
On Tight Sets of Hyperbolic Quadrics

Alexander Gavrilyuk
University of Science and Technology of China

(Hefei, China)

Fifth Irsee Conference
Finite Geometry

2017



Motivation for tight sets

I Introduced and first studied by Payne in GQ (1987)

I Extended to Polar Spaces by Drudge (1998)

I Bamberg, Kelly, Law, Penttila (2006, 2007):

I Unification: tight sets and m-ovoids as Intriguing Sets
I New constructions
I Connections to: m-systems, covers, eggs, minihypers,..
I .. and projective two-character sets.

I Many more recent results

I Tight sets of hyperbolic quadrics generalise (and
inherit a very special property of) Cameron-Liebler
line classes in PG(3, q).
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Point sets in Polar spaces

I Let P be a finite polar space of rank r.

I A generator of P is a maximal t.i./t.s. subspace.

I A generator ∼= PG(r − 1, q), so every two of its points
are collinear.

Let T be a subset of points of P .

Question (Payne, 1987, for the case r = 2)
How many pairs of collinear points may T contain?
(What could be the maximum average number of points of
T collinear to a point of T?)
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Tight sets of Polar spaces
Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

In case of equality, we call such a set T :
tight / x-tight / tight with parameter x.



Tight sets of Polar spaces
Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

In case of equality, we call such a set T :
tight / x-tight / tight with parameter x.



Tight sets of Polar spaces
Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

In case of equality, we call such a set T :
tight / x-tight / tight with parameter x.



Tight sets of Polar spaces
Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

In case of equality, we call such a set T :
tight / x-tight / tight with parameter x.



Tight sets of Polar spaces

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

Equality holds if T is the union of x disjoint generators.



Tight sets of Polar spaces

Theorem (Drudge, 1998; cf. Payne, 1987, for r = 2)
The average number κ of points of T collinear with a point
of T satisfies:

κ ≤ |T |q
r−1 − 1

qr − 1
+ qr−1.

If equality holds, then |T | = x
qr − 1

q − 1
for some integer x,

and for every point p ∈ P ,

|T ∩ {p}⊥| =


x qr−1−1

q−1 + qr−1, if p ∈ T ,

x qr−1−1
q−1 , if p 6∈ T .

Equality holds if T is the union of x disjoint generators.



Tight sets of Polar spaces: equitable partitions

T is an x-tight set ⇒ P \ T is (qr−1 + 1− x)-tight

1-tight, 2-tight sets in Q+(3,F2)

Question
How many pairs of collinear points may T contain?

An extremal set T will be x-tight:

T ≈ the union of x disjoint generators

Question
Are there any other tight sets? (For given rank, type, Fq)
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Hyperbolic polar spaces

The water tower by Vladimir Shukhov (Russia, 1896)



Tight sets of hyperbolic polar spaces

Disjoint generators in Q+(2r − 1, q):

(r even) ↙ ↘ (r odd)

large sets of them no more than 2

Any other tight sets? Any tight sets with x > 2?

Small ranks:

r = 2 r = 3

x-tight set of Q+(5, q)

(all reducible) Klein l correspondence

C.-L. line classes in PG(3, q)
with parameter x
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Irreducible: Bounds on x

An x-tight set of Q+(2r − 1, q) must be reducible if:

I x .
√
q,

K. Drudge, 1998

J. Bamberg, S. Kelly, M. Law, T. Penttila, 2007

I x ≤ q and r ∈ {2, 3, 4},
I x ≤ q − 1 and r ≥ 5 and and q ≥ 71,

L. Beukemann, K. Metsch, 2013

I x ≤ Cq4/3 and r = 3,
K. Metsch, 2014

Recall, however, that x may take values 0, 1, . . . ,
qr−1 + 1

2
.
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Our result

Theorem (G., Metsch, 2014)
Let T be an x-tight set of Q+(5, q) (the Klein quadric). Then
for every plane π of Q+(5, q), the number n := |π ∩ T | satisfies(

x
2

)
+ n(n− x) ≡ 0 mod (q + 1).

Theorem
Let T be an x-tight set of Q+(2r − 1, q). Then, for every
generator γ, the number n := |γ ∩ T | satisfies(

x
2

)
+ n(n− x) ≡ 0 mod (q + 1), (if the rank r is odd),

or

n(n− x) ≡ 0 mod (q + 1), (if the rank r is even).
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or

n(n− x) ≡ 0 mod (q + 1), (if the rank r is even).

If an x-tight set of Q+(2r − 1, q) exists, then there must exist at
least one integer n satisfying the equation above.

Example: q = 3, r = 5 ⇒ x ∈ {0, 1, 2, . . . , 34+1
2 = 41}.

For x ∈ {3, 4, 6, 7, 11, 12, . . .} (20 values of {0, 1, 2, . . . , 41}),
there are no integer numbers n satisfying the equation with

given x and q. ⇒ There are no x-tight sets with given x.
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Sketch of the proof: basic lemma
Let T be an x-tight set of a hyperbolic quadric P of rank r.

Lemma (L. Beukemann, K. Metsch, 2013)
For every subspace S of dimension d ≤ r − 1 of PG(2r − 1, q)

|T ∩ S⊥| = x
qr−d−1 − 1

q − 1
+ qr−d−1|T ∩ S|.

⇓

Theorem (K. Drudge, 1998)
For every pair {p1, p2} of non-collinear points of P:

|T ∩ {p1, p2}⊥| = x
qr−2 − 1

q − 1
+ qr−2|T ∩ {p1, p2}|.

Not true for other types of polar spaces!
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Sketch of the proof: Double counting, 1

Fix a point p1 ∈ T .

We count the number E of pairs of incident points in

(T ∩ {p1}⊥) × (T ∩ (P \ {p1}⊥))

? ⇔ � p2
||

|T ∩ {p1, p2}⊥| = x
qr−2 − 1

q − 1
+ qr−2|T ∩ {p1, p2}|.

This gives E in terms of x, q, r:∑
p2∈T∩(P\{p1}⊥)

|T ∩ {p1, p2}⊥|
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Sketch of the proof: One more counting∑
` on p1

|T ∩ `|2 ∼ via x, q, r.∑
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Lemma (L. Beukemann, K. Metsch, 2013)
For every subspace S of dimension d ≤ r − 1 of PG(2r − 1, q)

|T ∩ S⊥| = x
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Applying this lemma to π = 〈`1, `2〉, where `1, `2 on p1, `1 6⊥ `2:

∑
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|T ∩ `′| = x
qr−3 − 1

q − 1
+ qr−3(|T ∩ `1|+ |T ∩ `2|).
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The result

Theorem
Let T be an x-tight set of Q+(2r − 1, q). Then, for every
generator γ, the number n := |γ ∩ T | satisfies(

x
2

)
+ n(n− x) ≡ 0 mod (q + 1), (if the rank r is odd),

or

n(n− x) ≡ 0 mod (q + 1), (if the rank r is even).



Concluding remarks

I r = 2: only reducible (i.e., trivial) examples

I r = 3: many examples of C.-L. line classes

I r = 4: the field reduction

PG(3, q2) PG(2 · (3 + 1)− 1, q)
a tight set of Q+(3, q) 7→ a tight set of Q+(7, q)

(so it gives only trivial tight sets)

I r = 5: Q+(9, q), completely open, but our result
eliminates about a half of possible values for x.

Thank you!
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