Maximal Hyperplane Sections of Schubert Varieties over Finite Fields

Sudhir R. Ghorpade

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai 400076, India
http://www.math.iitb.ac.in/~srg/

Joint work with Prasant Singh (IIT Bombay and DTU, Copenhagen)

Finite Geometries: Fifth Irsee Conference Irsee, Germany September 10-16, 2017

Grassmann Varieties: A Quick Introduction

V: vector space of dimension m over a field $\mathbb F$

For $1 \le \ell \le m$, we have the Grassmann variety:

$$G_{\ell,m} = G_{\ell}(V) := \{\ell \text{-dimensional subspaces of } V\}.$$

Plücker embedding:
$$G_{\ell,m} \hookrightarrow \mathbb{P}^{k-1}$$
, where $k := \binom{m}{\ell}$.

Explicitly, $\mathbb{P}^{k-1} = \mathbb{P}(\wedge^{\ell} V)$ and

$$W = \langle w_1, \ldots, w_\ell \rangle \longleftrightarrow [w_1 \wedge \cdots \wedge w_\ell] \in \mathbb{P}(\wedge^\ell V).$$

For example, $G_{1,m} = \mathbb{P}^{m-1}$. In terms of coordinates,

$$W = \langle w_1, \ldots, w_\ell \rangle \in G_\ell(V) \longleftrightarrow p(W) = (p_\alpha(A_W))_{\alpha \in I(\ell, m)},$$

where $A_W=(a_{ij})$ is a $\ell \times m$ matrix whose rows are (the coordinates of) a basis of W and $p_{\alpha}(A_W)$ is the α^{th} minor of A_W , viz., $\det \left(a_{i\alpha_i}\right)_{1 \le i, i \le \ell}$.

Introduction to Grassmann Varieties Contd.

Notation: $I(\ell, m) := \{ \alpha = (\alpha_1, \dots, \alpha_\ell) \in \mathbb{Z}^\ell : 1 \le \alpha_1 < \dots < \alpha_\ell \le m \}$. Facts:

- $G_{\ell,m}$ is a projective algebraic variety given by the common zeros of certain quadratic homogeneous polynomials in k variables. As a projective algebraic variety $G_{\ell,m}$ is nondegenerate, irreducible, nonsingular, and rational.
- There is a natural transitive action of GL_m on $G_{\ell,m}$ and if P_ℓ denotes the stabilizer of a fixed $W_0 \in G_{\ell,m}$, then P_ℓ is a maximal parabolic subgroup of GL_m and $G_{\ell,m} \simeq \mathrm{GL}_m/P_\ell$.
- If $\mathbb{F}=\mathbb{R}$ or \mathbb{C} , then $G_{\ell,m}$ is a (real or complex) manifold, and its cohomology spaces and Betti numbers are explicitly known. In fact, $b_{\nu}=\dim H^{2\nu}(G_{\ell,m};\mathbb{C})$ is precisely the number of partitions of ν into at most ℓ parts, each part $\leq m-\ell$,

Grassmannian Over Finite Fields

Suppose $\mathbb{F} = \mathbb{F}_q$ is the finite field with q elements. Then $G_{\ell,m} = G_{\ell,m}(\mathbb{F}_q)$ is a finite set and its cardinality is given by the Gaussian binomial coefficient:

$$\begin{bmatrix} m \\ \ell \end{bmatrix}_q := \frac{(q^m - 1)(q^m - q) \cdots (q^m - q^{\ell - 1})}{(q^\ell - 1)(q^\ell - q) \cdots (q^\ell - q^{\ell - 1})}.$$

This is a polynomial in q of degree $\delta := \ell(m - \ell)$ and in fact,

$$|G_{\ell,m}(\mathbb{F}_q)|=egin{bmatrix} m \ \ell \end{bmatrix}_q=\sum_{
u=0}^\delta b_
u q^
u=q^\delta+q^{\delta-1}+2q^{\delta-2}+\cdots+1,$$

where the coefficients b_{ν} are nonnegative integers that have combinatorial and topological interpretation mentioned earlier. Note that

$$\lim_{q \to 1} \begin{bmatrix} m \\ \ell \end{bmatrix}_q = \binom{m}{\ell}.$$

Schubert Varieties in Grassmannians

Fix a basis $\{e_1, \ldots, e_m\}$ of V and any $\alpha \in I(\ell, m)$, that is,

$$\alpha = (\alpha_1, \dots, \alpha_\ell) \in \mathbb{Z}^\ell, \ 1 \le \alpha_1 < \dots < \alpha_\ell \le m.$$

The corresponding Schubert variety is defined by

$$\Omega_{\alpha} := \{ W \in G_{\ell,m} : \dim(W \cap A_i) \ge i \ \forall i = 1, \dots, \ell \},$$

where $A_i = \langle e_1, \dots, e_{\alpha_i} \rangle$ for $1 \leq i \leq \ell$. Alternatively,

$$\Omega_{\alpha} := \{ [v_1 \wedge \ldots \wedge v_\ell] : v_1, \ldots, v_\ell \in V \text{ linearly independent and } v_i \in A_i \ \forall \ i \}.$$

The Plücker embedding of $G_{\ell,m}$ induces a nondegenerate embedding

$$\Omega_{\alpha}(\mathbb{F}_q) \hookrightarrow \mathbb{P}^{k_{\alpha}-1}$$
 where $k_{\alpha} = |\{\beta \in I(\ell, m) : \beta \leq \alpha\}|,$

with \leq being the componentwise partial order (Bruhat-Chevalley):

$$\beta = (\beta_1, \dots, \beta_\ell) < \alpha = (\alpha_1, \dots, \alpha_\ell) \iff \beta_i < \alpha_i \ \forall i = 1, \dots, \ell.$$

Hyperplane Sections of Schubert Varieties

Fix $\alpha \in I(\ell, m)$ and consider $\Omega_{\alpha}(\mathbb{F}_q) \hookrightarrow \mathbb{P}^{k_{\alpha}-1}$. We are interested in

$$e_{\alpha}(\ell, m) := \max_{H} |\Omega_{\alpha}(\mathbb{F}_q) \cap H| \text{ and } M_{\alpha}(\ell, m) := |\{H: |\Omega_{\alpha}(\mathbb{F}_q) \cap H| = e_{\alpha}(\ell, m)\}|,$$

where the maximum is taken over all hyperplanes H in $\mathbb{P}^{k_{\alpha}-1}$, or equivalently, all hyperplanes H in $\mathbb{P}(\bigwedge^{\ell} V)$ such that $\Omega_{\alpha} \not\subseteq H$. In the special case when $\alpha = (m - \ell + 1, \ldots, m - 1, m)$, that is, when $\Omega_{\alpha} = G_{\ell,m}$, we shall denote $e_{\alpha}(\ell, m)$ and $M_{\alpha}(\ell, m)$ simply by $e(\ell, m)$ and $M(\ell, m)$.

Theorem (Nogin, 1996)

$$e(\ell,m) = {m \brack \ell}_q - q^\delta$$
 and $M(\ell,m) = (q-1) {m \brack \ell}_q$.

In fact, the hyperplanes H that attain $e(\ell,m)$ are precisely those that correspond to decomposable elements of $\bigwedge^{m-\ell} V = \left(\bigwedge^{\ell} V\right)^*$.

Connection with Coding Theory

Fix representatives P_1,\ldots,P_{n_α} in $\bigwedge^\ell V$ of points of the Schubert variety $\Omega_\alpha(\mathbb{F}_q)\subseteq G_{\ell,m}(\mathbb{F}_q)\subseteq \mathbb{P}(\bigwedge^\ell V)$. We have the evaluation map

$$\bigwedge^{m-\ell}V\longrightarrow \mathbb{F}_q^{n_\alpha}\quad \text{given by}\quad f\longmapsto c_f=\left(f\wedge P_1,\ldots,\,f\wedge P_{n_\alpha}\right).$$

This is clearly linear and the image is denoted by $C_{\alpha}(\ell,m)$ and called the Schubert code. When $\alpha=(m-\ell+1,\ldots,m)$, it is called the Grassmann code and denoted by $C(\ell,m)$. In this case, the evaluation map is injective and thus the length n and the dimension k of the Grassmann code $C(\ell,m)$ are given by

$$n = \begin{bmatrix} m \\ \ell \end{bmatrix}_q$$
 and $k = \begin{pmatrix} m \\ \ell \end{pmatrix}$.

The result of Nogin (1996) mentioned earlier says that

$$d\left(C(\ell,m)\right)=q^{\delta}$$
 where $\delta:=\ell(m-\ell).$

Further, the number of minimum weight codewords is given by $M(\ell, m)$.

Minimum Distance of Schubert Codes

The problem mentioned eariler corresponds exactly to finding the minimum distance of Schubert codes and the number of minimum weight codewords.

Proposition (G - Lachaud(2000))

For any $\alpha \in I(\ell, m)$,

$$d\left(C_{lpha}(\ell,m)
ight) \leq q^{\delta_{lpha}} \; ext{ where } \; \delta_{lpha} := \sum_{i=1}^{\ell} (lpha_i - i).$$

When $\alpha = (m - \ell + 1, ..., m - 1, m)$, the inequality is an equality, thanks to Nogin. The following conjecture was made in the same paper:

Minimum Distance Conjecture (MDC)

For any $\alpha \in I(\ell, m)$,

$$d\left(C_{\alpha}(\ell,m)\right)=q^{\delta_{\alpha}}.$$

Length of Schubert Codes

• If $\ell = 2$ and $\alpha = (m - h - 1, m)$, then

$$n_{\alpha} = \frac{(q^{m} - 1)(q^{m-1} - 1)}{(q^{2} - 1)(q - 1)} - \sum_{j=1}^{h} \sum_{i=1}^{j} q^{2m - j - 2 - i}$$

and

$$k_{\alpha} = \frac{m(m-1)}{2} - \frac{h(h+1)}{2}.$$

[Hao Chen (2000)]

In general,

$$n_{\alpha} = \sum_{i=0}^{\ell-1} \begin{bmatrix} \alpha_{i+1} - \alpha_i \\ k_{i+1} - k_i \end{bmatrix}_q q^{(\alpha_i - k_i)(k_{i+1} - k_i)}$$

where the sum is over $(k_1, \ldots, k_{\ell-1}) \in \mathbb{Z}^{\ell}$ satisfying $i \leq k_i \leq \alpha_i$ and $k_i \leq k_{i+1}$ for $1 \leq i \leq \ell-1$; by convention, $\alpha_0 = 0 = k_0$ and $k_\ell = \ell$.

[Vincenti (2001)]

Length of Schubert Codes (Contd.)

- $\bullet \ n_{\alpha} = \sum q^{\delta_{\beta}},$ [Ehresmann (1934); G - Tsfasman (2005)]
- Suppose α has u+1 consecutive blocks:

$$\alpha=(\alpha_1,\ldots,\alpha_{p_1},\;\ldots,\;\alpha_{p_u+1},\ldots,\alpha_{p_{u+1}}).$$
 Then

$$n_{\alpha} = \sum_{s_1=p_1}^{\alpha_{p_1}} \cdots \sum_{s_u=p_u}^{\alpha_{p_u}} \prod_{i=0}^{u} \lambda(\alpha_{p_i}, \alpha_{p_{i+1}}; s_i, s_{i+1})$$

where,
$$s_0 = p_0 = 0$$
; $s_{u+1} = p_{u+1} = \ell$, and

where,
$$s_0=p_0=0$$
; $s_{u+1}=p_{u+1}=\ell$, and $\lambda(a,b;s,t):=\sum_{r=s}^t (-1)^{r-s}q^{\binom{r-s}{2}} \begin{bmatrix} a-s \\ r-s \end{bmatrix}_q \begin{bmatrix} b-r \\ t-r \end{bmatrix}_q$. [G - Tsfasman (2005)]

$$\bullet \ \, n_{\alpha} = \det \left(q^{(j-i)(j-i-1)/2} { \left[\alpha_j - j + 1 \right]_q \right)}_{1 \leq i,j \leq \ell} . \tag{G - Krattenthaler}$$

Dimension of Schubert Codes [G-Tsfasman (2005)]

• Let $\alpha = (\alpha_1, \dots, \alpha_\ell) \in I(\ell, m)$. The dimension of $C_{\alpha}(\ell, m)$ is the $\ell \times \ell$ determinant:

$$k_{\alpha} = \det_{1 \leq i, j \leq \ell} \left(\begin{pmatrix} \alpha_{j} - j + 1 \\ i - j + 1 \end{pmatrix} \right) = \begin{vmatrix} \binom{\alpha_{1}}{1} & 1 & 0 & \dots & 0 \\ \binom{\alpha_{1}}{2} & \binom{\alpha_{2} - 1}{1} & 1 & \dots & 0 \\ \vdots & & & \vdots \\ \binom{\alpha_{1}}{\ell} & \binom{\alpha_{2} - 1}{\ell - 1} & \binom{\alpha_{3} - 2}{\ell - 2} & \dots & \binom{\alpha_{\ell} - \ell + 1}{1} \end{vmatrix}.$$

• If $\alpha_1, \ldots, \alpha_\ell$ are in arithmetic progression, i.e., $\alpha_i = c(i-1) + d \ \forall i$ for some $c, d \in \mathbb{Z}$, then

$$k_{\alpha} = \frac{\alpha_1}{\ell!} \prod_{i=1}^{\ell-1} (\alpha_{\ell+1} - i) = \frac{\alpha_1}{\alpha_{\ell+1}} {\alpha_{\ell+1} \choose \ell},$$

where $\alpha_{\ell+1} = c\ell + d = \ell\alpha_2 + (1-\ell)\alpha_1$.

$$\bullet \ k_{\alpha} = \sum_{s_1=p_1}^{\alpha_{p_1}} \sum_{s_2=p_2}^{\alpha_{p_2}} \cdots \sum_{s_u=p_u}^{\alpha_{p_u}} \prod_{i=0}^{u} \binom{\alpha_{p_{i+1}}-\alpha_{p_i}}{s_{i+1}-s_i}.$$

What do we know about the MDC?

Recall that the MDC states that

$$d\left(C_{\alpha}(\ell,m)\right) = q^{\delta_{\alpha}}, \quad \text{where} \quad \delta_{\alpha} := (\alpha_1 - 1) + \dots + (\alpha_{\ell} - \ell).$$

The MDC is:

- True if $\alpha = (m \ell + 1, \dots, m 1, m)$. [Nogin (1996)]
- True if $\ell=2$. [Hao Chen (2000)]; independently [Guerra-Vincenti (2002)]. In general, one has a lower bound for $d(C_{\alpha}(\ell,m))$ [G-V (2002)]:

$$\frac{q^{\alpha_1}(q^{\alpha_2}-q^{\alpha_1})\cdots(q^{\alpha_\ell}-q^{\alpha_{\ell-1}})}{q^{1+2+\cdots+\ell}}\geq q^{\delta_\alpha-\ell}.$$

- True for $C_{(2,4)}(2,4)$. [Vincenti (2001)]
- True for all Schubert divisors in $G_{\ell,m}$. [G Tsfasman (2005)]

What do we know about the MDC?

Recall that the MDC states that

$$d\left(C_{\alpha}(\ell,m)\right) = q^{\delta_{\alpha}}, \quad \text{where} \quad \delta_{\alpha} := (\alpha_1 - 1) + \dots + (\alpha_{\ell} - \ell).$$

The MDC is:

- True if $\alpha = (m \ell + 1, \dots, m 1, m)$. [Nogin (1996)]
- True if $\ell=2$. [Hao Chen (2000)]; independently [Guerra-Vincenti (2002)]. In general, one has a lower bound for $d(C_{\alpha}(\ell,m))$ [G-V (2002)]:

$$\frac{q^{\alpha_1}(q^{\alpha_2}-q^{\alpha_1})\cdots(q^{\alpha_\ell}-q^{\alpha_{\ell-1}})}{q^{1+2+\cdots+\ell}}\geq q^{\delta_\alpha-\ell}.$$

- True for $C_{(2,4)}(2,4)$. [Vincenti (2001)]
- True for all Schubert divisors in $G_{\ell,m}$. [G Tsfasman (2005)]
- True, in general! [Xu Xiang (2008)], [G Singh (2016)]

Minimum Weight Codewords of Schubert Codes

The first natural question is the following.

Question: Does every decomposable elements of $\bigwedge^{m-\ell} V$ correspond to a minimum weight codeword of $C_{\alpha}(\ell,m)$?

The answer is No, in general. For example, consider $\alpha=(\alpha_1,\alpha_2)\in I(2,m)$ with $\alpha_1\geq 2$. As before, let $A_1=\langle e_1,\ldots,e_{\alpha_1}\rangle$ and $A_2=\langle e_1,\ldots,e_{\alpha_2}\rangle$, where $\{e_1,\ldots,e_m\}$ is a fixed basis of V. Let

$$f = e_3 \wedge \cdots \wedge e_m \in \bigwedge^{m-2} V$$
 and c_f the corresponding codeword in $C_{\alpha}(2,m)$.

Then it can be shown that ${
m wt}(c_f)=q^{lpha_1+lpha_2-3}+q^{lpha_1+lpha_2-4}-q^{2lpha_1-3},$ and so

$$\operatorname{wt}(c_f) = q^{\delta(\alpha)} \iff \alpha_2 = \alpha_1 + 1, \text{ i.e., } C_{\alpha}(2, m) = C(2, \alpha_2).$$

On the other hand, $h = e_1 \wedge e_3 \wedge e_5 \wedge \cdots \wedge e_m \in \bigwedge^{m-2} V$ is decomposable and it can be seen that $\operatorname{wt}(c_h) = q^{\alpha_1 + \alpha_2 - 3}$.

Schubert Decomposability

It turns out that we need a notion more subtle than decomposability. Let us

ullet write α uniquely as

$$\alpha = (\alpha_1, \ldots, \alpha_{p_1}, \alpha_{p_1+1}, \ldots, \alpha_{p_2}, \ldots, \alpha_{p_{u-1}+1}, \ldots, \alpha_{p_u}, \alpha_{p_u+1}, \ldots, \alpha_{\ell})$$

so that $1 \le p_1 < \dots < p_u < \ell$ and $\alpha_{p_{i+1}}, \dots, \alpha_{p_{i+1}}$ are consecutive for $0 \le i \le u$. By convention, $p_0 = 0$ and $p_{u+1} = \ell$.

Schubert Decomposability

It turns out that we need a notion more subtle than decomposability. Let us

ullet write α uniquely as

$$\alpha = (\alpha_1, \ldots, \alpha_{p_1}, \alpha_{p_1+1}, \ldots, \alpha_{p_2}, \ldots, \alpha_{p_{u-1}+1}, \ldots, \alpha_{p_u}, \alpha_{p_u+1}, \ldots, \alpha_{\ell})$$

so that $1 \le p_1 < \cdots < p_u < \ell$ and $\alpha_{p_{i+1}}, \ldots, \alpha_{p_{i+1}}$ are consecutive for $0 \le i \le u$. By convention, $p_0 = 0$ and $p_{u+1} = \ell$.

• α is called completely nonconsecutive if $\alpha_i - \alpha_{i-1} \geq 2$ for all $2 \leq i \leq \ell$

Schubert Decomposability

It turns out that we need a notion more subtle than decomposability. Let us

ullet write lpha uniquely as

$$\alpha = (\alpha_1, \ldots, \alpha_{p_1}, \ \alpha_{p_1+1}, \ldots, \alpha_{p_2}, \ \ldots, \ \alpha_{p_{u-1}+1}, \ldots, \alpha_{p_u}, \ \alpha_{p_u+1}, \ldots, \alpha_{\ell})$$

so that $1 \le p_1 < \cdots < p_u < \ell$ and $\alpha_{p_{i+1}}, \ldots, \alpha_{p_{i+1}}$ are consecutive for $0 \le i \le u$. By convention, $p_0 = 0$ and $p_{u+1} = \ell$.

• α is called completely nonconsecutive if $\alpha_i - \alpha_{i-1} \geq 2$ for all $2 \leq i \leq \ell$

Definition

A decomposable element $f = f_1 \wedge \ldots \wedge f_{m-\ell} \in \bigwedge^{m-\ell} V$ is said to be Schubert decomposable if $\dim (V_f \cap A_{p_i}) = \alpha_{p_i} - p_i$ for all $i = 1, \ldots, u$, where V_f denotes the annihilator of f, i.e., $V_f := \{v \in V : v \wedge f = 0\} = \langle f_1, \ldots, f_{m-\ell} \rangle$.

Main Results: Schubert Decomposability and Min Weight Codewords

Note that in the Grassmann case, i.e., when $\alpha=(m-\ell+1,\ldots,m-1,m)$, or more generally, when $\alpha_1,\ldots,\alpha_\ell$ are consecutive, we have u=0 and in this case, the notions of decomposability and Schubert decomposability coincide.

Conjecture

Minimum weight codewords of the Schubert code $C_{\alpha}(\ell, m)$ are precisely the codewords corresponding to Schubert decomposable elements of $\bigwedge^{m-\ell} V$.

Main Results: Schubert Decomposability and Min Weight Codewords

Note that in the Grassmann case, i.e., when $\alpha=(m-\ell+1,\ldots,m-1,m)$, or more generally, when $\alpha_1,\ldots,\alpha_\ell$ are consecutive, we have u=0 and in this case, the notions of decomposability and Schubert decomposability coincide.

Conjecture

Minimum weight codewords of the Schubert code $C_{\alpha}(\ell, m)$ are precisely the codewords corresponding to Schubert decomposable elements of $\bigwedge^{m-\ell} V$.

Theorem (G – Singh)

If $f \in \bigwedge^{m-\ell} V$ is Schubert decomposable, then c_f is a minimum weight codeword of the Schubert code $C_{\alpha}(\ell, m)$.

Main Results: Schubert Decomposability and Min Weight Codewords

Note that in the Grassmann case, i.e., when $\alpha=(m-\ell+1,\ldots,m-1,m)$, or more generally, when $\alpha_1,\ldots,\alpha_\ell$ are consecutive, we have u=0 and in this case, the notions of decomposability and Schubert decomposability coincide.

Conjecture

Minimum weight codewords of the Schubert code $C_{\alpha}(\ell, m)$ are precisely the codewords corresponding to Schubert decomposable elements of $\bigwedge^{m-\ell} V$.

Theorem (G - Singh)

If $f \in \bigwedge^{m-\ell} V$ is Schubert decomposable, then c_f is a minimum weight codeword of the Schubert code $C_{\alpha}(\ell, m)$.

Theorem (G - Singh)

Assume that $f \in \bigwedge^{m-\ell} V$ is decomposable. If c_f is a minimum weight codeword of $C_{\alpha}(\ell, m)$, then f is Schubert decomposable.

Main Results: The Completely Nonconsecutive Case and the Min Weight Codewords

Theorem (G – Singh)

Assume that α is completely non-consecutive. If c is a minimum weight codeword of $C_{\alpha}(\ell, m)$, then $c = c_h$ for some decomposable $h \in \bigwedge^{m-\ell} V$.

Main Results: The Completely Nonconsecutive Case and the Min Weight Codewords

Theorem (G - Singh)

Assume that α is completely non-consecutive. If c is a minimum weight codeword of $C_{\alpha}(\ell, m)$, then $c = c_h$ for some decomposable $h \in \bigwedge^{m-\ell} V$.

Theorem (G - Singh)

The number of codewords of $C_{\alpha}(\ell, m)$ corresponding to Schubert decomposable elements of $\bigwedge^{m-\ell} V$ is equal to

$$N_{\alpha}(\ell,m) := (q-1)q^{\mathsf{P}} \prod_{j=0}^{u} \begin{bmatrix} \alpha_{p_{j+1}} - \alpha_{p_{j}} \\ p_{j+1} - p_{j} \end{bmatrix}_{q},$$

where

$$\mathsf{P} = \sum_{j=1}^{u} p_j \left(\alpha_{p_{j+1}} - \alpha_{p_j} - p_{j+1} + p_j \right).$$

Thank you!

• Let $\alpha'=(\alpha_1,\dots,\alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1,m)$ be the corresponding Schubert code

- Let $\alpha' = (\alpha_1, \dots, \alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1, m)$ be the corresponding Schubert code
- $E = \{x \in A_{\ell} : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$

- Let $\alpha' = (\alpha_1, \dots, \alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1, m)$ be the corresponding Schubert code
- $E = \{x \in A_{\ell} : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$
- $\bullet \ F = A_{\ell} \setminus E$

- Let $\alpha' = (\alpha_1, \dots, \alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1, m)$ be the corresponding Schubert code
- $E = \{x \in A_\ell : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$
- $F = A_{\ell} \setminus E$
- $\bullet \ Z(\alpha,f) = \{(L',x) \in \Omega_{\alpha'}(\ell-1,m) \times A_{\ell} : f \land x(L) \neq 0\}$

- Let $\alpha'=(\alpha_1,\dots,\alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1,m)$ be the corresponding Schubert code
- $E = \{x \in A_\ell : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$
- \bullet $F = A_{\ell} \setminus E$
- $\bullet \ Z(\alpha, f) = \{ (L', x) \in \Omega_{\alpha'}(\ell 1, m) \times A_{\ell} : f \wedge x(L) \neq 0 \}$
- $\bullet \ W(f) = \{ L \in \emptyset : f(L) \neq 0 \}$

- Let $\alpha' = (\alpha_1, \dots, \alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1, m)$ be the corresponding Schubert code
- $E = \{x \in A_\ell : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$
- $F = A_{\ell} \setminus E$
- $\bullet \ Z(\alpha, f) = \{ (L', x) \in \Omega_{\alpha'}(\ell 1, m) \times A_{\ell} : f \wedge x(L) \neq 0 \}$
- $W(f) = \{ L \in \emptyset : f(L) \neq 0 \}$
- $\phi: Z(\alpha, f) \longrightarrow W(f)$ defined by $(L', x) \mapsto L' + \langle x \rangle$

- Let $\alpha' = (\alpha_1, \dots, \alpha_{\ell-1})$ and $C_{\alpha'}(\ell-1, m)$ be the corresponding Schubert code
- $E = \{x \in A_{\ell} : c_{f \wedge x} \in C_{\alpha'}(\ell 1, m) \text{ is the zero codeword}\}$
- $F = A_{\ell} \setminus E$
- $\bullet \ Z(\alpha, f) = \{ (L', x) \in \Omega_{\alpha'}(\ell 1, m) \times A_{\ell} : f \wedge x(L) \neq 0 \}$
- $W(f) = \{ L \in \emptyset : f(L) \neq 0 \}$
- $\phi: Z(\alpha, f) \longrightarrow W(f)$ defined by $(L', x) \mapsto L' + \langle x \rangle$

Lemma

If $\operatorname{codim}_{A_{\ell}} E \leq t$, then $A_{\ell-t} \subset E$

Fiber Lemma

Lemma

For a given $L \in W(f)$ the following holds

- If $L \nsubseteq A_{\ell-1}$, then $|\phi^{-1}(L)| = q^{\ell-1}(q-1)$
- ② If $L \subseteq A_{\ell-1}$ and $t := \operatorname{codim}_{A_{\ell}} E$, then $|\phi^{-1}(L)| \le q^{\ell-1}(q^t 1)$
- **3** If f is Schubert decomposable, then $|\phi^{-1}(L)| = q^{\ell-1}(q^t 1)$

Fiber Lemma

Lemma

For a given $L \in W(f)$ the following holds

- If $L \nsubseteq A_{\ell-1}$, then $|\phi^{-1}(L)| = q^{\ell-1}(q-1)$
- ② If $L \subseteq A_{\ell-1}$ and $t := \operatorname{codim}_{A_{\ell}} E$, then $|\phi^{-1}(L)| \le q^{\ell-1}(q^t 1)$
- \center{omega} If f is Schubert decomposable, then $|\phi^{-1}(L)|=q^{\ell-1}(q^t-1)$

Lemma

For any $f \in \bigwedge^{m-\ell} V$ the weight of the codeword c_f satisfies

$$\mathrm{wt}(c_f) \ge \frac{1}{q^{\ell-1}(q-1)} \sum_{x \in F \cap A_{\ell-1}} \mathrm{wt}(c_{f \wedge x}) + \frac{1}{q^{\ell-1}(q^t-1)} \sum_{x \in F \setminus A_{\ell-1}} \mathrm{wt}(c_{f \wedge x})$$