapsto$ a tight set of $Q^+(7, q)$
(so it gives only trivial tight sets)

▶ r = 5: Q⁺(9, q), completely open, but our result eliminates about a half of possible values for x.

- r = 2: only reducible (i.e., trivial) examples
- ightharpoonup r = 3: many examples of C.-L. line classes
- ightharpoonup r = 4: the field reduction

$$PG(3, q^2) \rightsquigarrow PG(2 \cdot (3 + 1) - 1, q)$$

a tight set of $Q^+(3, q) \mapsto$ a tight set of $Q^+(7, q)$
(so it gives only trivial tight sets)

▶ r = 5: Q⁺(9, q), completely open, but our result eliminates about a half of possible values for x.

- r = 2: only reducible (i.e., trivial) examples
- ightharpoonup r = 3: many examples of C.-L. line classes
- ightharpoonup r = 4: the field reduction

$$PG(3, q^2) \rightsquigarrow PG(2 \cdot (3 + 1) - 1, q)$$

a tight set of $Q^+(3, q) \mapsto$ a tight set of $Q^+(7, q)$
(so it gives only trivial tight sets)

▶ r = 5: $Q^+(9, q)$, completely open, but our result eliminates about a half of possible values for x.

- r = 2: only reducible (i.e., trivial) examples
- ightharpoonup r = 3: many examples of C.-L. line classes
- ightharpoonup r = 4: the field reduction

$$PG(3, q^2) \rightsquigarrow PG(2 \cdot (3 + 1) - 1, q)$$

a tight set of $Q^+(3, q) \mapsto$ a tight set of $Q^+(7, q)$
(so it gives only trivial tight sets)

▶ r = 5: $Q^+(9, q)$, completely open, but our result eliminates about a half of possible values for x.

Ad

The International Conference and PhD-Master Summer School Graphs and Groups, Representations and Relations (G2R2) Novosibirsk, Russia, August 06-19, 2018

- o Groups and Graphs, Metrics and Manifolds (2017)
- Graphs and Groups, Spectra and Symmetries (2016)
- \circ Groups and Graphs, Algorithms and Automata (2015)

4 minicourses (8 lectures each) by:

Gareth Jones Akihiro Munemasa Mikhail Muzychuk Roman Nedela (some) Invited Speakers:

Sebastian Cioaba Edwin van Dam
Alexander Ivanov Ruth Kellerhals*

Jack Koolen* Sergei Lando

Tomaz Pisanski Norman Wildberger

Ad

The International Conference and PhD-Master Summer School Graphs and Groups, Representations and Relations (G2R2) Novosibirsk, Russia, August 06-19, 2018

- o Groups and Graphs, Metrics and Manifolds (2017)
- Graphs and Groups, Spectra and Symmetries (2016)
- o Groups and Graphs, Algorithms and Automata (2015)

4 minicourses (8 lectures each) by:

Gareth Jones Akihiro Munemasa Mikhail Muzychuk Roman Nedela (some) Invited Speakers:

Sebastian Cioaba Edwin van Dam
Alexander Ivanov Ruth Kellerhals*

Jack Koolen* Sergei Lando

Tomaz Pisanski "Norman Wildberger 🚕 🤈

The International Conference and PhD-Master Summer School Graphs and Groups, Representations and Relations (G2R2) Novosibirsk, Russia, August 06-19, 2018

- Groups and Graphs, Metrics and Manifolds (2017)
- Graphs and Groups, Spectra and Symmetries (2016)
- Groups and Graphs, Algorithms and Automata (2015)

4 minicourses (8 lectures each) by:

Gareth Jones Akihiro Munemasa Mikhail Muzychuk Roman Nedela

Norman Wildberger

Ad

The International Conference and PhD-Master Summer School Graphs and Groups, Representations and Relations (G2R2) Novosibirsk, Russia, August 06-19, 2018

- o Groups and Graphs, Metrics and Manifolds (2017)
- o Graphs and Groups, Spectra and Symmetries (2016)
- o Groups and Graphs, Algorithms and Automata (2015)

4 minicourses (8 lectures each) by:

Gareth Jones Akihiro Munemasa Mikhail Muzychuk Roman Nedela (some) Invited Speakers:

Sebastian Cioaba Edwin van Dam
Alexander Ivanov Ruth Kellerhals*

Jack Koolen* Sergei Lando

Tomaz Pisanski Norman Wildberger