

Dimension bounds for constant rank subspaces of bilinear forms

Rod Gow

School of Mathematics University College Dublin, Ireland rod.gow@ucd.ie

September 15, 2017

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let V be a vector space of dimension n over \mathbb{F}_q .

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let V be a vector space of dimension n over \mathbb{F}_q .

Let $\mathrm{Bil}(V)$ denote the \mathbb{F}_q -vector space of bilinear forms defined on $V \times V$.

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let V be a vector space of dimension n over \mathbb{F}_q .

Let $\mathrm{Bil}(V)$ denote the \mathbb{F}_q -vector space of bilinear forms defined on $V \times V$.

Let $\mathrm{Alt}(V)$, $\mathrm{Symm}(V)$ denote the subspaces of alternating, symmetric bilinear forms, respectively, in $\mathrm{Bil}(V)$.

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let V be a vector space of dimension n over \mathbb{F}_q .

Let $\mathrm{Bil}(V)$ denote the \mathbb{F}_q -vector space of bilinear forms defined on $V \times V$.

Let $\mathrm{Alt}(V)$, $\mathrm{Symm}(V)$ denote the subspaces of alternating, symmetric bilinear forms, respectively, in $\mathrm{Bil}(V)$.

If preferred, we can identify $\operatorname{Bil}(V)$ with the vector space of $n \times n$ matrices over \mathbb{F}_q , and then $\operatorname{Alt}(V)$, $\operatorname{Symm}(V)$ correspond to the subspaces of skew-symmetric, symmetric matrices, respectively.

Let q be a power of a prime p and let \mathbb{F}_q denote the finite field of order q.

Let V be a vector space of dimension n over \mathbb{F}_q .

Let $\mathrm{Bil}(V)$ denote the \mathbb{F}_q -vector space of bilinear forms defined on $V \times V$.

Let $\mathrm{Alt}(V)$, $\mathrm{Symm}(V)$ denote the subspaces of alternating, symmetric bilinear forms, respectively, in $\mathrm{Bil}(V)$.

If preferred, we can identify $\operatorname{Bil}(V)$ with the vector space of $n \times n$ matrices over \mathbb{F}_q , and then $\operatorname{Alt}(V)$, $\operatorname{Symm}(V)$ correspond to the subspaces of skew-symmetric, symmetric matrices, respectively.

Given a vector space U, we let U^{\times} denote the subset of non-zero vectors in U.

Constant rank subspaces

Definition

Let \mathcal{M} be a subspace of $\mathrm{Bil}(V)$ and let m be an integer satisfying $1 \leq m \leq n$.

Constant rank subspaces

Definition

Let \mathcal{M} be a subspace of Bil(V) and let m be an integer satisfying $1 \leq m \leq n$.

We say that \mathcal{M} is a constant rank m subspace if each element of \mathcal{M}^{\times} has rank m.

Constant rank subspaces

Definition

Let \mathcal{M} be a subspace of Bil(V) and let m be an integer satisfying $1 \leq m \leq n$.

We say that \mathcal{M} is a constant rank m subspace if each element of \mathcal{M}^{\times} has rank m.

We are interested in finding an upper bound for $\dim \mathcal{M}$ when \mathcal{M} is a constant rank m subspace and also in trying to describe \mathcal{M} in some way if $\dim \mathcal{M}$ achieves a known upper bound.

Basic isotropy theorem

The following theorem underlies our investigations of constant rank subspaces.

Theorem 1

Let $\mathcal M$ be a constant rank m subspace of $\mathrm{Bil}(V)$ and let f be an element of $\mathcal M^{\times}$.

Basic isotropy theorem

The following theorem underlies our investigations of constant rank subspaces.

Theorem 1

Let \mathcal{M} be a constant rank m subspace of Bil(V) and let f be an element of \mathcal{M}^{\times} .

Let U denote the left radical of f, and W the right radical of f (note that $\dim U = \dim W$ and $\operatorname{rank} f = n - \dim U$, but we need not have U = W).

Basic isotropy theorem

The following theorem underlies our investigations of constant rank subspaces.

Theorem 1

Let \mathcal{M} be a constant rank m subspace of Bil(V) and let f be an element of \mathcal{M}^{\times} .

Let U denote the left radical of f, and W the right radical of f (note that $\dim U = \dim W$ and $\operatorname{rank} f = n - \dim U$, but we need not have U = W).

Then provided that $q \ge m + 1$, we have

$$g(u, w) = 0$$

for all $u \in U$, $w \in W$, and all $g \in \mathcal{M}$.

When f is an alternating or symmetric bilinear form, its left radical equals its right radical, and in that case, we call these radicals simply the radical and write rad f for this subspace.

When f is an alternating or symmetric bilinear form, its left radical equals its right radical, and in that case, we call these radicals simply the radical and write rad f for this subspace.

We can restate Theorem 1 in terms of what we call a totally isotropic subspace for \mathcal{M} .

Corollary 1

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ and suppose that $q \geq m+1$.

When f is an alternating or symmetric bilinear form, its left radical equals its right radical, and in that case, we call these radicals simply the radical and write rad f for this subspace.

We can restate Theorem 1 in terms of what we call a totally isotropic subspace for \mathcal{M} .

Corollary 1

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ and suppose that $q \geq m+1$.

Let f be an element of \mathcal{M}^{\times} . Then we have

When f is an alternating or symmetric bilinear form, its left radical equals its right radical, and in that case, we call these radicals simply the radical and write rad f for this subspace.

We can restate Theorem 1 in terms of what we call a totally isotropic subspace for \mathcal{M} .

Corollary 1

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ and suppose that $q \geq m+1$.

Let f be an element of \mathcal{M}^{\times} . Then we have

$$g(u, w) = 0$$

for all u and w in rad f and all g in \mathcal{M} .

Totally isotropic subspaces

In the context of Corollary 1, we say that rad f is totally isotropic for \mathcal{M} (and $\dim rad f = n - m$).

Totally isotropic subspaces

In the context of Corollary 1, we say that rad f is totally isotropic for \mathcal{M} (and $\dim rad f = n - m$).

Since this holds for all $f \in \mathcal{M}^{\times}$, we have a supply of subspaces that are totally isotropic for \mathcal{M} .

Totally isotropic subspaces

In the context of Corollary 1, we say that rad f is totally isotropic for \mathcal{M} (and $\dim rad f = n - m$).

Since this holds for all $f \in \mathcal{M}^{\times}$, we have a supply of subspaces that are totally isotropic for \mathcal{M} .

In our study of constant rank subspaces, these totally isotropic subspaces, not surprisingly, play a major role.

Using Theorem 1, we have proved the following theorem.

Using Theorem 1, we have proved the following theorem.

Theorem 2

Let \mathcal{M} be a constant rank m subspace of Bil(V) and suppose that $q \geq m+1$.

Using Theorem 1, we have proved the following theorem.

Theorem 2

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Bil}(V)$ and suppose that $q \geq m+1$.

Then we have $\dim \mathcal{M} \leq n = \dim V$, and this bound is optimal.

Using Theorem 1, we have proved the following theorem.

Theorem 2

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Bil}(V)$ and suppose that $q \geq m+1$.

Then we have $\dim \mathcal{M} \leq n = \dim V$, and this bound is optimal.

We remark that it is generally supposed that Theorem 2 holds for all infinite fields as well, but as far as we know, this has only been established in special cases.

We can obtain additional information in Theorem 2 when the upper bound is attained.

We can obtain additional information in Theorem 2 when the upper bound is attained.

Theorem 3

Let \mathcal{M} be a constant rank m subspace of Bil(V) of dimension n and suppose that $q \geq m+1$.

We can obtain additional information in Theorem 2 when the upper bound is attained.

Theorem 3

Let \mathcal{M} be a constant rank m subspace of Bil(V) of dimension n and suppose that $q \geq m+1$.

Suppose also that $n \ge 2m + 1$.

We can obtain additional information in Theorem 2 when the upper bound is attained.

Theorem 3

Let \mathcal{M} be a constant rank m subspace of Bil(V) of dimension n and suppose that $q \geq m+1$.

Suppose also that $n \ge 2m + 1$.

Then the elements of \mathcal{M}^\times all have the same left radical, or they have the same right radical.

We can obtain additional information in Theorem 2 when the upper bound is attained.

Theorem 3

Let \mathcal{M} be a constant rank m subspace of Bil(V) of dimension n and suppose that $q \geq m+1$.

Suppose also that $n \ge 2m + 1$.

Then the elements of \mathcal{M}^\times all have the same left radical, or they have the same right radical.

We remark that we really require $\dim \mathcal{M} = n$ in this theorem, and also that some restriction on the size of m is required.

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

We devote the rest of this talk to examining some sharpening of Theorem 2 that we have achieved.

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

We devote the rest of this talk to examining some sharpening of Theorem 2 that we have achieved.

Theorem 4

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$ and suppose that m is odd.

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

We devote the rest of this talk to examining some sharpening of Theorem 2 that we have achieved.

Theorem 4

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$ and suppose that m is odd.

Then we have $\dim \mathcal{M} \leq m$ (this holds for all q).

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

We devote the rest of this talk to examining some sharpening of Theorem 2 that we have achieved.

Theorem 4

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$ and suppose that m is odd.

Then we have $\dim \mathcal{M} \leq m$ (this holds for all q).

Moreover, if dim $\mathcal{M}=m$ and $q\geq m+1$, then all elements of \mathcal{M}^{\times} have the same radical.

Theorem 2 is optimal in general, but there is reason to suppose that improvements can often be made for subspaces of $\mathrm{Alt}(V)$ and $\mathrm{Symm}(V)$.

We devote the rest of this talk to examining some sharpening of Theorem 2 that we have achieved.

Theorem 4

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$ and suppose that m is odd.

Then we have $\dim \mathcal{M} \leq m$ (this holds for all q).

Moreover, if dim $\mathcal{M}=m$ and $q\geq m+1$, then all elements of \mathcal{M}^{\times} have the same radical.

It is not entirely clear to us why such a theorem holds for odd m and we ask if there is any analogue of the theorem for arbitrary fields.

Improved symmetric dimension bound

There is of course no analogue of Theorem 4 for even m, but we can nevertheless make some small improvements to Theorem 2 in the symmetric case.

There is of course no analogue of Theorem 4 for even m, but we can nevertheless make some small improvements to Theorem 2 in the symmetric case.

Theorem 5

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$, where m is even.

There is of course no analogue of Theorem 4 for even m, but we can nevertheless make some small improvements to Theorem 2 in the symmetric case.

Theorem 5

Let \mathcal{M} be a constant rank m subspace of $\operatorname{Symm}(V)$, where m is even.

Suppose that q is odd and at least m + 1.

There is of course no analogue of Theorem 4 for even m, but we can nevertheless make some small improvements to Theorem 2 in the symmetric case.

Theorem 5

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$, where m is even.

Suppose that q is odd and at least m + 1.

Then provided that $m \le 2n/3$, we have dim $\mathcal{M} \le n-1$.

There is of course no analogue of Theorem 4 for even m, but we can nevertheless make some small improvements to Theorem 2 in the symmetric case.

Theorem 5

Let $\mathcal M$ be a constant rank m subspace of $\operatorname{Symm}(V)$, where m is even.

Suppose that q is odd and at least m + 1.

Then provided that $m \le 2n/3$, we have dim $\mathcal{M} \le n-1$.

This bound also holds if m = n - 1 and n is odd.

What can we say about constant rank m subspaces of Alt(V)? Recall that m must be even here.

What can we say about constant rank m subspaces of Alt(V)? Recall that m must be even here.

Theorem 6

Let \mathcal{M} be a constant rank m subspace of Alt(V).

What can we say about constant rank m subspaces of Alt(V)? Recall that m must be even here.

Theorem 6

Let \mathcal{M} be a constant rank m subspace of Alt(V).

Suppose that $q \ge m+1$ and $m \le n/2$.

What can we say about constant rank m subspaces of Alt(V)? Recall that m must be even here.

Theorem 6

Let \mathcal{M} be a constant rank m subspace of Alt(V).

Suppose that $q \ge m + 1$ and $m \le n/2$.

Then we have dim $\mathcal{M} \leq n-1$.

What can we say about constant rank m subspaces of Alt(V)? Recall that m must be even here.

Theorem 6

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$.

Suppose that $q \ge m + 1$ and $m \le n/2$.

Then we have dim $\mathcal{M} \leq n-1$.

Furthermore, if $m \ge 4$, we have dim $\mathcal{M} \le n-2$

We conclude the talk by discussing properties of constant rank m subspaces of Alt(V) of dimension n.

We conclude the talk by discussing properties of constant rank m subspaces of Alt(V) of dimension n.

Theorem 7

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ of dimension n, and suppose that $q \geq m+1$.

We conclude the talk by discussing properties of constant rank m subspaces of Alt(V) of dimension n.

Theorem 7

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ of dimension n, and suppose that $q \geq m+1$.

Then the different subspaces $\operatorname{rad} f$, as f runs over \mathcal{M}^{\times} , form a spread of V consisting of subspaces of dimension n-m.

We conclude the talk by discussing properties of constant rank m subspaces of Alt(V) of dimension n.

Theorem 7

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ of dimension n, and suppose that $q \geq m+1$.

Then the different subspaces $\operatorname{rad} f$, as f runs over \mathcal{M}^{\times} , form a spread of V consisting of subspaces of dimension n-m.

Thus n-m divides n.

We conclude the talk by discussing properties of constant rank m subspaces of Alt(V) of dimension n.

Theorem 7

Let \mathcal{M} be a constant rank m subspace of $\mathrm{Alt}(V)$ of dimension n, and suppose that $q \geq m+1$.

Then the different subspaces $\operatorname{rad} f$, as f runs over \mathcal{M}^{\times} , form a spread of V consisting of subspaces of dimension n-m.

Thus n-m divides n.

There is a corresponding spread decomposition of \mathcal{M} into subspaces of dimension n-m, in which all non-zero elements in the given spread subspace have the same radical.

There is a partial converse to Theorem 7, which, for the sake of simplicity, we will restrict to the case where n is odd.

There is a partial converse to Theorem 7, which, for the sake of simplicity, we will restrict to the case where n is odd.

Theorem 8

Suppose that n is odd and m is a positive integer such that n-m divides n.

There is a partial converse to Theorem 7, which, for the sake of simplicity, we will restrict to the case where n is odd.

Theorem 8

Suppose that n is odd and m is a positive integer such that n-m divides n.

Then $\mathrm{Alt}(V)$ contains a constant rank m subspace of dimension n.

There is a partial converse to Theorem 7, which, for the sake of simplicity, we will restrict to the case where n is odd.

Theorem 8

Suppose that n is odd and m is a positive integer such that n-m divides n.

Then Alt(V) contains a constant rank m subspace of dimension n.

We have emphasized constant rank subspaces of maximal dimension but we can also investigate constant rank m subspaces that are maximal with respect to containment in constant rank m subspaces.

We have emphasized constant rank subspaces of maximal dimension but we can also investigate constant rank m subspaces that are maximal with respect to containment in constant rank m subspaces.

Maximal constant rank m subspaces of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ can have very small dimension compared with n. Here is a representative example.

We have emphasized constant rank subspaces of maximal dimension but we can also investigate constant rank m subspaces that are maximal with respect to containment in constant rank m subspaces.

Maximal constant rank m subspaces of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ can have very small dimension compared with n. Here is a representative example.

Theorem 9

Let $k \ge 3$ be an odd integer such that $k \le n$ and suppose that $q \ge k$.

We have emphasized constant rank subspaces of maximal dimension but we can also investigate constant rank m subspaces that are maximal with respect to containment in constant rank m subspaces.

Maximal constant rank m subspaces of $\mathrm{Alt}(V)$ or $\mathrm{Symm}(V)$ can have very small dimension compared with n. Here is a representative example.

Theorem 9

Let $k \ge 3$ be an odd integer such that $k \le n$ and suppose that $q \ge k$.

Then $\mathrm{Alt}(V)$ contains a maximal constant rank k-1 subspace of dimension k.