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N
Grassmann Varieties : A Quick Introduction

V : vector space of dimension m over a field F
For 1 < ¢ < m, we have the Grassmann variety:

Gem = G¢(V) := {{-dimensional subspaces of V}.
Pliicker embedding: Gy, — P*~!, where k := (’Z)
Explicitly, P¢=! = P(A*V) and
W= (wi,...,wg) < [wi A--- Awg] € P(A'V).
For example, G, , = P"~!. In terms of coordinates,
W= (wi,....wi) € Go(V) ¢ p(W) = (PalAw)) s

where Ay = (a;;) is a £ x m matrix whose rows are (the coordinates of) a basis
of W and p,,(Aw) is the o™ minor of Ay, viz., det (“ia/)1<iJ<2'
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N
Introduction to Grassmann Varieties Contd.

Notation: 1(¢,m) := {a =(ap,...,a)) €Z 1<y < <y < m}
Facts:

@ G, , is a projective algebraic variety given by the common zeros of
certain quadratic homogeneous polynomials in k variables. As a
projective algebraic variety G, ,, is nondegenerate, irreducible,
nonsingular, and rational.

@ There is a natural transitive action of GL,, on G,,, and if P, denotes the
stabilizer of a fixed Wy € G, ., then P, is a maximal parabolic subgroup of
GL,, and Gy, ~ GL,,/P;.

o IfF =R orC, then Gy, is a (real or complex) manifold, and its
cohomology spaces and Betti numbers are explicitly known. In fact,

b, = dim H*(G,,,; C) is precisely the number of partitions of v into at
most ¢ parts, each part < m — ¢,
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N
Grassmannian Over Finite Fields

Suppose F =T, is the finite field with ¢ elements. Then Gy, = G¢ . (F,) is a
finite set and its cardinality is given by the Gaussian binomial coefficient:

m _@"-1D"—q) (" —q¢"")
" @-1"=q) (¢ —q=")"

This is a polynomial in ¢ of degree § := ¢(m — ¢) and in fact,

5
m — —
‘Gf,m(Fq”: [ﬁ] = E bqu:q5+q6 1+2q6 2+..._~_17
q v=0

where the coefficients b,, are nonnegative integers that have combinatorial
and topological interpretation mentioned earlier. Note that

m 7], = ()

Sudhir Ghorpade (IIT Bombay) Schubert varieties over finite fields 4/19



I
Schubert Varieties in Grassmannians

Fix a basis {ey,...,e,} of Vand any a € I(¢,m), that is,
a=(ag,...,a) €eZ 1< < <oy <m.
The corresponding Schubert variety is defined by
Qy :={W € Gy, 1 dim(WNA;) >iVi=1,...,0},
where A; = (ey,...,e,,) for 1 <i < {. Alternatively,
Qo :={[Vi A...Avg] :vy,...,ve € Vlinearly independent and v; € A; Vi}.

The Plicker embedding of G, ,, induces a nondegenerate embedding

0y (F,) — P~ where k,=|{B€l(l,m):B<a},
with < being the componentwise partial order (Bruhat-Chevalley):

ﬁ:(ﬁlv"'wﬁ@)Sa:(al,-.-,af)@ﬁigaiVi:1,...,(.
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-
Hyperplane Sections of Schubert Varieties
Fix « € 1(¢,m) and consider Q, (F,) < Pk~ We are interested in
eq(lym) == mfaIIX|Qa(IE"q) NH|and M, (¢,m) = |{H : | (F,) NH| = eq({,m)}|,

where the maximum is taken over all hyperplanes H in P*=~! or equivalently,
all hyperplanes H in IP’(/\Z V) such that Q. Z H. In the special case when
a=(m—L+1,...,m—1,m), thatis, when Q, = G, ,,, we shall denote e, (¢, m)
and M, (¢, m) simply by e(¢,m) and M(¢,m).

Theorem (Nogin, 1996)

con-; |

In fact, the hyperplanes H that attain e(¢,m) are precisely those that
correspond to decomposable elements of \"~* V = ( A V) .

m

—q¢° and M(L,m)=(q— 1)[£

q
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-
Connection with Coding Theory

Fix representatives Py,...,P,_ in /\5 V of points of the Schubert variety
Q4 (F,) € Gym(F,) € P(A\" V). We have the evaluation map

m—~{

J\V-— T givenby fr—c¢=(fAP1,...,fAPy).
This is clearly linear and the image is denoted by C,, (¢, m) and called the
Schubert code. When o = (m — £+ 1,...,m), itis called the Grassmann code
and denoted by C(¢, m). In this case, the evaluation map is injective and thus
the length n and the dimension k of the Grassmann code C(¢, m) are given by

=[i], e =)

The result of Nogin (1996) mentioned earlier says that
d(C(t,m)) = q° where 6 :={(m— ).

Further, the number of minimum weight codewords is given by M(¢, m).
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N
Minimum Distance of Schubert Codes

The problem mentioned eariler corresponds exactly to finding the minimum
distance of Schubert codes and the number of minimum weight codewords.

Proposition (G - Lachaud(2000))
Forany o € I(¢,m),
14

d(Ca(t,m)) < g% where 6, = Z(ai —1i).
i=1

Whena = (m—-¢+1,...,m— 1,m), the inequality is an equality, thanks to
Nogin. The following conjecture was made in the same paper:

Minimum Distance Conjecture (MDC)
Forany a € I(¢,m),

d(Cy(l,m)) = q5a.
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-
Length of Schubert Codes

@ If¢{=2and a = (m—h—1,m), then

U
i Py PRy VD D) DU

and

[Hao Chen (2000)]
@ In general,

i ]
i=0 q

where the sum is over (ki, ..., k,_1) € Z" satisfying i < k; < o, and
ki < kixy for 1 <i < /¢ —1; by convention, ag = 0 = ko and k, = ¢.
[Vincenti (2001)]
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|
Length of Schubert Codes (Contd.)

°no=>» 4%, [Ehresmann (1934); G - Tsfasman (2005)]
Ba
@ Suppose a has u + 1 consecutive blocks:

a=(ar,...,Qp, -y Qpy1,...,0Qp,, ). Then

Qpy Qp, u

ng = § E H)‘(api?aﬁi+l;siasi+l)

S1=P1 Su=pu =0
where, so = po = 0; sy+1 = pu+1 = £, and

Na, by s, 1) := zt:(—l)"fq(r?) [a B S} [b B r} .[G - Tsfasman (2005)]
g

p r—s t—r q
@ n, = det <q0i)(ii1)/2 {a’ -/ +ll] > ) [G - Krattenthaler]
1= 9/ 1<ij<e
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-
Dimension of Schubert Codes [G-Tsfasman (2005)]

@ Leta = (ay,...,ay) € I(¢,m). The dimension of C,(¢,m) is the ¢ x ¢
determinant:

. a ar—1
1<ij<t i—j+1 : :
() () ) - (7
@ If ay,...,ap are in arithmetic progression, i.e., a; = ¢(i — 1) + d Vi for
some ¢,d € Z, then

£—1
o . « Qay
b Tl 0= 25 ()

- Q4]
i=1

where ay 1 = ¢/ + d="la,+ (1 =)

Qpy Oy

k=3 Y 3 I1(n "')-

Si4+1 — S
S1=p1 $2=p2 Su=pu =0 +
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N
What do we know about the MDC?

Recall that the MDC states that
d(Co(t,m)) = g%, where 6, := () —1)+---+ (ag — ).
The MDC is:
@ Trueifa=(m—£+1,...,m— 1,m). [Nogin (1996)]

@ True if £ = 2. [Hao Chen (2000)]; independently [Guerra-Vincenti (2002)].
In general, one has a lower bound for d (C,(¢,m)) [G-V (2002)]:

g (g™ —q) (g™ = g™ ) o 5.
PIEE] =4 -

@ True for C(,4y(2,4). [Vincenti (2001)]
@ True for all Schubert divisors in G¢,. [G - Tsfasman (2005)]
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What do we know about the MDC?

Recall that the MDC states that
d(Co(t,m)) = g%, where 6, := () —1)+---+ (ag — ).
The MDC is:
@ Trueifa=(m—£+1,...,m— 1,m). [Nogin (1996)]

@ True if £ = 2. [Hao Chen (2000)]; independently [Guerra-Vincenti (2002)].
In general, one has a lower bound for d (C,(¢,m)) [G-V (2002)]:

g (g™ —q) (g™ = g™ ) o 5.
PIEE] =4 -

@ True for C(,4y(2,4). [Vincenti (2001)]
@ True for all Schubert divisors in G¢,. [G - Tsfasman (2005)]
@ True, in general! [Xu Xiang (2008)], [G - Singh (2016)]
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|
Minimum Weight Codewords of Schubert Codes

The first natural question is the following.

Question: Does every decomposable elements of /\’""Z V correspond to a
minimum weight codeword of C,, (¢, m)?

The answer is No, in general. For example, consider a = (ay, az) € 1(2,m)

with a; > 2. As before, let A = (ey,...,eq,) and Az = (ey, ..., eq,), Where
{e1,...,en} is afixed basis of V. Let
m—2

f=e3N---Ney € /\ V and ¢, the corresponding codeword in C, (2, m).
Then it can be shown that wt(c;) = g1 273 4+ go1te2=4 — g201=3 "and so
wi(cr) = ¢° Y = ay =a; + 1, i.e., Co(2,m) = C(2, ).

Onthe otherhand, h =e; Aes AesA---ANe, € /\’"’2 V is decomposable and
it can be seen that wt(c,) = g*1+273,
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-
Schubert Decomposability

It turns out that we need a notion more subtle than decomposability. Let us

@ write o uniquely as

Q= (O, Qpyy Qs ey Qs ey O s e ey Qs Qputly e -5 Qlg)

sothatl <p; <---<p,<flandapi,...,q,,, are consecutive for
0 <i < u. By convention, pp =0 and p,+; = /.
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-
Schubert Decomposability

It turns out that we need a notion more subtle than decomposability. Let us

@ write o uniquely as
Q= (O, Qpyy Qs ey Qs ey O s e ey Qs Qputly e -5 Qlg)

sothatl <p; <---<p,<flandapi,...,q,,, are consecutive for
0 <i < u. By convention, pp =0 and p,+; = /.

@ « is called completely nonconsecutive if a; — ;1 >2forall2 <i </
Definition

m—=~
A decomposable element f =fi A...Afu—¢ € A\ Vis said to be Schubert
decomposable if dim (Vi N Ay) = o, —pi foralli =1,...,u, where V; denotes
the annihilatorof f,i.e., Vi :={ve V:ivAf =0} =(fi,....fu—t)
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Main Results: Schubert Decomposability and Min Weight Codewords

Note that in the Grassmann case, i.e., whena = (m—£¢+1,...,m—1,m), or
more generally, when oy, . .., a, are consecutive, we have u = 0 and in this
case, the notions of decomposability and Schubert decomposability coincide.
Conjecture

Minimum weight codewords of the Schubert code C,, (¢, m) are precisely the

codewords corresponding to Schubert decomposable elements of /\mie V.
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more generally, when oy, . .., a, are consecutive, we have u = 0 and in this
case, the notions of decomposability and Schubert decomposability coincide.
Conjecture

Minimum weight codewords of the Schubert code C,, (¢, m) are precisely the

codewords corresponding to Schubert decomposable elements of /\mie V.

Theorem (G — Singh)
Iff c /\m—z V is Schubert decomposable, then ¢y is a minimum weight codeword of

the Schubert code C,, (¢, m).
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Main Results: Schubert Decomposability and Min Weight Codewords

Note that in the Grassmann case, i.e., whena = (m—£¢+1,...,m—1,m), or
more generally, when oy, . .., a, are consecutive, we have u = 0 and in this
case, the notions of decomposability and Schubert decomposability coincide.
Conjecture

Minimum weight codewords of the Schubert code C,, (¢, m) are precisely the

codewords corresponding to Schubert decomposable elements of /\mie V.

Theorem (G — Singh)
Iff c /\m—e V is Schubert decomposable, then ¢y is a minimum weight codeword of
the Schubert code C,, (¢, m).

Theorem (G — Singh)
Assume that f € /\m_é V is decomposable. If ¢y is a minimum weight codeword of

C. (¢, m), then f is Schubert decomposable.
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Main Results: The Completely Nonconsecutive Case and the Min Weight Codewords

Theorem (G — Singh)
Assume that « is completely non-consecutive. If ¢ is a minimum weight codeword of

C. (¢, m), then ¢ = ¢, for some decomposable h € A" V.
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Main Results: The Completely Nonconsecutive Case and the Min Weight Codewords

Theorem (G — Singh)
Assume that « is completely non-consecutive. If ¢ is a minimum weight codeword of
C. (¢, m), then ¢ = ¢, for some decomposable h € A" V.

Theorem (G — Singh)
The number of codewords of C,, (¢, m) corresponding to Schubert decomposable

elements of /\mie V is equal to
~ap,, —a
Na(ﬁ,m) = (q_l)qP |: Pj+1 P/':| ,
i—o LPi1 = Pi 14
where

u
P= ij (an+1 — Qp; — Djt1 +pj) :
j=1

Sudhir Ghorpade (IIT Bombay) Schubert varieties over finite fields 16/19



Thank you!
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N
Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert
code
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Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert

code
@ E={x€As:cinr € Cov (£ —1,m) is the zero codeword}

(*] F:Ag\E
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Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert
code

@ E={x€As:cinr € Cov (£ —1,m) is the zero codeword}

@ F=A,\E

® Z(a,f) ={(L',x) € Qo (£ — 1,m) x Ay : f Ax(L) # 0}
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Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert
code

@ E={x€As:cinr € Cov (£ —1,m) is the zero codeword}

@ F=A,\E

® Z(a,f) ={(L',x) € Qo (£ — 1,m) x Ay : f Ax(L) # 0}

o W(f)={LeO:f(L) #0}
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N
Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert
code

@ E={x€As:cinr € Cov (£ —1,m) is the zero codeword}

F=A/\E

Z(of) = {(L',x) € Quar (£ — 1,m) x A¢ : f Ax(L) # 0}
W(f) = {L €0 :f(L)# 0}

¢ :Z(a,f) — W(f) defined by (L', x) — L' + (x)
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N
Idea of Proof

@ Leto' = («ay,...,a4_1) and C,/ (¢ — 1,m) be the corresponding Schubert
code

@ E={x€As:cinr € Cov (£ —1,m) is the zero codeword}

F=A/\E

Zlaf) = {(L',x) € Qoo (€= 1,m) x Ag - f Ax(L) # 0}
o W(f) = {LeO:f(L)+0}

® ¢: Z(a.f) — W(f) defined by (L', x) — L' + (x)

Lemma
If codimy, E <t ,thenA,_, C E J
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N
Fiber Lemma

Lemma
For a given L € W(f) the following holds

Q@ IfLE Ay then ¢~ !(L)| = ¢ (¢ — 1)
@ IfL CAy_jandt:=codimy, E, then [¢~'(L)| < ¢*~ ' (¢ — 1)
@ Iff is Schubert decomposable, then [¢~'(L)| = ¢*~'(¢' — 1)
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N
Fiber Lemma

Lemma
For a given L € W(f) the following holds

Q@ IfLE Ay then ¢~ !(L)| = ¢ (¢ — 1)
@ IfL CAy_jandt:=codimy, E, then [¢~'(L)| < ¢*~ ' (¢ — 1)
@ Iff is Schubert decomposable, then [¢~'(L)| = ¢*~'(¢' — 1)

Lemma

For any f € /\m—e V the weight of the codeword ¢ satisfies

< 1 1
wt(cr) > 7[#71((] Y g wt(ceax) + 74]4*1(6]’ Y Z Wt(Crax)
xEFNAyp_ XEF\A¢—y
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